1
|
Wang Y, Nie Z, Liu H, de Bruijn JD, Yuan H, Bao C. Apolipoprotein E as a Potential Regulator of Osteoclast-Osteoblast Coupling in Material-Induced Bone Formation. Acta Biomater 2025:S1742-7061(25)00405-2. [PMID: 40449705 DOI: 10.1016/j.actbio.2025.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/21/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Osteoinductive materials which induce bone formation in non-osseous sites are promising bone substitutes to repair critical-sized bone defects. It appears that innate immune response (esp. osteoclastogenesis) to materials plays an important role in material-induced bone formation. In this study, the coupling between osteoclastogenesis and subsequent osteogenesis in material-induced bone formation was investigated. Osteoclastogenesis of mouse bone marrow-derived monocytes (BMMs) on osteoinductive tricalcium phosphate (TCPs) and non-osteoinductive tricalcium phosphate (TCPb) ceramics were evaluated with high-throughput RNA sequencing (RNA-seq) and RT-qPCR regarding secretory proteins. It turned out that osteoinductive TCPs supported osteoclastogenesis and enhanced Apolipoprotein E (ApoE) production. Meanwhile, ApoE enhanced osteogenic gene expression (Alp, Runx2, Col1a1, Osterix) and ALP staining and activity of CRL-12424 cells in vitro. Additionally, western blot assay revealed that ApoE played its role in osteogenesis of CRL-12424 by activating JAK-STAT pathway instead of PI3K-AKT pathway. The overall data indicated that ApoE was a potential coupling factor between osteoclastogenesis and osteogenesis in material-induced bone formation. By secreting ApoE, osteoclasts formed on osteoinductive materials stimulated osteogenic differentiation of osteo-progenitors via JAK-STAT pathway. STATEMENT OF SIGNIFICANCE: Osteoinductive materials can repair critical-sized bone defects, while the precise mechanism osteoinductive materials driving bone formation remains unclear. Recent research has highlighted the role of osteoclastogenesis in material-induced bone formation, how osteoclastogenesis playing its role in osteogenesis was subjected to investigation in the current study. Robust ApoE gene expression shown in osteoclastogenesis with the osteoinductive material and ApoE enhancing osteogenesis of mesenchymal stromal cells (CRL-12424) indicated ApoE as a potential regulator of osteoclast-osteoblast coupling, providing thus novel insights into the complex interplay of cellular responses and contributing to the development of more effective bone substitute materials.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhangling Nie
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Joost D de Bruijn
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, the Netherlands
| | - Huipin Yuan
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, the Netherlands; Huipin Yuan's Lab, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Wu X, Wang J, Hao Z, Zhen H, Hu J, Liu X, Li S, Zhao F, Li M, Zhao Z, Shi B, Ren C. Circular RNA_015343 sponges microRNA-25 to regulate viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells via INSIG1. J Cell Physiol 2024; 239:e31332. [PMID: 38828915 DOI: 10.1002/jcp.31332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector. These suggest that cic_015343 can adsorb and bind miR-25. The miR-25 increased the viability and proliferation of OMECs, and the content of triglycerides in OMECs. In addition, INSIG1 was found to be a target gene of miR-25 using a dual-luciferase reporter assay. Overexpression of INSIG1 decreased the viability, proliferation, and level of triglycerides of OMECs. In contrast, the inhibition of INSIG1 in expression had the opposite effect on activities and triglycerides of OMECs with overexpressed INSIG1. A rescue experiment revealed that circ_015343 alleviated the inhibitory effect of miR-25 on the mRNA and protein abundance of INSIG1. These results indicate that circ_015343 sponges miR-25 to inhibit the activities and content of triglycerides of OMECs by upregulating the expression of INSIG1 in OMECs. This study provided new insights for understanding the genetic molecular mechanism of lactation traits in sheep.
Collapse
Affiliation(s)
- Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huimin Zhen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Li X, Si Y, Liang J, Li M, Wang Z, Qin Y, Sun L. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci 2024; 672:179-199. [PMID: 38838627 DOI: 10.1016/j.jcis.2024.05.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaorong Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunhui Si
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jingxian Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengsha Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Zhiwei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yinying Qin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
5
|
Shen Y, Zhang Y, Wang Q, Jiang B, Jiang X, Luo B. MicroRNA-877-5p promotes osteoblast differentiation by targeting EIF4G2 expression. J Orthop Surg Res 2024; 19:134. [PMID: 38342889 PMCID: PMC10860299 DOI: 10.1186/s13018-023-04396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 02/13/2024] Open
Abstract
Stimulating bone formation potentially suggests therapeutics for orthopedic diseases including osteoporosis and osteoarthritis. Osteoblasts are key to bone remodeling because they act as the only bone-forming cells. miR-877-5p has a chondrocyte-improving function in osteoarthritis, but its effect on osteoblast differentiation is unknown. Here, miR-877-5p-mediated osteoblast differentiation was studied. Real-time reverse transcriptase-polymerase chain reaction was performed to measure miR-877-5p expression during the osteogenic differentiation of MC3T3-E1 cells. Osteoblast markers, including alkaline phosphatase (ALP), collagen type I a1 chain, and osteopontin, were measured and detected by alizarin red staining and ALP staining. Potential targets of miR-877-5p were predicted from three different algorithms: starBase ( http://starbase.sysu.edu.cn/ ), PITA ( http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html ), and miRanda ( http://www.microrna.org/microrna/home.do ). It was further verified by dual luciferase reporter gene assay. The experimental results found that miR-877-5p was upregulated during the osteogenic differentiation of MC3T3-E1 cells. Overexpression of miR-877-5p promoted osteogenic differentiation, which was characterized by increased cell mineralization, ALP activity, and osteogenesis-related gene expression. Knockdown of miR-877-5p produced the opposite result. Dual luciferase reporter gene assay showed that miR-877-5p directly targeted eukaryotic translation initiation factor 4γ2 (EIF4G2). Overexpression of EIF4G2 inhibited osteogenic differentiation and reversed the promoting effect of overexpression of miR-135-5p on osteogenic differentiation. These results indicate that miR-877-5p might have a therapeutic application related to its promotion of bone formation through targeting EIF4G2.
Collapse
Affiliation(s)
- YingChao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu City, 215500, Jiangsu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu Province, No. 1055 Sanxiang Road, Suzhou City, 215004, China.
| | - XiaoWei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China.
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| |
Collapse
|
6
|
Lu W, Shi Y, Qian M. Notoginsenoside R1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via ERα/GSK-3β/β-catenin signalling pathway. Int J Exp Pathol 2024; 105:4-12. [PMID: 37899670 PMCID: PMC10797438 DOI: 10.1111/iep.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) are attractive therapeutic agents for bone tissue regeneration owing to their osteogenic differentiation potential. Notoginsenoside R1 (NGR1) is a novel phytoestrogen with diverse pharmacological activities. Here, we probed whether NGR1 has an effect on the osteogenic differentiation of hBMSCs. EdU, CCK-8 and Transwell assays were used to measure proliferation and migration of hBMSCs after treatment with different doses of NGR1. hBMSCs were treated with osteogenic differentiation induction medium for osteogenesis. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to measure mineralized nodule formation and ALP activity in hBMSCs, respectively. ICI 182780, an antagonist of oestrogen receptor alpha (ERα) was used to inhibit ERα expression. The results showed that NGR1 enhanced hBMSC proliferation and migration. NGR1 increased ALP activity and mineralized nodule formation as well as promoting ALP, RUNX2 and OCN expression in hBMSCs. NGR1 enhanced ERα expression and promoted GSK-3β/β-catenin signal transduction in hBMSCs. ICI 182780 reversed NGR1-mediated activation of the GSK-3β/β-catenin signalling and promoted an effect on hBMSC behaviour. Thus NGR1 promotes proliferation, migration and osteogenic differentiation of hBMSCs via the ERα/GSK-3β/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wei Lu
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| | - Yuanxin Shi
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| | - Minglei Qian
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| |
Collapse
|
7
|
Groven RVM, van Koll J, Poeze M, Blokhuis TJ, van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg 2021; 8:786564. [PMID: 34869574 PMCID: PMC8639603 DOI: 10.3389/fsurg.2021.786564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Fracture healing is a complex, dynamic process that is directed by cellular communication and requires multiple cell types, such as osteoblasts, osteoclasts, and immune cells. Physiological fracture healing can be divided into several phases that consist of different processes, such as angiogenesis, osteogenesis, and bone resorption/remodelling. This is needed to guarantee proper bone regeneration after fracture. Communication and molecular regulation between different cell types and within cells is therefore key in successfully orchestrating these processes to ensure adequate bone healing. Among others, microRNAs (miRNAs) play an important role in cellular communication. microRNAs are small, non-coding RNA molecules of ~22 nucleotides long that can greatly influence gene expression by post-transcriptional regulation. Over the course of the past decade, more insights have been gained in the field of miRNAs and their role in cellular signalling in both inter- and intracellular pathways. The interplay between miRNAs and their mRNA targets, and the effect thereof on different processes and aspects within fracture healing, have shown to be interesting research topics with possible future diagnostic and therapeutic potential. Considering bone regeneration, research moreover focusses on specific microRNAs and their involvement in individual pathways. However, it is required to combine these data to gain more understanding on the effects of miRNAs in the dynamic process of fracture healing, and to enhance their translational application in research, as well as in the clinic. Therefore, this review aims to provide an integrative overview on miRNAs in fracture healing, related to several key aspects in the fracture healing cascade. A special focus will be put on hypoxia, angiogenesis, bone resorption, osteoclastogenesis, mineralization, osteogenesis, osteoblastogenesis, osteocytogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan van Koll
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Taco J Blokhuis
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
9
|
Liu A, Lin D, Zhao H, Chen L, Cai B, Lin K, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials 2021; 272:120718. [PMID: 33838528 DOI: 10.1016/j.biomaterials.2021.120718] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-exos), with its inherent capacity to modulate cellular behavior, are emerging as a novel cell-free therapy for bone regeneration. Herein, focusing on practical applying problems, the osteoinductivity of MSC-exos produced by different stem cell sources (rBMSCs/rASCs) and culture conditions (osteoinductive/common) were systematically compared to screen out an optimized osteogenic exosome (BMSC-OI-exo). Via bioinformatic analyses by miRNA microarray and in vitro pathway verification by gene silencing and miRNA transfection, we first revealed that the osteoinductivity of BMSC-OI-exo was attributed to multi-component exosomal miRNAs (let-7a-5p, let-7c-5p, miR-328a-5p and miR-31a-5p). These miRNAs targeted Acvr2b/Acvr1 and regulated the competitive balance of Bmpr2/Acvr2b toward Bmpr-elicited Smad1/5/9 phosphorylation. On these bases, lyophilized delivery of BMSC-OI-exo on hierarchical mesoporous bioactive glass (MBG) scaffold was developed to realize bioactivity maintenance and sustained release by entrapment in the surface microporosity of the scaffold. In a rat cranial defect model, the loading of BMSC-OI-exo efficiently enhanced the bone forming capacity of the scaffold and induced rapid initiation of bone regeneration. This paper could provide empirical bases of MSC-exo-based therapy for bone regeneration and theoretical bases of MSC-exo-induced osteogenesis mechanism. The BMSC-OI-exo-loaded MBG scaffold developed here represented a promising bone repairing strategy for future clinical application.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Dan Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Hanjiang Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Long Chen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Bolei Cai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
10
|
Jiang Y, Zhang J, Li Z, Jia G. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-25 Regulates the Ubiquitination and Degradation of Runx2 by SMURF1 to Promote Fracture Healing in Mice. Front Med (Lausanne) 2020; 7:577578. [PMID: 33425934 PMCID: PMC7793965 DOI: 10.3389/fmed.2020.577578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence has demonstrated that mesenchymal stem cells (MSCs) can release a large number of functionally specific microRNA (miRNA) microvesicles that play a role in promoting osteogenic differentiation, but the specific mechanism is not yet clear. Under such context, this study aims to elucidate the mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) promoting fracture healing in mice. We isolated and identified the BMSC-Exo. Bioinformatics analysis predicted high expression of miRNA in exosomes and verified the transfer of miR-25 in exosomes by immunofluorescence. Targeting relationship between miR-25 and Smad ubiquitination regulatory factor-1 (SMURF1) was predicted and verified by dual-luciferase reporter gene assay. Immunoprecipitation and protein stability assays were used to detect Runt-related transcription factor 2 (Runx2) ubiquitination and the effect of SMURF1 on Runx2 ubiquitination, respectively. The effect of miR-25 in BMSC-Exo on fracture healing in mice was assessed using X-ray imaging. alkaline phosphatase, alizarin red staining, EdU, CCK-8, and Transwell were used to evaluate the effects of exosomes transferred miR-25 on osteogenic differentiation, proliferation, and migration of osteoblasts. Bioinformatics analysis predicted that miR-25 expression in exosomes increased significantly. Moreover, the targeted regulation of SMURF1 by miR-25 was verified. SMURF1 inhibited Runx2 protein expression by promoting ubiquitination degradation of Runx2. Notably, miR-25 secreted by BMSC-Exo can accelerate osteogenic differentiation, proliferation, and migration of osteoblasts through SMURF1/Runx2 axis. Our results demonstrate that miR-25 in BMSC-Exo regulates the ubiquitination degradation of Runx2 by SMURF1 to promote fracture healing in mice.
Collapse
Affiliation(s)
- Yikun Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoliang Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D. Recent Approaches for Angiogenesis in Search of Successful Tissue Engineering and Regeneration. Curr Stem Cell Res Ther 2020; 15:111-134. [PMID: 31682212 DOI: 10.2174/1574888x14666191104151928] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration. Tissue regeneration is a broad field that has shown the convergence of various interdisciplinary fields, wherein living cells in conjugation with biomaterials have been tried and tested on to the human body. Although there is a prevalence of various approaches that hypothesize enhanced tissue regeneration via angiogenesis, none of them have been successful in gaining clinical relevance. Hence, the current review summarizes the recent cell-based and cell free (exosomes, extracellular vesicles, micro-RNAs) therapies, gene and biomaterial-based approaches that have been used for angiogenesis-mediated tissue regeneration and have been applied in treating disease models like ischemic heart, brain stroke, bone defects and corneal defects. This review also puts forward a concise report of the pre-clinical and clinical studies that have been performed so far; thereby presenting the credible impact of the development of biomaterials and their 3D concepts in the field of tissue engineering and regeneration, which would lead to the probable ways for heralding the successful future of angiogenesis-mediated approaches in the greater perspective of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lekkala Vinod Kumar Reddy
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Durai Murugan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Madhubanti Mullick
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.,University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Legrand MA, Millet M, Merle B, Rousseau JC, Hemmendinger A, Gineyts E, Sornay-Rendu E, Szulc P, Borel O, Croset M, Chapurlat R. A Signature of Circulating miRNAs Associated With Fibrous Dysplasia of Bone: the mirDys Study. J Bone Miner Res 2020; 35:1881-1892. [PMID: 32526052 DOI: 10.1002/jbmr.4111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022]
Abstract
Fibrous dysplasia (FD) is a rare bone disease caused by activating mutations of GNAS encoding the Gsα protein, enhancing cyclic adenosine monophosphate (cAMP) production by overstimulation of adenylyl cyclase and impairing osteoblastic differentiation. The clinical presentation ranges from asymptomatic to polyostotic forms with severe disability, explained by the mosaic distribution of the GNAS mutation. Physicians have to deal with the gap of knowledge in FD pathogenesis, the absence of prognostic markers and the lack of specific treatment. The identification of specific biomarkers for FD is an important step to improve the clinical and therapeutic approaches. An epigenetic regulation driven by microRNAs (miRNAs), known as promising biomarkers in bone disease, could be involved in FD. We have sought circulating miRNAs that are differentially expressed in FD patients compared to controls and would reflect dysregulations of osteogenesis-related genes and bone disorder. The global miRNA profiling was performed using Next Generation Sequencing in patient serum collected from a discovery cohort of 20 patients (10 polyostotic and 10 monostotic) and 10 controls. From these, we selected 19 miRNAs for a miRNA validation phase from serum of 82 patients and 82 controls, using real-time qPCR. Discovery screening identified 111 miRNAs differentially expressed in patient serum, after adjusting for the false discovery rate (FDR). Among the 82 patients, 55% were polyostotic, and 73% were women with a mean age of 42 years. Six miRNAs (miR-25-3p, miR-93-5p, miR-182-5p, miR-324-5p, miR-363-3p, and miR-451a) were significantly overexpressed in serum, with FDR <0.05. The expression level of these six miRNAs was not associated with the FD severity. In conclusion, we identified a signature of circulating miRNAs associated with FD. These miRNAs are potential negative regulators of gene expression in bone cell progenitors, suggesting their activity in FD by interfering with osteoblastic and osteoclastic differentiation to impair bone mineralization and remodeling processes. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mélanie A Legrand
- Department of Rheumatology, Edouard Herriot University Hospital, Lyon, France.,INSERM UMR 1033, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | - Pawel Szulc
- INSERM UMR 1033, Université de Lyon, Lyon, France
| | | | | | - Roland Chapurlat
- Department of Rheumatology, Edouard Herriot University Hospital, Lyon, France.,INSERM UMR 1033, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Wang LJ, Cai HQ. Let-7b downgrades CCND1 to repress osteogenic proliferation and differentiation of MC3T3-E1 cells: An implication in osteoporosis. Kaohsiung J Med Sci 2020; 36:775-785. [PMID: 32533643 DOI: 10.1002/kjm2.12236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/10/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to reveal the effect of let-7b on osteoporosis (OP). Synthetic let-7b mimics or inhibitors were transfected into MC3T3-E1 cells. The expression of let-7b in MC3T3-E1 and its effect on cell viability, apoptosis, and the apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase-9) were tested by CCK-8 assay, flow cytometry and Western blot, severally. The osteogenic differentiation markers (Runx2 and Osterix) and Wnt/β-catenin pathway related markers (β-catenin and C-myc) were detected by qRT-PCR and Western blot. The relationships between let-7b and cyclin D1 (CCND1) were confirmed by luciferase reporter assay. The differentiation and mineralization of MC3T3-E1 cells were analyzed by alkaline phosphatase (ALP) activity assay and alizarin red staining. The outcomes indicated that overexpression/ablation of let-7b repressed/facilitated MC3T3-E1 cell viability and accelerated/suppressed MC3T3-E1 cell apoptosis. Besides, a remarkable decrease/augment of Bcl-2 protein expression and the distinct fortify/reduction of Bax and cleaved caspase-9 expression levels were observed in let-7b mimics/inhibitors group in MC3T3-E1 cells. Moreover, we discovered that let-7b overexpression/ablation retrained/facilitated the mRNA and protein expression of Runx2 and Osterix. It was confirmed that CCND1 was a downstream target of let-7b and was negatively modulated by let-7b. In addition, high-expression/deficiency of let-7b inhibited/increased the expression levels of β-catenin and C-myc in MC3T3-E1 cells. Taken together, our study revealed that let-7b overexpression/depletion repressed/accelerated MC3T3-E1 cell proliferation, differentiation, and mineralization while promoted/suppressed MC3T3-E1 cell apoptosis through targeting CCND1, which might be adjusted by Wnt/β-catenin pathway. Our findings might offer a basis for developing novel targets for OP treatment.
Collapse
Affiliation(s)
- Li-Juan Wang
- Department of endocrinology, the Second Hospital of Jilin University, Jilin, People's Republic of China
| | - Han-Qing Cai
- Department of endocrinology, the Second Hospital of Jilin University, Jilin, People's Republic of China
| |
Collapse
|
14
|
Li Z, Li H, Liu B, Luo J, Qin X, Gong M, Shi B, Wei Y. Inhibition of miR-25 attenuates doxorubicin-induced apoptosis, reactive oxygen species production and DNA damage by targeting PTEN. Int J Med Sci 2020; 17:1415-1427. [PMID: 32624698 PMCID: PMC7330660 DOI: 10.7150/ijms.41980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Doxorubicin (DOX) is one of the widely used anti-cancer drugs, whereas it can induce irreversible cardiac injury in a dose-dependent manner which limits its utility in clinic. Our study aimed to investigate the relationship between miR-25 and DOX-induced cardiac injury and its underlying mechanism. Methods: Mice and H9c2 cells were exposed to DOX. The overexpressed or knockdown of miR-25 in H9c2 cells was achieved by miR-25 mimic or inhibitor and the efficiency of transfection was identified by qRT-PCR or Western blotting. Cell viability, apoptotic cell rate, and levels of apoptosis-related proteins were determined by CCK-8, flow cytometry, and Western blotting, respectively. Furthermore, Western blotting and immunofluorescence staining (IF) were performed to assess the expression levels of reactive oxygen species and degree of DNA damage. Results: As a result, DOX significantly upregulated miR-25 expression in mice and H9c2 cells and reduced cell viability and increased cell apoptosis in vitro and in vivo. miR-25 overexpression expedited cell injury induced by DOX in H9c2 cells demonstrated by the increased cell apoptosis and reactive oxygen species (ROS) production, whereas miR-25 inhibition attenuated the cell injury. Furthermore, miR-25 negatively controlled the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Intervention the expression of PTEN using si-PTEN reversed the beneficial effects of miR-25 inhibition on DOX-injured H9c2 cells. Conclusion: In conclusion, this study demonstrated that miR-25 is involved in DOX-induced cell damage through the regulation of PTEN expression.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Hongqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xiaoming Qin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Mengmeng Gong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Beibei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| |
Collapse
|
15
|
Tang L, Lu W, Huang J, Tang X, Zhang H, Liu S. miR‑144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1. Mol Med Rep 2019; 20:270-280. [PMID: 31115543 PMCID: PMC6580040 DOI: 10.3892/mmr.2019.10252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) seriously affects the health and quality of life of elderly individuals and postmenopausal women, and the need to identify drugs that can prevent or treat OP remains urgent. Recently, several miRNAs have been reported to be involved in the differentiation of mesenchymal stem cells and osteoblasts; however, the role of miRNA (miR)-144 in regulating OP remains to be elucidated. In the present study, the expression levels of miR-144, secreted frizzled-related protein 1 (Sfrp1) and TNF-α in clinical samples were detected by the reverse transcription-quantitative polymerase chain reaction analysis and ELISA, respectively. 5-Ethynyl-2′-deoxyuridine staining, Hoechst 33258 staining, flow cytometry, a clone formation assay and Alizarin red staining were used to assess the effects of miR-144 combined with or without Sfrp1 small interfering RNA on the proliferation, apoptosis and osteoblastic differentiation of primary mesenchymal stem cells isolated from rats. Western blot assays were performed to assess the relevant mechanisms, and a dual luciferase reporter assay was used to detect the interaction between miR-144 and Sfrp1. The results showed that the levels of miR-144, Sfrp1 and TNF-α in clinical serum samples obtained from patients with postmenopausal OP were higher than those in serum samples obtained from postmenopausal women with normal bone density. There was a significant positive correlation between miR-144 and Sfrp1. Functional experiments demonstrated that miR-144 promoted proliferation, inhibited apoptosis and induced the osteoblastic differentiation of bone marrow-derived mesenchymal stem cells by targeting Sfrp1. It was also shown that miR-144 may help regulate OP by activating the Wnt/β-catenin pathway. These data suggest miR-144 as a novel target for preventing and treating OP.
Collapse
Affiliation(s)
- Ling Tang
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Wenjun Lu
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jian Huang
- Department of Cell Biology and Genetics, Guilin Medical University, Guilin, Guangxi 541005, P.R. China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huiyun Zhang
- Department of Endocrinology, Graduate School of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Shujiao Liu
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
16
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Zhuang XM, Zhou B, Yuan KF. Role of p53 mediated miR-23a/CXCL12 pathway in osteogenic differentiation of bone mesenchymal stem cells on nanostructured titanium surfaces. Biomed Pharmacother 2019; 112:108649. [PMID: 30784930 DOI: 10.1016/j.biopha.2019.108649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Titanium surface modification is widely established and has been proven to improve the osseointegration, but the molecular mechanism remains to be fully elucidated. MicroRNAs serve vital roles in the process of regulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, we report that miR-23a was significantly down-regulated in the osteogenic differentiation process of BMSCs on nanostructured titanium surfaces. Elevated miR-23a inhibited osteogenic differentiation of BMSCs, and decreased miR-23a enhanced this process. In addition, we also observed that CXCL12 was a direct target of miR-23a. Knockdown of CXCL12 inhibited nanotube Ti induced-osteogenic differentiation of BMSCs, similar to the effect of upregulation of miR-23a. Finally, p53 was decreased and it regulated miR-23a/CXCL12 axis during nanotube Ti induced-osteogenic differentiation of BMSCs. Therefore, our findings suggest that by targeting CXCL12, miR-23a serves a vital role in osteogenic differentiation of BMSCs cultured on nanostructured titanium surfaces, which may provide novel clinical treatments for osseointegration.
Collapse
Affiliation(s)
- Xiu-Mei Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bin Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Kai-Fang Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|