1
|
El-Waseif AG, Elshal M, El-Kashef DH, Abu-Elsaad NM. Paricalcitol, an active vitamin D analog, mitigates dexamethasone-induced hepatic injury: Role of autophagy, pyroptosis, and PERK/Nrf2/HO-1 signaling pathway. Toxicol Appl Pharmacol 2025; 498:117307. [PMID: 40118256 DOI: 10.1016/j.taap.2025.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Drug-induced toxicity is considered a crucial clinical affair, as some adverse effects could be severe or life threatening. Drugs may have adverse effects by altering biological pathways that aren't always involved in the drug's reaction. From this perspective, the purpose of the current study was to assess the impacts of paricalcitol, a synthetic, active, and selective vitamin D receptor activator, on dexamethasone-induced liver injury, and discover the probable implicated signaling pathways as well. Male Wistar rats were treated with paricalcitol at a dose of 0.2 μg/kg, daily, i.p for 12 days and injected with 8 mg/kg dexamethasone i.p daily over the last 6 days. Administration of paricalcitol improved liver function markers, lipid profile, reduced histopathologic changes in hepatic sections, and restored normal oxidative status. Moreover, paricalcitol markedly decreased hepatic collagen deposition as confirmed by Masson's trichrome staining. Paricalcitol effectively inhibited endoplasmic reticulum stress through decreasing expression of tissue PERK and Chop, increasing hepatic Nrf2, and HO-1 activity. Besides, paricalcitol decreased levels of NLRP3 and IL-1β as well as decreased expression of active caspase-1 p20, GSDMD-N-terminal indicating suppression of NLRP3/caspase-1/GSDMD pyroptosis pathway. Paricalcitol can protect against dexamethasone-induced liver injury showing a promising therapeutic value in drug-induced liver injuries.
Collapse
Affiliation(s)
- Aamal G El-Waseif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt..
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nashwa M Abu-Elsaad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Li XY, Gu XY, Li XM, Yan JG, Mao XL, Yu Q, Du YL, Kurihara H, Yan CY, Li WX. Supplementation with carnosine, a food-derived bioactive dipeptide, alleviates dexamethasone-induced oxidative stress and bone impairment via the NRF2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1091-1104. [PMID: 39291490 DOI: 10.1002/jsfa.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yuan Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Jian-Gang Yan
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Xin-Liang Mao
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Qin Yu
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Yu-Lan Du
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Hiroshi Kurihara
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Saraswat I, Goel A. Herbal Remedies for Hepatic Inflammation: Unravelling Pathways and Mechanisms for Therapeutic Intervention. Curr Pharm Des 2025; 31:128-139. [PMID: 39350422 DOI: 10.2174/0113816128348771240925100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/16/2024] [Indexed: 02/18/2025]
Abstract
Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Liver inflammation is commonly associated with hepatocyte necrosis and apoptosis. These forms of liver cell injury initiate a sequence of events independent of the etiological basis for the inflammation and can result in hepatic disorders. It is also common for liver cancer. This review fundamentally focuses on the molecular pathways involved in hepatic inflammation. This review aims to explore the molecular pathways involved in hepatic inflammation, focusing on arachidonic acid, NF-κB, MAPK, PI3K/Akt, and JAK/STAT pathways. It investigates active compounds in herbal plants and their pharmacological characteristics. The review proposes a unique therapeutic blueprint for managing hepatic inflammation and diseases by modifying these pathways with herbal remedies.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| |
Collapse
|
4
|
Li X, Gao C, Zhou K, Gan K, Ye T, Zhao J, Li J, Ma C. Dendrobine Ameliorates Glucocorticoid-Induced Osteoporosis by Promoting Osteogenesis through JNK/p38 MAPK Pathway Activation and GR Nuclear Translocation Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16739-16748. [PMID: 39033544 DOI: 10.1021/acs.jafc.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the common reason for secondary osteoporosis. Dendrobine (DEN) is the major biologically active component of Dendrobium officinale with anti-inflammatory and antiaging properties. Whether DEN could alleviate osteogenic inhibition in GIOP rats is still unknown. The influence on osteogenic function caused by DEN on dexamethasone-treated bone marrow mesenchymal stem cells and rats was observed. The in vitro results showed that DEN reversed the inhibition of osteogenic differentiation by dexamethasone. Moreover, DEN supplementation attenuated dexamethasone-induced bone loss in vivo. DEN activated JNK and p38 MAPK pathways and restrained GR nuclear translocation, which could be prevented by the JNK (SP600125) or p38 (SB203580) pathway inhibitor. This study verified that DEN alleviated dexamethasone-induced nuclear translocation of GR, and inhibition of osteogenesis via JNK and p38 pathways, laying the foundation for DEN as a therapeutic agent for GIOP.
Collapse
Affiliation(s)
- Xufeng Li
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Chenyi Gao
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ke Zhou
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Kaifeng Gan
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Tianjie Ye
- Department of Rehabilitation Medicine, the Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Jun Zhao
- Department of Orthopedics, the First Affiliated Hospital of Jishou University, Jishou 416000, Hunan, China
| | - Jin Li
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Chi Ma
- Department of Orthopedics, the First Affiliated Hospital of Jishou University, Jishou 416000, Hunan, China
| |
Collapse
|
5
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
6
|
Zeng Y, Yang Q, Ouyang Y, Lou Y, Cui H, Deng H, Zhu Y, Geng Y, Ouyang P, Chen L, Zuo Z, Fang J, Guo H. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol 2023; 67:102886. [PMID: 37742495 PMCID: PMC10520947 DOI: 10.1016/j.redox.2023.102886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.
Collapse
Affiliation(s)
- Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yanbin Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Lian Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| |
Collapse
|
7
|
Alruhaimi RS. Betulinic acid protects against cardiotoxicity of the organophosphorus pesticide chlorpyrifos by suppressing oxidative stress, inflammation, and apoptosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51180-51190. [PMID: 36808036 DOI: 10.1007/s11356-023-25917-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
The widespread application of organophosphorus (OP) pesticides can affect the environment as well as the animal and human health. Chlorpyrifos (CPF) is a broad-spectrum OP pesticide used in agriculture and can cause several toxic effects in which oxidative stresses and inflammation play a key role. This study aimed to evaluate the protective activity of betulinic acid (BA), an antioxidant and anti-inflammatory pentacyclic triterpene, against CPF cardiotoxicity in rats. The rats were divided into four groups. CPF (10 mg/kg) and BA (25 mg/kg) were orally administered for 28 days, and blood and heart samples were collected. CPF-administered rats showed an increase in serum cardiac troponin I (cTnI), creatine kinase (CK)-MB, and lactate dehydrogenase (LDH), accompanied with multiple myocardial tissue alterations. Lipid peroxidation (LPO), nitric oxide (NO), nuclear factor-kappaB (NF-κB), interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were increased, and antioxidant were decrease in CPF-administered rats. BA ameliorated cardiac function markers and tissue injury, decreased LPO, NO, NF-κB, and proinflammatory cytokines, and increased antioxidants. In addition, BA decreased proapoptosis markers, and increased B-cell lymphoma (Bcl)-2, IL-10, Nrf2, and HO-1 in the heart of CPF-treated rats. In conclusion, BA protected against cardiotoxicity in CPF-administered rats by mitigating oxidative stress, inflammation, and apoptosis, and enhanced Nrf2 and antioxidants.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
8
|
Mahmoud MF, Ali N, Mahdi I, Mouhtady O, Mostafa I, El-Shazly AM, Abdelfattah MA, Hasan RA, Sobeh M. Coriander essential oil attenuates dexamethasone-induced acute liver injury through potentiating Nrf2/HO-1 and ameliorating apoptotic signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
9
|
Wang X, Liu X, Liu S, Qu J, Ye M, Wang J, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Effects of anti-stress agents on the growth performance and immune function in broiler chickens with vaccination-induced stress. Avian Pathol 2023; 52:12-24. [PMID: 35980124 DOI: 10.1080/03079457.2022.2114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/04/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate the effects of anti-stress agents on the growth performance and immune function of broilers under immune stress conditions induced by vaccination. A total of 128, 1-day-old Arbor Acres broilers were randomly divided into four groups. Group normal control (NC) was the control group. Group vaccination control (VC), T 0.5%, and T 1% were the treatment groups, which were nasally vaccinated with two doses of the Newcastle disease virus (NDV) vaccine. The chicks in groups T 0.5% and T 1% were fed conventional diets containing 0.5% and 1% anti-stress agents. Thereafter, these broilers were slaughtered on 1, 7, 14, and 21 days post-vaccination. The results indicated that anti-stress agents could significantly reduce serum adrenocorticotropic hormone (ACTH) (P < 0.01) and cortisol (CORT) (P < 0.05) levels, and improve the growth performance (P < 0.05) and immune function of broilers (P < 0.05); However, the levels of malondialdehyde (MDA) (P < 0.05) were decreased, and the decreased total antioxidant capacity (T-AOC) (P < 0.01) levels mediated by vaccination were markedly improved. In addition, anti-stress agents could attenuate apoptosis in spleen lymphocytes (P < 0.01) by upregulating the ratio of Bcl-2 to BAX (P < 0.01) and downregulating the expression of caspase-3 and -9 (P < 0.01), which might be attributed to the inhibition of the enzymatic activities of caspase-3 and -9 (P < 0.05). In conclusion, anti-stress agents may improve growth performance and immune function in broilers under immune-stress conditions.RESEARCH HIGHLIGHTS Investigation of effects and mechanism of immune stress induced by vaccination.Beneficial effect of anti-stress agents on growth performance, immune function, oxidative stress, and regulation of lymphocyte apoptosis.Demonstration of the effects of apoptosis on immune function in the organism.
Collapse
Affiliation(s)
- Xianglin Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiangyan Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Sha Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jianyu Qu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Mengke Ye
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiaowen Li
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| |
Collapse
|
10
|
Motafeghi F, Mortazavi P, Ghassemi-Barghi N, Zahedi M, Shokrzadeh M. Dexamethasone as an anti-cancer or hepatotoxic. Toxicol Mech Methods 2023; 33:161-171. [PMID: 35866224 DOI: 10.1080/15376516.2022.2105183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The linkage between inflammation and oxidative stress in liver damage has been proven and is undeniable; dexamethasone with some antioxidants can reduce the toxicity of liver tissue. Due to the importance of cancer treatment, glucocorticoids' synergistic effect in inhibiting cancer cell growth is also investigated. Dexamethasone alone and combined with etoposide were tested at concentrations of 1, 5, and 10 μM to evaluate the potency of dexamethasone in inhibiting the growth of A549 cells using oxidative stress factors and DNA damage. Also, intraperitoneal injection of dexamethasone in rats was used to induce liver toxicity. Coenzyme Q10 at different concentrations (1, 10, and 50 mg/kg) was used as an antioxidant to assess the oxidative stress factors and measure Caspase-3 activity. The results showed that dexamethasone combined with etoposide could significantly inhibit the growth of cancer cells and induce apoptosis. Treatment of A549 cells using dexamethasone also inhibits cancer cells' growth by inducing oxidative stress and DNA damage. Dexamethasone also, by inducing oxidative stress and activation of caspase 3, ultimately causes hepatotoxicity. Treatment with different concentrations of CoQ10 showed improved mitochondrial function, antioxidant defense, and liver enzyme. The best effect of coenzyme Q10 on dexamethasone-induced hepatotoxicity is 50 mg/kg. As a result, dexamethasone (alone and combined with etoposide) has an anti-cancer effect by damaging DNA and inducing oxidative stress. Also, CoQ10 has antioxidant effects against dexamethasone-induced hepatotoxicity by improving mitochondrial function and reducing caspase-3 activity.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parham Mortazavi
- Department of Pharmacology and Toxicology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi-Barghi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
12
|
Yang C, Chen Y, Yang M, Li J, Wu Y, Fan H, Kong X, Ning C, Wang S, Xiao W, Yuan Z, Yi J, Wu J. Betulinic acid alleviates zearalenone-induced uterine injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120435. [PMID: 36257561 DOI: 10.1016/j.envpol.2022.120435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.
Collapse
Affiliation(s)
- Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Sudharshan SJ, Krishna Narayanan A, Princilly J, Dyavaiah M, Nagegowda DA. Betulinic acid mitigates oxidative stress-mediated apoptosis and enhances longevity in the yeast Saccharomyces cerevisiae model. Free Radic Res 2022; 56:699-712. [PMID: 36624963 DOI: 10.1080/10715762.2023.2166505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid found in certain plant species, has been reported to have several health benefits including antioxidant and anti-apoptotic properties. However, the mechanism by which BA confers these properties is currently unknown. Saccharomyces cerevisiae, a budding yeast with a short life cycle and conserved cellular mechanism with high homology to humans, was used as a model for determining the role of BA in aging and programmed cell death (PCD). Treatment with hydrogen peroxide (H2O2) exhibited significantly increased (30-35%) survivability of antioxidant (sod1Δ, sod2Δ, cta1Δ, ctt1Δ, and tsa1Δ) and anti-apoptotic (pep4Δ and fis1Δ) mutant strains when cells were pretreated with BA (30 µM) as demonstrated in spot and CFU (Colony forming units) assays. Measurement of intracellular oxidation level using the ROS-specific dye H2DCF-DA showed that all tested BA-pretreated mutants exhibited decreased ROS than the control when exposed to H2O2. Similarly, when mutant strains were pretreated with BA and then exposed to H2O2, there was reduced lipid peroxidation as revealed by the reduced malondialdehyde content. Furthermore, BA-pretreated mutant cells showed significantly lower apoptotic activity by decreasing DNA/nuclear fragmentation and chromatin condensation under H2O2-induced stress as determined by DAPI and acridine orange/ethidium bromide staining. In addition, BA treatment also extended the life span of antioxidant and anti-apoptotic mutants by ∼10-25% by scavenging ROS and preventing apoptotic cell death. Our overall results suggest that BA extends the chronological life span of mutant strains lacking antioxidant and anti-apoptotic genes by lowering the impact of oxidative stress, ROS levels, and apoptotic activity. These properties of BA could be further explored for its use as a valuable nutraceutical.
Collapse
Affiliation(s)
- S J Sudharshan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India
| | - Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jemima Princilly
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
14
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
15
|
Zhang JL, Du BB, Zhang DH, Li H, Kong LY, Fan GJ, Li YP, Li PC, Liang C, Wang Z, Yang LL, Hao ZY, Wu LM, Huang Z, Dong JZ, Zhang JY, Yao R, Wang SJ, Zhang YZ. OTUB1 alleviates NASH through inhibition of the TRAF6-ASK1 signaling pathways. Hepatology 2022; 75:1218-1234. [PMID: 34591986 DOI: 10.1002/hep.32179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS NAFLD is considered as the hepatic manifestation of the metabolic syndrome, which includes insulin resistance, obesity and hyperlipidemia. NASH is a progressive stage of NAFLD with severe hepatic steatosis, hepatocyte death, inflammation, and fibrosis. Currently, no pharmacological interventions specifically tailored for NASH are approved. Ovarian tumor domain, ubiquitin aldehyde binding 1 (OTUB1), the founding member of deubiquitinases, regulates many metabolism-associated signaling pathways. However, the role of OTUB1 in NASH is unclarified. METHODS AND RESULTS We demonstrated that mice with Otub1 deficiency exhibited aggravated high-fat diet-induced and high-fat high-cholesterol (HFHC) diet-induced hyperinsulinemia and liver steatosis. Notably, hepatocyte-specific overexpression of Otub1 markedly alleviated HFHC diet-induced hepatic steatosis, inflammatory responses, and liver fibrosis. Mechanistically, we identified apoptosis signal-regulating kinase 1 (ASK1) as a key candidate target of OTUB1 through RNA-sequencing analysis and immunoblot analysis. Through immunoprecipitation-mass spectrometry analysis, we further found that OTUB1 directly bound to tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppressed its lysine 63-linked polyubiquitination, thus inhibiting the activation of ASK1 and its downstream pathway. CONCLUSIONS OTUB1 is a key suppressor of NASH that inhibits polyubiquitinations of TRAF6 and attenuated TRAF6-mediated ASK1 activation. Targeting the OTUB1-TRAF6-ASK1 axis may be a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Jie-Lei Zhang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Bin-Bin Du
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Dian-Hong Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Huan Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Ling-Yao Kong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Guang-Jian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya-Peng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Peng-Cheng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zheng Wang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Lu-Lu Yang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zheng-Yang Hao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Lei-Ming Wu
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zhen Huang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Jian-Zeng Dong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Jin-Ying Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Shou-Jun Wang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Yan-Zhou Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Tabaa MME, Fattah AMK, Shaalan M, Rashad E, El Mahdy NA. Dapagliflozin mitigates ovalbumin-prompted airway inflammatory-oxidative successions and associated bronchospasm in a rat model of allergic asthma. Expert Opin Ther Targets 2022; 26:487-506. [PMID: 35549595 DOI: 10.1080/14728222.2022.2077723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/11/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory lung disease that universally affects millions of people. Despite numerous well-defined medications, asthma is poorly managed. This study aims to clarify the potential therapeutic effect of Dapagliflozin (DAPA) against lung inflammation, oxidative stress, and associated bronchospasm in OVA-sensitized rat asthma model. RESEARCH DESIGN AND METHODS Twenty-five rats were allocated into (Control, Asthma, DEXA, DAPA, and DAPA+DEXA). All treatments were administered orally once a day for two weeks. The BALF levels of IL-17, TNFα, IL-1β, and MCP-1 were determined to assess airway inflammation. For oxidative stress determination, BALF MDA levels and TAC were measured. The BALF S100A4 level and NO/sGC/cGMP pathway were detected. Lung histopathological findings and immunohistochemical investigation of eNOS and iNOS activities were recorded. RESULTS DAPA significantly reduced (p < 0.001) airway inflammatory-oxidative markers (IL-17, TNFα, IL-1β, MCP1, and MDA), but increased (p < 0.001) TAC, and mitigated bronchospasm by activating NO/sGC/cGMP and reducing S100A4 (p < 0.001). The biochemical and western blot studies were supported by histopathological and immunohistochemical investigations. CONCLUSIONS DAPA presents a new prospective possibility for future asthma therapy due to its anti-inflammatory, anti-oxidant, and bronchodilator properties. DAPA has the property of reducing Dexamethasone (DEXA)-associated unfavorable effects during asthma treatment.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, Egypt
| | | | - Mohamed Shaalan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nageh Ahmed El Mahdy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Müller SG, Heck SO, Marques LS, Zborowski VA, Nogueira CW. p-Chloro-diphenyl diselenide modulates Nrf2/Keap1 signaling and counteracts renal oxidative stress in mice exposed to dexamethasone repeated administrations. Can J Physiol Pharmacol 2022; 100:500-508. [PMID: 35395160 DOI: 10.1139/cjpp-2021-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dexamethasone is a synthetic glucocorticoid that has been associated with oxidative stress in central and peripheral tissues. p-Chloro-diphenyl diselenide (p-ClPhSe)2 is an antioxidant organoselenium compound. The present study aimed to evaluate whether Nrf2/Keap-1 signaling contributes to the (p-ClPhSe)2 antioxidant effects in the kidney of mice exposed to dexamethasone. Adult Swiss mice received dexamethasone (i.p) at a dose of 2 mg/kg or its vehicle for 21 days. After, mice were treated with (p-ClPhSe)2 (i.g)(1, 5, or 10 mg/kg) for 7 days. Samples of kidneys were collected for biochemical assays. (p-ClPhSe)2 at dose of 1 mg/kg reversed the renal reactive oxygen species (ROS) and carbonyl protein (CP) levels increased by dexamethasone. (p-ClPhSe)2 at doses of 5 and 10 mg/kg was effective against the increase of TBARS (thiobarbituric acid reactive substances), ROS, and CP as well as the decrease of δ-aminolevulinic acid dehydratase (δ-ALA-D) activity and non-protein SH (NPSH) levels induced by dexamethasone. At 5 mg/kg, (p-ClPhSe)2 reduced the renal levels of 4-OH-2-HNE and HO-1 as well as modulated the Nrf2/Keap-1 signaling in mice exposed to dexamethasone. The present findings revealed that (p-ClPhSe)2 antioxidant effects were associated with the modulation of Nrf2/Keap-1 signaling pathway in the kidney of mice exposed to dexamethasone.
Collapse
Affiliation(s)
| | - Suelen Osório Heck
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Luiza Souza Marques
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Vanessa Angonesi Zborowski
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Cristina Wayne Nogueira
- Universidade Federal de Santa Maria, 28118, Av. Roraima 1000, Santa Maria, Brazil, 97105-900;
| |
Collapse
|
18
|
Zheng LY, Zou X, Wang YL, Zou M, Ma F, Wang N, Li JW, Wang MS, Hung HY, Wang Q. Betulinic acid-nucleoside hybrid prevents acute alcohol -induced liver damage by promoting anti-oxidative stress and autophagy. Eur J Pharmacol 2022; 914:174686. [PMID: 34883073 DOI: 10.1016/j.ejphar.2021.174686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Alcoholic abuse is one of the most serious causes of liver diseases worldwide. Although detailed molecular pathogenesis of alcohol-induced liver damages remains elusive with intensive debates, it has been widely recognized that hepatic damage caused by free radicals generated from alcohol metabolism is one of the most critical factors for alcohol-induced liver diseases. Betulinic acid is a potent antioxidant with additional known pharmacological safety characteristics and minimal toxicity. However, poor solubility limited its usage. In this study, we assessed the efficacy of BAN, a betulinic acid and nucleoside hybrid with good water solubility, in reversing acute liver damages using an established alcohol overdose animal model. The results indicated that BAN is an extremely promising therapeutic agent against acute alcohol-induced liver damage. BAN effectively protects liver from alcohol damage by reducing serum ALT level by up to 47%, as well as liver oxidative stress indicated by significantly increased SOD, CAT, and GSH-Px levels. Moreover, hepatic FXR activation and a corresponding downstream anti-oxidative stress transcriptional cascade including Nrf2, HO-1, and NOQ1 induce the protective role of BAN. On the other hand, BAN administration also leads to increase cellular autophagy response, as indicated by the key ATG protein activation. We concluded that BAN, comparing with Betulinic acid, prevents acute alcohol-induced liver damages more effectively, with the dual mechanisms of neutralizing oxidative stress and promoting autophagy.
Collapse
Affiliation(s)
- Li-Yun Zheng
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Xi Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Yan-Li Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, China
| | - Min Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Fang Ma
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Ning Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Jia-Wen Li
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Ming-Sheng Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.
| | - Qiang Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, China; High& New Technology Research Center, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
19
|
Study of hepatoprotective effect of bearberry leaves extract under insulin resistance in rats. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of our study was to evaluate the antidiabetic and hepatoprotective efficacy of dry extract from bearberry leaves enriched with arginine in dexamethasone induced IR.
Materials and methods. IR was induced in rats by low dose intraperitoneally injections of dexamethasone. Dexamethasone-induced IR in rats was treated by bearberry leaves extract enriched with arginine. Thus, animals were randomized into several groups including intact animals and animals, which administered reference compounds and medications.
The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamine transferase (GGT) were determined in blood serum and liver homogenate, in addition, in blood serum we measured lactate dehydrogenase (LDH) activity and lactate level and glycogen content liver tissue. Also, for the purpose of our experiment, in liver tissue were determined: thiobarbituric acid reactive substances (TBARS), diene conjugates (DC), and reduced glutathione (GSH) content; and superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT) activities. All indices were determined using generally accepted unified methods or commercially available kits.
Results. Long-term dexamethasone administration led to an increase in AST, ALT and GGT overall activity in the liver homogenate and serum; this could be the result of increased permeability of hepatocyte plasma membranes, as well as their enhanced synthesis in the liver. Studied extract ameliorate these indices of liver injury. Evaluation of indices that reflected oxidative stress and the antioxidant system status in liver confirmed oxidative stress development in IR rats` liver. Administration of arginine enriched bearberry leaves extract decrease TBARS and DC content in liver tissue, at the same time, improve SOD, Gpx, and CAT activities and increase GSH content.
Conclusions. Bearberry leaves dry extract enriched with arginine inhibit oxidative stress development, improve membrane integrity, and normalize some indices of carbohydrate metabolism, particularly glycogen content in liver and lactate level in blood.
Collapse
|
20
|
Immunomodulatory Effects of a Concoction of Natural Bioactive Compounds-Mechanistic Insights. Biomedicines 2021; 9:biomedicines9111522. [PMID: 34829751 PMCID: PMC8615223 DOI: 10.3390/biomedicines9111522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Natural bioactive compounds derived from plant-based products are known for their biological immunomodulatory activities. They possess systemic pleiotropic effects, minimal side effects, and very low toxicities. Plant-based bioactive compounds have tremendous potential as natural therapeutic entities against various disease conditions and act as anti-inflammatory, antioxidant, anti-mutagenic, anti-microbial, anti-viral, anti-tumour, anti-allergic, neuroprotective, and cardioprotective agents. A herbal formulation extract including five biologically active compounds: Apigenin, Quercetin, Betulinic acid, Oleanolic acid, and β-Sitosterol can impart several immunomodulatory effects. In this review, we systematically present the impact of these compounds on important molecular signaling pathways, including inflammation, immunity, redox metabolism, neuroinflammation, neutropenia, cell growth, apoptosis, and cell cycle. The review corroborates the beneficial effect of these compounds and shows considerable potential to be used as a safer, more cost-effective treatment for several diseases by affecting the major nodal points of various stimulatory pathways.
Collapse
|
21
|
Zhang BB, Gao L, Yang Q, Liu Y, Yu XY, Shen JH, Zhang WC, Han ZY, Chen SZ, Guo S. Role of GALNT4 in protecting against cardiac hypertrophy through ASK1 signaling pathway. Cell Death Dis 2021; 12:980. [PMID: 34675184 PMCID: PMC8531281 DOI: 10.1038/s41419-021-04222-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Pathological myocardial hypertrophy is regulated by multiple pathways. However, its underlying pathogenesis has not been fully explored. The goal of this work was to elucidate the function of polypeptide N-acetylgalactosaminyltransferase 4 (GALNT4) in myocardial hypertrophy and its underlying mechanism of action. We illustrated that GALNT4 was upregulated in the models of hypertrophy. Two cardiac hypertrophy models were established through partial transection of the aorta in GALNT4-knockout (GALNT4-KO) mice and adeno-associated virus 9-GALNT4 (AAV9-GALNT4) mice. The GALNT4-KO mice demonstrated accelerated cardiac hypertrophy, dysfunction, and fibrosis, whereas the opposite phenotype was observed in AAV9-GALNT4 mice. Similarly, GALNT4 overexpression mitigated the degree of phenylephrine-induced cardiomyocyte hypertrophy in vitro whereas GALNT4 knockdown aggravated the hypertrophy. In terms of mechanism, GALNT4 deficiency increased the phosphorylation and activation of ASK1 and its downstream targets (JNK and p38), whereas GALNT4 overexpression inhibited activation of the ASK1 pathway. Furthermore, we demonstrated that GALNT4 can directly bind to ASK1 inhibiting its N-terminally mediated dimerization and the subsequent phosphorylation of ASK1. Finally, an ASK1 inhibitor (iASK1) was able to reverse the effects of GALNT4 in vitro. In summary, GALNT4 may serve as a new regulatory factor and therapeutic target by blocking the activation of the ASK1 signaling cascade.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Xiao-Yue Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Ji-Hong Shen
- Department of Electrocardiogram, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, China
| | - Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Zhan-Ying Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| | - Shao-Ze Chen
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
22
|
Lee S, Ha J, Park J, Kang E, Jeon SH, Han SB, Ningsih S, Paik JH, Cho S. Antioxidant and Anti-Inflammatory Effects of Bischofia javanica (Blume) Leaf Methanol Extracts through the Regulation of Nrf2 and TAK1. Antioxidants (Basel) 2021; 10:antiox10081295. [PMID: 34439543 PMCID: PMC8389227 DOI: 10.3390/antiox10081295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Bischofia javanica (Blume) has been traditionally used to treat inflammatory diseases such as tonsillitis and ulcers throughout Asia, including China, Indonesia, and the Philippines: however, the molecular mechanisms by which B. javanica exerts its antioxidant and anti-inflammatory properties remain largely unknown. In this study, we analyzed the antioxidant and anti-inflammatory mechanisms of methanol extracts of B. javanica leaves (MBJ) in vitro and in vivo. MBJ decreased nitric oxide (NO) production and the expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The observed suppression of inflammatory responses by MBJ was correlated with an inhibition of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathways. Additionally, MBJ induced nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that upregulates the expression of anti-inflammatory and antioxidant genes. Furthermore, MBJ exhibited antioxidant and anti-inflammatory effects in an acute hepatitis mouse model. In conclusion, our results confirm the medicinal properties of B. javanica, and therefore MBJ could be applied to improve inflammatory and redox imbalances in different types of pathologies.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Sung-Hyun Jeon
- Biomedical Mass Spectrometry Lab, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.-H.J.); (S.B.H.)
| | - Sang Beom Han
- Biomedical Mass Spectrometry Lab, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.-H.J.); (S.B.H.)
| | - Sri Ningsih
- Center for Pharmaceutical and Medical Technology, Deputy for Agroindustrial Technology and Biotechnology, The Agency for the Assessment and Application of Technology (BPPT), Jl. Raya Puspiptek, Kota Tangerang Selatan 15310, Banten, Indonesia;
| | - Jin Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
- Correspondence: ; Tel.: +82-2-820-5595; Fax: +82-2-816-7338
| |
Collapse
|
23
|
Pes K, Friese A, Cox CJ, Laizé V, Fernández I. Biochemical and molecular responses of the Mediterranean mussel (Mytilus galloprovincialis) to short-term exposure to three commonly prescribed drugs. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105309. [PMID: 33798995 DOI: 10.1016/j.marenvres.2021.105309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals represent a group of emerging contaminants. The short-term effect (3 and 7 days) of warfarin (1 and 10 mg L-1), dexamethasone (0.392 and 3.92 mg L-1) and imidazole (0.013 and 0.13 mg L-1) exposure was evaluated on mussels (Mytilus galloprovincialis). Total antioxidant status, glutathione reductase, glutathione peroxidase (GPx) and superoxide dismutase enzyme activities, and the expression of genes involved in the xenobiotic response (ATP binding cassette subfamily B member 1 (abcb1) and several nuclear receptor family J (nr1j) isoforms), were evaluated. All nr1j isoforms are suggested to be the xenobiotic receptor orthologs of the NR1I family. All drugs increased GPx activity and altered the expression of particular nr1j isoforms. Dexamethasone exposure also decreased abcb1 expression. These findings raised some concerns regarding the release of these pharmaceuticals into the aquatic environment. Thus, further studies might be needed to perform an accurate environmental risk assessment of these 3 poorly studied drugs.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Annika Friese
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
24
|
Betulinic Acid Alleviates Spleen Oxidative Damage Induced by Acute Intraperitoneal Exposure to T-2 Toxin by Activating Nrf2 and Inhibiting MAPK Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10020158. [PMID: 33499152 PMCID: PMC7912660 DOI: 10.3390/antiox10020158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, which is mainly produced by specific strains of Fusarium in nature, can induce immunotoxicity and oxidative stress, resulting in immune organ dysfunction and apoptosis. Betulinic acid (BA), a pentacyclic triterpenoids from nature plants, has been demonstrated to possess immunomodulating and antioxidative bioactivities. The purpose of the study was to explore the effect of BA on T-2 toxin-challenged spleen oxidative damage and further elucidate the underlying mechanism. We found that BA not only ameliorated the contents of serum total cholesterol (TC) and triglyceride (TG) but also restored the number of lymphocytes in T-2 toxin-induced mice. BA dose-dependently reduced the accumulation of reactive oxygen species (ROS), enhanced superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content, as well as increased the total antioxidant capacity (T-AOC) in the spleen of T-2-toxin-exposed mice. Moreover, BA reduced inflammatory cell infiltration in the spleen, improved the morphology of mitochondria and enriched the number of organelles in splenocytes, and dramatically attenuated T-2 toxin-triggered splenocyte apoptosis. Furthermore, administration of BA alleviated the protein phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases (ERK); decreased the protein expression of kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein1 (Keap1); and increased the protein expression of nuclear factor erythroid 2 [NF-E2]-related factor (Nrf2) and heme oxygenase-1 (HO-1) in the spleen. These findings demonstrate that BA defends against spleen oxidative damage associated with T-2 toxin injection by decreasing ROS accumulation and activating the Nrf2 signaling pathway, as well as inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
|
25
|
Liu M, Meng Y, He K, Luan C. Hsa_circ_0002060 Knockdown Ameliorates Osteoporosis by Targeting MiR-198-5p. Biol Pharm Bull 2021; 44:88-95. [PMID: 33148890 DOI: 10.1248/bpb.b20-00643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoporosis (OP) is increasingly becoming one of a major health concerns all over the world. However, the limitations of current therapeutic drugs for OP are including considerable side effects and low efficacy. Therefore, it is required to develop new therapeutic drugs for OP. This study aimed to investigate the role of hsa_circ_0002060 in the regulation of osteoporosis. Osteoblast cells (hFOB 1.19) were transfected with hsa_circ_0002060 small interfering RNA (siRNA), following by stimulated with dexamethasone (DEX) to mimic OP in vitro. Cell counting kit-8, apoptosis, and JC-1 mitochondrial membrane potential assays were used to evaluate the cell viability, apoptosis, and mitochondrial membrane potential, respectively. Western blot was conducted to detect the expression of proteins. In addition, the levels of reactive oxygen species, superoxide dismutase, glutathione and malondialdehyde were measured with enzyme-linked immunosorbent assay (ELISA). The putative target of hsa_circ_0002060 was verified by dual luciferase reporter assay and RNA pull down. At last, the role of hsa_circ_0002060 in the progression of OP was investigated with an ovariectomy (OVX)-induced OP mouse model. The results indicated DEX could induce cell viability decline in hFOB 1.19 cells, which was ameliorated by hsa_circ_0002060 knockdown. Consistently, DEX-induced cell apoptosis of hFOB 1.19 was ameliorated by hsa_circ_0002060 knockdown as well. As for the underlying mechanisms study, hsa_circ_0002060 was proved to regulate the viability of hFOB 1.19 cells through targeting miR-198-5p/Bax axis. Additionally, hsa_circ_0002060 knockdown alleviated ovariectomy-induced OP in a mouse model. Taken together, hsa_circ_0002060 knockdown alleviated the progression of OP by targeting miR-198-5p. Hsa_circ_0002060 might possibly be served as a therapeutic target for treating OP.
Collapse
Affiliation(s)
- Man Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic
| | - Yao Meng
- Orthodontic Center, Shenzhen Children's Hospital
| | - Keren He
- School of Medical Technology and Nursing, Shenzhen Polytechnic
| | | |
Collapse
|
26
|
Wang Q, Li Y, Zheng L, Huang X, Wang Y, Chen CH, Cheng YY, Morris-Natschke SL, Lee KH. Novel Betulinic Acid-Nucleoside Hybrids with Potent Anti-HIV Activity. ACS Med Chem Lett 2020; 11:2290-2293. [PMID: 33214842 DOI: 10.1021/acsmedchemlett.0c00414] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023] Open
Abstract
Novel betulinic/betulonic acid-nucleoside hybrids were synthesized as possible new anti-HIV agents. Among the synthesized hybrids, two compounds were highly effective against HIV. Compared with AZT and DSB, compounds 10a (IC50 = 0.0078 μM, CC50 = 9.6 μM) and 10b (IC50 = 0.020 μM, CC50 = 23.8 μM) showed more potent or equipotent, respectively, anti-HIV activity but displayed lower cytotoxicity.
Collapse
Affiliation(s)
- Qiang Wang
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
- National Health Commission Key Laboratory of Birth Defect Prevention, Zhengzhou 450002, China
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yujiang Li
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Liyun Zheng
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaowan Huang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Zhengzhou 450002, China
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
27
|
Zhu L, Yi X, Ma C, Luo C, Kong L, Lin X, Gao X, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel) 2020; 12:toxins12090540. [PMID: 32842569 PMCID: PMC7551141 DOI: 10.3390/toxins12090540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, the most toxic of the trichothecenes, is widely found in grains and feeds, and its intake poses serious risks to the health of humans and animals. An important cytotoxicity mechanism of T-2 toxin is the production of excess free radicals, which in turn leads to oxidative stress. Betulinic acid (BA) has many biological activities, including antioxidant activity, which is a plant-derived pentacyclic triterpenoid. The protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied. BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus. BA pretreatment also reduced the degree of congestion observed in histopathological tissue sections of the thymus induced by T-2 toxin. Besides, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues. The results indicated that BA could protect the thymus against the oxidative damage challenged by T-2 toxin by activating Nrf2 and suppressing the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chaoyang Ma
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chenxi Luo
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xing Lin
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xinyu Gao
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
28
|
Chen X, Shen J, Zhao JM, Guan J, Li W, Xie QM, Zhao YQ. Cedrol attenuates collagen-induced arthritis in mice and modulates the inflammatory response in LPS-mediated fibroblast-like synoviocytes. Food Funct 2020; 11:4752-4764. [DOI: 10.1039/d0fo00549e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ginger has been used as a flavouring agent and traditional medicine for a long time in Asian countries.
Collapse
Affiliation(s)
- Xue Chen
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Liaoning Xinzhong Modern Medicine Co
- Ltd
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Jun-ming Zhao
- Liaoning Xinzhong Modern Medicine Co
- Ltd
- Shenyang 110041
- People's Republic of China
| | - Jian Guan
- Liaoning Xinzhong Modern Medicine Co
- Ltd
- Shenyang 110041
- People's Republic of China
| | - Wei Li
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Yu-qing Zhao
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education
- Shenyang Pharmaceutical University
| |
Collapse
|
29
|
Huang Z, Wu L, Zhang J, Sabri A, Wang S, Qin G, Guo C, Wen H, Du B, Zhang D, Kong L, Tian X, Yao R, Li Y, Liang C, Li P, Wang Z, Guo J, Li L, Dong J, Zhang Y. Dual Specificity Phosphatase 12 Regulates Hepatic Lipid Metabolism Through Inhibition of the Lipogenesis and Apoptosis Signal-Regulating Kinase 1 Pathways. Hepatology 2019; 70:1099-1118. [PMID: 30820969 PMCID: PMC6850665 DOI: 10.1002/hep.30597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Due to the growing economic burden of NAFLD on public health, it has become an emergent target for clinical intervention. DUSP12 is a member of the dual specificity phosphatase (DUSP) family, which plays important roles in brown adipocyte differentiation, microbial infection, and cardiac hypertrophy. However, the role of DUSP12 in NAFLD has yet to be clarified. Here, we reveal that DUSP12 protects against hepatic steatosis and inflammation in L02 cells after palmitic acid/oleic acid treatment. We demonstrate that hepatocyte specific DUSP12-deficient mice exhibit high-fat diet (HFD)-induced and high-fat high-cholesterol diet-induced hyperinsulinemia and liver steatosis and decreased insulin sensitivity. Consistently, DUSP12 overexpression in hepatocyte could reduce HFD-induced hepatic steatosis, insulin resistance, and inflammation. At the molecular level, steatosis in the absence of DUSP12 was characterized by elevated apoptosis signal-regulating kinase 1 (ASK1), which mediates the mitogen-activated protein kinase (MAPK) pathway and hepatic metabolism. DUSP12 physically binds to ASK1, promotes its dephosphorylation, and inhibits its action on ASK1-related proteins, JUN N-terminal kinase, and p38 MAPK in order to inhibit lipogenesis under high-fat conditions. Conclusion: DUSP12 acts as a positive regulator in hepatic steatosis and offers potential therapeutic opportunities for NAFLD.
Collapse
Affiliation(s)
- Zhen Huang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPA
| | - Shou‐Jun Wang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Gui‐Jun Qin
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chang‐Qing Guo
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hong‐Tao Wen
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Bin‐Bin Du
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xin‐Yu Tian
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ya‐Peng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zheng Wang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jin‐Yan Guo
- Department of Rheumatology and Immunologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jian‐Zeng Dong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yan‐Zhou Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
30
|
Wang X, Yuan Z, Zhu L, Yi X, Ou Z, Li R, Tan Z, Pozniak B, Obminska-Mrukowicz B, Wu J, Yi J. Protective effects of betulinic acid on intestinal mucosal injury induced by cyclophosphamide in mice. Pharmacol Rep 2019; 71:929-939. [PMID: 31450028 DOI: 10.1016/j.pharep.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Betulinic acid (BA) is a plant-derived pentacyclic triterpenoid with a variety of biological activities. The purpose of this study was to assess the potential protective role of BA against intestinal mucosal injury induced by cyclophosphamide (CYP) treatment. METHODS Mice were pretreated with BA daily (0.05, 0.5, and 5.0 mg/kg) for 14 days, then injected intraperitoneally with CYP (50 mg/kg) for 2 days. RESULTS BA pretreatment reduced the contents of malondialdehyde (MDA) and glutathione (GSH), decreased the activity of superoxide dismutase (SOD) in small intestine, increased villus hight/crypt depth ratio and restored the morphology of intestinal villi in CYP-induced mice. Moreover, BA pretreatment could significantly down-regulate the levels of pro-inflammatory cytokines interleukin-5 (IL-5), IL-17, IL-12 (P70) and tumor necrosis factor α (TNF-α), reduced production of chemokines macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β) and regulated upon activation, normal T-cell expressed and secreted (RANTES), and enhanced the levels of anti-inflammatory such as IL-2 and IL-10 in serum, and decreased the mRNA expressions of IL-1β and TNF-α in intestine of CYP-induced mice. Furthermore, RT-PCR demonstrated that BA improved intestinal physical and immunological barrier in CYP-stimulated mice by enhancing the mRNA expressions of zonula occluden 1 (ZO-1) and Claudin-1. CONCLUSIONS BA might be considered as an effective agent in the amelioration of the intestinal mucosal resulting from CYP treatment.
Collapse
Affiliation(s)
- Xihong Wang
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhaoping Ou
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhuliang Tan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Blazej Pozniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bozena Obminska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| |
Collapse
|
31
|
Ou Z, Zhao J, Zhu L, Huang L, Ma Y, Ma C, Luo C, Zhu Z, Yuan Z, Wu J, Li R, Yi J. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother 2019; 118:109347. [PMID: 31545273 DOI: 10.1016/j.biopha.2019.109347] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
λ-Carrageenan (Carr), a seaweed polysaccharide, is used as a proinflammatory agent in research. Betulinic acid (BA), a naturally occurring pentacyclic triterpenoid, exerts immunomodulatory, antioxidant, anti-inflammatory, antitumor, anti-malarial and anti-HIV effects. The aim of this study was to investigate whether BA exerts anti-inflammatory effect against Carr-induced paw edema in mice, and how BA could mediate the expression of inflammation-associated MAPK-COX-2-PGE2 signal pathway. BA pretreatment significantly reduced the inflammatory response to Carr-induced paw edema, especially at 4 h after injection. BA reduced the serum levels of pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-5, IL-6, GM-CSF, KC, MCP-1 and PGE2 in Carr-treated mice, and increased those of anti-inflammatory cytokines, such as IL-12. It also increased SOD, CAT and GSH-Px activities, and GSH content, and reduced MDA content in the liver of Carr-treated mice. Besides, BA reduced neutrophil infiltration in the basal and subcutaneous layers of the paw of Carr-treated mice, decreased the expression of COX-2 protein, and reduced the phosphorylation of JNK, p38 and ERK1/2. These results indicated that the protective effect of BA on Carr-induced paw edema might be due to its alleviation of inflammatory response and inhibition of oxidative stress, possibly by inhibiting MAPK-COX-2-PGE2 signaling pathway activation.
Collapse
Affiliation(s)
- Zhaoping Ou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Jing Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Lijuan Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Lin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Yurong Ma
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Chaoyang Ma
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Chenxi Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Zihan Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City, 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City, 410128, China
| | - Rongfang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City, 410128, China.
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City, 410128, China.
| |
Collapse
|
32
|
Cheng Z, Zhang T, Zheng J, Ding W, Wang Y, Li Y, Zhu L, Murray M, Zhou F. Betulinic acid derivatives can protect human Müller cells from glutamate-induced oxidative stress. Exp Cell Res 2019; 383:111509. [PMID: 31344390 DOI: 10.1016/j.yexcr.2019.111509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Müller cells are the predominant retinal glial cells. One of the key roles of Müller cells is in the uptake of the neurotransmitter glutamate and in its conversion to glutamine. Müller cell dysfunction due to oxidative stress elicited by high glutamate concentrations can lead to toxicity, which promote the pathogenesis of retinal diseases like diabetic retinopathy and glaucoma. This study investigated the anti-oxidant activity and mechanisms of betulinic acid (BA) and its derivatives in human Müller cells. Human MIO-M1 Müller cells were pre-treated in the presence or absence of BA, BE as well as their derivatives (named H3-H20) followed by incubation with glutamate. Cell viability was evaluated with the MTT and calcein-AM assays. Reactive oxygen species (ROS) production in MIO-M1 cells was measured using CM-H2DCFDA and flow cytometry. The activation of cellular apoptosis and necrosis was analyzed with annexin V/PI staining and flow cytometry. The modulation of signaling pathways involved in glutamate-mediated cytotoxicity and ROS production was evaluated by immunoblotting. The BA derivatives H3, H5 and H7 exhibited minimal cytotoxicity and significant anti-oxidant activity. These compounds significantly suppressed ROS production and attenuated cellular necrosis elicited by glutamate-induced oxidative stress. The protective effects of H3, H5 and H7 in MIO-M1 cells were associated with the attenuation of Akt, Erk, and JNK signaling. The BA analogues H3, H5 and H7 are protective against glutamate-induced oxidative stress in human Müller cells, and elicit their actions by modulation of the Erk, Akt and JNK signaling pathways. These agents are potential candidate molecules for the prevention or treatment of human retinal diseases.
Collapse
Affiliation(s)
- Zhengqi Cheng
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia
| | - Ting Zhang
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Jian Zheng
- Northeast Forestry University, Center for Bioactive Products/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Weimin Ding
- Harbin University of Science and Technology, School of Chemical and Environmental Engineering, Harbin, 150080, Heilongjiang, China
| | - Yang Wang
- Northeast Forestry University, Center for Bioactive Products/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Yue Li
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia.
| |
Collapse
|
33
|
Lis M, Barycza B, Sysak A, Pawlak A, Suszko-Pawłowska A, Szczypka M, Wawrzeńczyk C, Obmińska-Mrukowicz B. Modulating effect of a new ester, 28- O-phosphatidylbetulin (DAPB), obtained from hen egg yolk lecithin and betulin on lymphocyte subsets and humoral immune response in mice. Immunopharmacol Immunotoxicol 2019; 41:231-241. [PMID: 31056969 DOI: 10.1080/08923973.2019.1578972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Leaf extracts of plants of the genus Betula have traditionally been used as diuretic, anti-rheumatic and diaphoretic preparations. One of the main active ingredients of Betula bark is betulin, lupane-type triterpene alcohol, with multiple biological activities. Objectives: The aim of this study was to investigate in vitro and in vivo immunomodulatory effects of a newly synthesized ester of betulin: 28-O-phosphatidylbetulin [28-O-(1,2-diacyl-sn-glycero-3-phospho)-betulin, DAPB] in comparison with betulin in mice. Materials and methods: Cytotoxic activity of DAPB or betulin was tested against non-cancer (D10.G4.1 and J774E.1) and cancer (GL-1; CL-1 and Jurkat) cell lines. The in vivo part assessed total lymphocyte count, weight ratio and subsets of lymphocytes in the lymphatic organs, and humoral immune response to sheep erythrocytes (SRBC). Results: In vitro assay showed that DAPB, contrary to betulin, had no antiproliferative activity. Exposure to four doses of DAPB increased the absolute count of immature CD4+CD8+ thymic cells as well as the percentage and absolute count of mature CD4+ and CD8+ thymocytes. DAPB enhanced the percentage or absolute count of CD3+ cells in spleen and lymph nodes with corresponding decrease in the percentage and/or absolute count of CD19+ cells. Both DAPB and betulin enhanced the percentage and absolute count of CD8+ lymphocytes in lymph nodes. In SRBC-immunized mice, betulin contrary to DAPB enhanced the number of splenocytes producing anti-SRBC antibodies (PFC). Both DAPB and betulin increased the level of total (IgM + IgG) and IgG titers. Conclusion: Despite the lack of cytotoxic activity, DAPB shows valuable immunomodulatory properties.
Collapse
Affiliation(s)
- Magdalena Lis
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Barbara Barycza
- b Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław , Poland
| | - Angelika Sysak
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Aleksandra Pawlak
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Agnieszka Suszko-Pawłowska
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Marianna Szczypka
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Czesław Wawrzeńczyk
- c Department of Chemistry, Faculty of Food Sciences , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Bożena Obmińska-Mrukowicz
- a Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| |
Collapse
|
34
|
Kheradmand N, Kamkar R, Moshajjari M, Baazm M. Effect of selenium and pentoxifylline on expression of CATSPER1 and 2 genes and FSH/LH levels in treated mice by dexamethasone. Andrologia 2019; 51:e13279. [PMID: 30983026 DOI: 10.1111/and.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023] Open
Abstract
Dexamethasone has deleterious effects on male fertility and sperm parameters. In this study, the effect of dexamethasone on expression of CATSPER1 and 2 genes was investigated. These two genes play an important role in sperm motility. Selenium and pentoxifylline were subsequently used to protect testis tissue against the destructive effects of dexamethasone. Each group received one of the following treatments for 7 days: dexamethasone (7 mg/kg), pentoxifylline (200 mg/kg), selenium (0.3 mg/kg), dexamethasone + pentoxifylline or selenium + dexamethasone. Animals in the control group received a normal saline injection. The expression of CATSPER1 and 2 genes was analysed by real-time PCR and serum levels of FSH and LH were determined with the enzyme-linked immunosorbent assay method. Based on the results, dexamethasone decreases not only CATSPER1 and 2 gene expression but also serum levels of LH (p ≤ 0.05); however, it has no effect on FSH (p > 0.05). Treating with selenium significantly increased the gene expression of both CATSPER1 and 2 (p ≤ 0.05), while pentoxifylline enhanced only CATSPER2 gene expression (p ≤ 0.05). These two antioxidants were shown to increase serum levels of LH (p ≤ 0.05). Our data suggest that selenium is more effective than pentoxifylline in overcoming adverse effects of dexamethasone on male fertility.
Collapse
Affiliation(s)
| | - Razieh Kamkar
- Department of Basic Sciences, Arak University, Arak, Iran
| | - Minoo Moshajjari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
35
|
Cheng Z, Yao W, Zheng J, Ding W, Wang Y, Zhang T, Zhu L, Zhou F. A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res 2018; 180:92-101. [PMID: 30578788 DOI: 10.1016/j.exer.2018.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
The Retinal Pigment Epithelium (RPE) is a monolayer of cells located above the choroid. It mediates human visual cycle and nourishes photoreceptors. Hypoxia-induced oxidative stress to RPE is a vital cause of retinal degeneration such as the Age-related Macular Degeneration. Most of these retinal diseases are irreversible with no efficient treatment, therefore protecting RPE cells from hypoxia stress is an important way to prevent or slow down the progression of retinal degeneration. Betulinic acid (BA) and betulin (BE) are pentacyclic triterpenoids with anti-oxidative property, but little is known about their effect on RPE cells. We investigated the protective effect of BA, BE and their derivatives against cobalt chloride-induced hypoxia stress in RPE cells. Human ARPE-19 cells were exposed to BA, BE and their eighteen derivatives (named as H3H20) that we customized through replacing moieties at C3 and C28 positions. We found that cobalt chloride reduced cell viability, increased Reactive Oxygen Species (ROS) production as well as induced apoptosis and necrosis in ARPE-19 cells. Interestingly, the pretreatment of 3-O-acetyl-glycyl- 28-O-glycyl-betulinic acid effectively protected cells from acute hypoxia stress induced by cobalt chloride. Our immunoblotting results suggested that this derivative attenuated the cobalt chloride-induced activation of Akt, Erk and JNK pathways. All findings were further validated in human primary RPE cells. In summary, this BA derivate has protective effect against the acute hypoxic stress in human RPE cells and may be developed into a candidate agent effective in the prevention of prevalent retinal diseases.
Collapse
Affiliation(s)
- Zhengqi Cheng
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zheng
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Weimin Ding
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, China
| | - Yang Wang
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
36
|
Wang D, Chen T, Liu F. Betulinic acid alleviates myocardial hypoxia/reoxygenation injury via inducing Nrf2/HO-1 and inhibiting p38 and JNK pathways. Eur J Pharmacol 2018; 838:53-59. [DOI: 10.1016/j.ejphar.2018.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/02/2023]
|