1
|
Wang B, Guo X, Qin L, He L, Li J, Jin X, Chen D, Ge G. Pharmacological modulation of mitochondrial function as novel strategies for treating intestinal inflammatory diseases and colorectal cancer. J Pharm Anal 2025; 15:101074. [PMID: 40242218 PMCID: PMC11999614 DOI: 10.1016/j.jpha.2024.101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal disease, and has become a major global health issue. Individuals with IBD face an elevated risk of developing colorectal cancer (CRC), and recent studies have indicated that mitochondrial dysfunction plays a pivotal role in the pathogenesis of both IBD and CRC. This review covers the pathogenesis of IBD and CRC, focusing on mitochondrial dysfunction, and explores pharmacological targets and strategies for addressing both conditions by modulating mitochondrial function. Additionally, recent advancements in the pharmacological modulation of mitochondrial dysfunction for treating IBD and CRC, encompassing mitochondrial damage, release of mitochondrial DNA (mtDNA), and impairment of mitophagy, are thoroughly summarized. The review also provides a systematic overview of natural compounds (such as flavonoids, alkaloids, and diterpenoids), Chinese medicines, and intestinal microbiota, which can alleviate IBD and attenuate the progression of CRC by modulating mitochondrial function. In the future, it will be imperative to develop more practical methodologies for real-time monitoring and accurate detection of mitochondrial function, which will greatly aid scientists in identifying more effective agents for treating IBD and CRC through modulation of mitochondrial function.
Collapse
Affiliation(s)
- Boya Wang
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xinrui Guo
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lanhui Qin
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingnan Li
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xudong Jin
- St. Hilda's College, Oxford University, Oxford, OX4 1DY, UK
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Guangbo Ge
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9315-9344. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
4
|
Oliveira NK, Yoo K, Bhattacharya S, Gambhir R, Kirgizbaeva N, García PA, Prados IP, Fernandes CM, Del Poeta M, Fries BC. Distinct effect of calorie restriction between congenic mating types of Cryptococcus neoformans. Sci Rep 2024; 14:18187. [PMID: 39107496 PMCID: PMC11303771 DOI: 10.1038/s41598-024-69087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic yeast that causes meningoencephalitis in immunocompromised individuals. Calorie restriction (CR) prolongs Cn replicative lifespan (RLS) and mimics low-glucose environments in which Cn resides during infection. The effects of CR-mediated stress can differ among strains and have only been studied in MATα cells. Cn replicates sexually, generating two mating types, MATα and MATa. MATα strains are more dominant in clinical and environmental isolates. We sought to compare the effects of CR stress and longevity regulation between congenic MATα and MATa. Although MATα and MATa cells extended their RLS in response to CR, they engaged different pathways. The sirtuins were upregulated in MATα cells under CR, but not in MATa cells. RLS extension was SIR2-dependent in KN99α, but not in KN99a. The TOR nutrient-sensing pathway was downregulated in MATa strains under CR, while MATα strains demonstrated no difference. Lower oxidative stress and higher ATP production were observed in KN99α cells, possibly due to higher SOD expression. SIR2 was important for mitochondrial morphology and function in both mating types. Increased ATP production during CR powered the upregulated ABC transporters, increasing efflux in MATα cells. This led to enhanced fluconazole tolerance, while MATa cells remained sensitive to fluconazole. Our investigation highlights differences in the response of the mating types to CR.
Collapse
Affiliation(s)
- Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Rina Gambhir
- Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Veterans Administration Medical Center, Northport, NY, 11768, USA
| | - Bettina C Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Veterans Administration Medical Center, Northport, NY, 11768, USA.
| |
Collapse
|
5
|
Wu Z, Xiao C, Li F, Huang W, You F, Li X. Mitochondrial fusion-fission dynamics and its involvement in colorectal cancer. Mol Oncol 2024; 18:1058-1075. [PMID: 38158734 PMCID: PMC11076987 DOI: 10.1002/1878-0261.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The incidence and mortality rates of colorectal cancer have elevated its status as a significant public health concern. Recent research has elucidated the crucial role of mitochondrial fusion-fission dynamics in the initiation and progression of colorectal cancer. Elevated mitochondrial fission or fusion activity can contribute to the metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that drive cell proliferation, invasion, migration, and drug resistance. Nevertheless, excessive mitochondrial fission can induce apoptosis, whereas moderate mitochondrial fusion can protect cells from oxidative stress. This imbalance in mitochondrial dynamics can exert dual roles as both promoters and inhibitors of colorectal cancer progression. This review provides an in-depth analysis of the fusion-fission dynamics and the underlying pathological mechanisms in colorectal cancer cells. Additionally, it offers partial insights into the mitochondrial kinetics in colorectal cancer-associated cells, such as immune and endothelial cells. This review is aimed at identifying key molecular events involved in colorectal cancer progression and highlighting the potential of mitochondrial dynamic proteins as emerging targets for pharmacological intervention.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Institute of OncologyChengdu University of Traditional Chinese MedicineChina
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| |
Collapse
|
6
|
Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Commun Signal 2024; 22:91. [PMID: 38302953 PMCID: PMC10835948 DOI: 10.1186/s12964-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health concern, and its development is associated with mitochondrial dysfunction. Mitochondria can adapt to the high metabolic demands of cancer cells owing to their plasticity and dynamic nature. The fusion-fission dynamics of mitochondria play a crucial role in signal transduction and metabolic functions of CRC cells. Enhanced mitochondrial fission promotes the metabolic reprogramming of CRC cells, leading to cell proliferation, metastasis, and chemoresistance. Excessive fission can also trigger mitochondria-mediated apoptosis. In contrast, excessive mitochondrial fusion leads to adenosine triphosphate (ATP) overproduction and abnormal tumor proliferation, whereas moderate fusion protects intestinal epithelial cells from oxidative stress-induced mitochondrial damage, thus preventing colitis-associated cancer (CAC). Therefore, an imbalance in mitochondrial dynamics can either promote or inhibit CRC progression. This review provides an overview of the mechanism underlying mitochondrial fusion-fission dynamics and their impact on CRC biology. This revealed the dual role of mitochondrial fusion-fission dynamics in CRC development and identified potential drug targets. Additionally, this study partially explored mitochondrial dynamics in immune and vascular endothelial cells in the tumor microenvironment, suggesting promising prospects for targeting key fusion/fission effector proteins against CRC.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
7
|
Kaczmarek MP. Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis. PLoS One 2023; 18:e0296060. [PMID: 38157384 PMCID: PMC10756525 DOI: 10.1371/journal.pone.0296060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a debilitating, multisystem disease of unknown mechanism, with a currently ongoing search for its endocrine mediators. Circulating microRNAs (miRNA) are a promising candidate for such a mediator and have been reported as significantly different in the patient population versus healthy controls by multiple studies. None of these studies, however, agree with each other on which specific miRNA are under- or over-expressed. This discrepancy is the subject of the computational study presented here, in which a deep dive into the predicted gene targets and their functional interactions is conducted, revealing that the aberrant circulating miRNAs in ME/CFS, although different between patients, seem to mainly target the same specific set of genes (p ≈ 0.0018), which are very functionally related to each other (p ≲ 0.0001). Further analysis of these functional relations, based on directional pathway information, points to impairments in exercise hyperemia, angiogenic adaptations to hypoxia, antioxidant defenses, and TGF-β signaling, as well as a shift towards mitochondrial fission, corroborating and explaining previous direct observations in ME/CFS. Many transcription factors and epigenetic modulators are implicated as well, with currently uncertain downstream combinatory effects. As the results show significant similarity to previous research on latent herpesvirus involvement in ME/CFS, the possibility of a herpesvirus origin of these miRNA changes is also explored through further computational analysis and literature review, showing that 8 out of the 10 most central miRNAs analyzed are known to be upregulated by various herpesviruses. In total, the results establish an appreciable and possibly central role for circulating microRNAs in ME/CFS etiology that merits further experimental research.
Collapse
|
8
|
Haq MFU, Hussain MZ, Mahjabeen I, Akram Z, Saeed N, Shafique R, Abbasi SF, Kayani MA. Oncometabolic role of mitochondrial sirtuins in glioma patients. PLoS One 2023; 18:e0281840. [PMID: 36809279 PMCID: PMC9943017 DOI: 10.1371/journal.pone.0281840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mitochondrial sirtuins have diverse role specifically in aging, metabolism and cancer. In cancer, these sirtuins play dichotomous role as tumor suppressor and promoter. Previous studies have reported the involvement of sirtuins in different cancers. However, till now no study has been published with respect to mitochondrial sirtuins and glioma risks. Present study was purposed to figure out the expression level of mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) and related genes (GDH, OGG1-2α, SOD1, SOD2, HIF1α and PARP1) in 153 glioma tissue samples and 200 brain tissue samples from epilepsy patients (taken as controls). To understand the role of selected situins in gliomagenesis, DNA damage was measured using the comet assay and oncometabolic role (oxidative stress level, ATP level and NAD level) was measured using the ELISA and quantitative PCR. Results analysis showed significant down-regulation of SIRT4 (p = 0.0337), SIRT5 (p<0.0001), GDH (p = 0.0305), OGG1-2α (p = 0.0001), SOD1 (p<0.0001) and SOD2 (p<0.0001) in glioma patients compared to controls. In case of SIRT3 (p = 0.0322), HIF1α (p = 0.0385) and PARP1 (p = 0.0203), significant up-regulation was observed. ROC curve analysis and cox regression analysis showed the good diagnostic and prognostic value of mitochondrial sirtuins in glioma patients. Oncometabolic rate assessment analysis showed significant increased ATP level (p<0.0001), NAD+ level [(NMNAT1 (p<0.0001), NMNAT3 (p<0.0001) and NAMPT (p<0.04)] and glutathione level (p<0.0001) in glioma patients compared to controls. Significant increased level of damage ((p<0.04) and decrease level of antioxidant enzymes include superoxide dismutase (SOD, p<0.0001), catalase (CAT, p<0.0001) and glutathione peroxidase (GPx, p<0.0001) was observed in patients compared to controls. Present study data suggest that variation in expression pattern of mitochondrial sirtuins and increased metabolic rate may have diagnostic and prognostic significance in glioma patients.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- * E-mail:
| | - Zertashia Akram
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
9
|
Poniewierska-Baran A, Warias P, Zgutka K. Sirtuins (SIRTs) As a Novel Target in Gastric Cancer. Int J Mol Sci 2022; 23:ijms232315119. [PMID: 36499440 PMCID: PMC9737976 DOI: 10.3390/ijms232315119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Gastric cancer is a major health burden worldwide. Among all neoplasms, gastric cancer is the fifth most common and the third most deadly type of cancer. It is known that sirtuins (SIRTs), are NAD+-dependent histone deacetylases regulating important metabolic pathways. High expression of SIRTs in the human body can regulate metabolic processes; they prevent inflammation but also resist cell death and aging processes. The seven members of this family enzymes can also play a fundamental role in process of carcinogenesis by influencing cell viability, apoptosis and metastasis. This review collects and discusses the role of all seven sirtuins (SIRT1-SIRT7) in the pathogenesis of gastric cancer (GC).
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
- Correspondence:
| | - Paulina Warias
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
10
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
11
|
Ma C, Zhao Y, Ding X, Gao B. Hypoxic Training Ameliorates Skeletal Muscle Microcirculation Vascular Function in a Sirt3-Dependent Manner. Front Physiol 2022; 13:921763. [PMID: 35923237 PMCID: PMC9340254 DOI: 10.3389/fphys.2022.921763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hypoxic training improves the microcirculation function of human skeletal muscle, but its mechanism is still unclear. Silent information regulator 2 homolog 3 (Sirt3) can improve mitochondrial function and oxidative status. We aimed to examine the role of Sirt3 in the process of hypoxic training, which affects skeletal muscle microcirculation. C57BL/6 mice were assigned to control (C), hypoxic training (HT), Sirt3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP), and 3-TYP + hypoxic training (3-TYP + HT) groups (n = 6/group). Sirt3 inhibition was induced by intraperitoneal injection of Sirt3 inhibitor 3-TYP. After 6 weeks of intervention, microcirculatory capillary formation and vasomotor capacity were evaluated using immunofluorescence, Western blot, biochemical tests, and transmission electron microscopy (TEM). Laser Doppler flowmetry was used to evaluate skeletal muscle microcirculation blood flow characteristics. Six weeks of hypoxic training enhanced skeletal muscle microcirculation function and increased microcirculatory vasodilation capacity and capillary formation. After the pharmacological inhibition of Sirt3, the reserve capacity of skeletal muscle microcirculation was reduced to varying degrees. After the inhibition of Sirt3, mice completed the same hypoxic training, and we failed to observe the microcirculation function adaptation like that observed in hypoxic training alone. The microcirculation vasodilation and the capillaries number did not improve. Hypoxic training improved skeletal muscle microcirculation vasodilation capacity and increased skeletal muscle microcirculation capillary density. Sirt3 is involved in the adaptation of skeletal muscle microcirculation induced by hypoxic training.
Collapse
Affiliation(s)
- Chunwei Ma
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Physical Education, Yuncheng University, Yuncheng, China
| | - Yongcai Zhao
- College of Social Sport and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Xiaoqing Ding
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao,
| |
Collapse
|
12
|
Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen G, Li N. Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem 2022; 477:2539-2552. [PMID: 35594000 DOI: 10.1007/s11010-022-04462-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
"Exterior-interior correlation between the lung and large intestine" is one of the important contents of traditional Chinese medicine. This theory describes the role of the lung and the intestine in association with disease treatment. The "lung-gut" axis is a modern extension of the "exterior-interior correlation between lung and large intestine" theory in TCM. Sirtuin (SIRT) is a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme family with deacetylase properties, which is highly conserved from bacteria to humans. The sirtuin defines seven silencing regulatory proteins (SIRT1-7) in human cells. It can regulate aging, metabolism, and certain diseases. Current studies have shown that sirtuins have dual characteristics, acting as both tumor promoters and tumor inhibitors in cancers. This paper provides a comparative summary of the roles of SIRT1-7 in the intestine and lung (both inflammatory diseases and tumors), and the promoter/suppressor effects of targeting SIRT family microRNAs and modulators of inflammation or tumors. Sirtuins have great potential as drug targets for the treatment of intestinal and respiratory diseases. Meanwhile, it may provide new ideas of future drug target research.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Di Zhou
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yuan Feng
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Bingxin Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yong Cui
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, China.
| | - Gang Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
13
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Front Pharmacol 2022; 13:871560. [PMID: 35571098 PMCID: PMC9092499 DOI: 10.3389/fphar.2022.871560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of cellular energy metabolism is considered an emerging feature of cancer. Mitochondrial metabolism plays a crucial role in cancer cell proliferation, survival, and metastasis. As a major mitochondrial NAD+-dependent deacetylase, sirtuin3 (SIRT3) deacetylates and regulates the enzymes involved in regulating mitochondrial energy metabolism, including fatty acid oxidation, the Krebs cycle, and the respiratory chain to maintain metabolic homeostasis. In this article, we review the multiple roles of SIRT3 in various cancers, and systematically summarize the recent advances in the discovery of its activators and inhibitors. The roles of SIRT3 vary in different cancers and have cell- and tumor-type specificity. SIRT3 plays a unique function by mediating interactions between mitochondria and intracellular signaling. The critical functions of SIRT3 have renewed interest in the development of small molecule modulators that regulate its activity. Delineation of the underlying mechanism of SIRT3 as a critical regulator of cell metabolism and further characterization of the mitochondrial substrates of SIRT3 will deepen our understanding of the role of SIRT3 in tumorigenesis and progression and may provide novel therapeutic strategies for cancer targeting SIRT3.
Collapse
Affiliation(s)
- Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Yang Y, Wang W, Tian Y, Shi J. Sirtuin 3 and mitochondrial permeability transition pore (mPTP): A systematic review. Mitochondrion 2022; 64:103-111. [PMID: 35346868 DOI: 10.1016/j.mito.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) is a channel that opens at the inner mitochondrial membrane under conditions of stress. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and a regulatory role in cell death. This systematic review aims to elucidate the role of Sirt3 in mPTP inhibition. Electronic databases, including PubMed, EMBASE, Web of Science and Cochrane Library were searched up to May 2020. Original studies that investigated the relationship between Sirt3 and mPTP were included. Two reviewers independently extracted data on study characteristics, methods and outcomes. A total of 194 articles were found. Twenty-nine articles, which met criteria were included in the systematic review. Twenty-three studies provided evidence of the inhibitory effect of Sirt3 on the mPTP aperture. This review summarizes up-to-date evidence of the protective and inhibitory role of Sirt3 through deacetylating Cyclophilin D (CypD) on the mPTP aperture. Furthermore, we discuss the implications of this effect in disease.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ye Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiong Shi
- China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Sirt3 Regulates Response to Oxidative Stress by Interacting with BER Proteins in Colorectal Cancer. Genet Res (Camb) 2022; 2022:7299555. [PMID: 35440893 PMCID: PMC9010173 DOI: 10.1155/2022/7299555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The oxidative damages are well-recognized factors in the pathogenesis of colorectal cancer (CRC). Increased levels of reactive oxygen species (ROS) can lead to oxidative DNA damage, which, if unrepaired, can be an underlying cause of cancerogenic transformation. To defend against these threats, cells have developed a range of defense mechanisms. One of the most important protection mechanisms is DNA repair systems, both nuclear and mitochondrial. Sirt3 is a mitochondrial protein involved in regulating NEIL1, NEIL2, MUTYH, APE1, and LIG3 proteins, which are involved in DNA repair, including mitochondrial repair through mtBER (mitochondrial Base Excision Repair). In this work, we show that NEIL1, NEIL2, MUTYH, APE1, and LIG3 are regulated by Sirt3 through deacetylation, and moreover, Sirt3 is directly involved in physical interaction with MUTYH, NEIL1, and APE1, which indicates the controlling role of Sirt3 over the mtBER mechanism. Also, if the cells deprived of Sirt3 are exposed to oxidative stress, altered levels of those proteins can be observed, which supports the theory of the regulatory role of Sirt3. Finally, to fully confirm the role of Sirt3 in DNA repair, we examined its role in apoptosis and found the impact of this protein on cell survival rate. Using the knowledge obtained in the course of conducted experiments, we postulate consideration of Sirt3 as a target in the rising vulnerability of cancer cells during therapy and therefore increasing the effectiveness of cancer treatment.
Collapse
|
16
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- 2Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway. Cell Death Discov 2021; 7:304. [PMID: 34675216 PMCID: PMC8531291 DOI: 10.1038/s41420-021-00695-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
With global warming, heat stress has become an important challenge for the global dairy industry. Sirtuin 3 (SIRT3), an important mitochondrial NAD+dependent decarboxylase and a major regulator of cellular energy metabolism and antioxidant defense, is integral to maintaining normal mitochondrial function. The aim of this study was to assess the protective effect of SIRT3 on damage to bovine mammary epithelial cells (BMECs) induced by heat stress and to explore its potential mechanism. Our results indicate that SIRT3 is significantly downregulated in heat-stressed mammary tissue and high-temperature-treated BMECs. SIRT3 knockdown significantly increased the expression of HSP70, Bax, and cleaved-caspase 3 and inhibited the production of antioxidases, thus promoting ROS production and cell apoptosis in BMECs. In addition, SIRT3 knockdown can aggravate mitochondrial damage by mediating the expression of genes related to mitochondrial fission and fusion, including dynamin-related protein 1, mitochondrial fission 1 protein, and mitochondrial fusion proteins 1and 2. In addition, SIRT3 knockdown substantially decreased AMPK phosphorylation in BMECs. In contrast, SIRT3 overexpression in high-temperature treatment had the opposite effect to SIRT3 knockdown in BMECs. SIRT3 overexpression reduced mitochondrial damage and weakened the oxidative stress response of BMECs induced by heat stress and promoted the phosphorylation of AMPK. Taken together, our results indicate that SIRT3 can protect BMECs from heat stress damage through the AMPK signaling pathway. Therefore, the reduction of oxidative stress by SIRT3 may be the primary molecular mechanism underlying resistance to heat stress in summer cows.
Collapse
|
19
|
Ezhilarasan D, Lakshmi T, Subha M, Deepak Nallasamy V, Raghunandhakumar S. The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Dis 2021; 28:559-567. [PMID: 33570800 DOI: 10.1111/odi.13798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Oral cancer is one of the most leading cancer responsible for significant morbidity and mortality. The sirtuins (SIRTs) are a family of class III histone deacetylases and are known to regulate a variety of molecular signaling associated with different cancer types including oral malignancies. SIRT1 acts as bifunctional in a variety of cancer. In oral cancer, SIRT1 seems to work as a tumor suppressor. The carcinogenic potential of SIRT1 is also reported in oral cancer, and hence, its role is still ambiguous. SIRT2 is also said to play a dual-faced role in different types of cancers. However, in oral cancer, SIRT2 is not studied and its role remains obscure. SIRT3 expression was positively correlated with oral malignancies. However, studies also showed the anti-cancer role of SIRT3 in oral cancer. SIRT7 loss was observed in oral cancer cells, while its overexpression caused the suppression of oral cancer cells proliferation, migration, and invasiveness. The role of other SIRTs in oral cancer was studied meagerly or reports not available. To date, only the roles of SIRT1, SIRT3, and SIRT7 have been reported in oral malignancies. Therefore, understanding the regulatory mechanisms employed by sirtuins to modulate oral cancer is important for developing potential anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, the Blue Lab (Molecular Medicine and Toxicology) Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Thangavelu Lakshmi
- Department of Pharmacology, the Blue Lab (Molecular Medicine and Toxicology) Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Manoharan Subha
- Department of Oral Medicine and Radiology, Saveetha Dental College (SDC), Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Veeraiyan Deepak Nallasamy
- Department of Prosthodontics, Saveetha Dental College (SDC), Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, the Blue Lab (Molecular Medicine and Toxicology) Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
20
|
Wang R, Liu Y, Mi X, Chen Q, Jiang P, Hou J, Lin Y, Li S, Ji B, Fang Y. Sirt3 promotes hepatocellular carcinoma cells sensitivity to regorafenib through the acceleration of mitochondrial dysfunction. Arch Biochem Biophys 2020; 689:108415. [PMID: 32562663 DOI: 10.1016/j.abb.2020.108415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023]
Abstract
Regorafenib, a multiple kinase inhibitor, is recently approved for treatment of patients with advanced hepatocellular carcinoma (HCC). Previous studies demonstrated that regorafenib was a mitochondrial toxicant, which associated with the impairment of mitochondria. Sirt3 is involved in the regulation of mitochondrial function in cancers. This study aimed to investigate the mechanism of Sirt3 involved in the mitochondrial dysfunction which associated with regorafenib treatment in liver cancer cells. We found regorafenib inhibited Sirt3 and p-ERK expression in HCC cells in a dose-dependent manner. Bioinformatics analysis showed that Sirt3 expression was down-regulated in liver cancer tissues and its low expression was correlated with worse overall survival (OS) in liver cancer patients. After transfected with Sirt3 overexpression plasmid, we found that Sirt3 sensitized liver cancer cells to regorafenib and resulted in much more apoptosis with a significant increase of ROS level. However, exogenous antioxidant could not weaken the apoptosis. Mitochondrial membrane potential assay indicated that Sirt3 overexpression accelerated the mitochondrial depolarization process induced by regorafenib and aggravated mitochondrial injury. Cellular oxygen consumption assay showed that mitochondrial dysfunction was caused by the damage of the electron transport chain. The results demonstrated that Sirt3 overexpression promoted the increase of ROS and apoptosis induced by regorafenib through the acceleration of mitochondrial dysfunction by impairing function of the electron transport chain in liver cancer cells. Our studies verified the functional role of Sirt3 in regorafenib treatment and suggested that regorafenib accompanied with Sirt3 activator as a novel treatment strategy for HCC.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xuguang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin, 130021, China; Laboratory Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qingmin Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junjie Hou
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin, 130021, China
| | - Yifan Lin
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin, 130021, China
| | - Siqi Li
- School of Medical Technology, Beihua University, Jilin, Jilin, 132021, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Yanqiu Fang
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin, 130021, China.
| |
Collapse
|
21
|
Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, Zhao Y, Ma J, Liu Y, Sun L, Su J. Hypoxia-induced NAD + interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci 2020; 259:118171. [PMID: 32738362 DOI: 10.1016/j.lfs.2020.118171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, an important feature of the tumor microenvironment, is responsible for the chemo-resistance and metastasis of malignant solid tumors. Recent studies indicated that mitochondria undergo morphological transitions as an adaptive response to maintain self-stability and connectivity under hypoxic conditions. NAD+ may not only provide reducing equivalents for biosynthetic reactions and in determining energy production, but also functions as a signaling molecule in mitochondrial dynamics regulation. In this review, we describe the upregulated KDAC deacetylase expression in the mitochondria and cytoplasm of tumor cells that results from sensing the changes in NAD+ to control mitochondrial dynamics and distribution, which is responsible for survival and metastasis in hypoxia.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xue Jin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sihang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Li LL, Wei L, Zhang N, Wei WY, Hu C, Deng W, Tang QZ. Levosimendan Protects against Doxorubicin-Induced Cardiotoxicity by Regulating the PTEN/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8593617. [PMID: 32596387 PMCID: PMC7298255 DOI: 10.1155/2020/8593617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Myocyte apoptosis plays a critical role in the development of doxorubicin- (DOX-) induced cardiotoxicity. In addition to its cardiotonic effect, laboratory evidence indicates that levosimendan can inhibit apoptosis, but its role in DOX-induced cardiac injury remains unclear. Therefore, the present study is aimed at exploring whether levosimendan could attenuate DOX-induced cardiotoxicity. METHODS Levosimendan (1 mg/kg) was administered to mice through oral gavage once daily for 4 weeks, and the mice were also subjected to an intraperitoneal injection of DOX (5 mg/kg) or saline, once a week for 4 weeks, to create a chronic model of DOX-induced cardiotoxicity. A morphological examination and biochemical analysis were used to evaluate the effects of levosimendan. H9C2 cells were used to verify the protective role of levosimendan in vitro. And an Akt inhibitor was utilized to verify the cardioprotection of levosimendan. RESULTS Levosimendan reduced the cardiac dysfunction and attenuated the myocardial apoptosis induced by DOX in vivo and in vitro. Levosimendan also inhibited the activation of phosphatase and tensin homolog (PTEN) and upregulated P-Akt expression both in vivo and in vitro. And inhibition of Akt abolished the cardioprotection of levosimendan in vitro. CONCLUSION Levosimendan may protect against DOX-induced cardiotoxicity via modulation of the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Li Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
23
|
The Roles of Sirtuin Family Proteins in Cancer Progression. Cancers (Basel) 2019; 11:cancers11121949. [PMID: 31817470 PMCID: PMC6966446 DOI: 10.3390/cancers11121949] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or deacylase activity and are linked to various cancer-related biological pathways as regulators of transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis, and tumorigenesis. Although sirtuin family members have a high degree of homology, they may play different roles in various kinds of cancer. This review highlights their fundamental roles in tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer, namely, as tumor promoters or tumor suppressors.
Collapse
|
24
|
ABT737 enhances ovarian cancer cells sensitivity to cisplatin through regulation of mitochondrial fission via Sirt3 activation. Life Sci 2019; 232:116561. [DOI: 10.1016/j.lfs.2019.116561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
|
25
|
Zhou J, Shi M, Li M, Cheng L, Yang J, Huang X. Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis. Cell Stress Chaperones 2019; 24:369-383. [PMID: 30656603 PMCID: PMC6439076 DOI: 10.1007/s12192-019-00970-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Sirtuin 3 (Sirt3)-modified mitochondrial fission participates in the progression of several types of cancers. However, its role in tongue cancer requires investigation. The aim of our study is to determine whether Sirt3 knockdown regulates the viability of tongue cancer cells via modulating mitochondrial fission. Two types of tongue cancer cells were used in the present study, and siRNA was transfected into the cells to suppress Sirt3 expression. Mitochondrial function and cell apoptosis were determined via immunofluorescence, Western blotting, ELISA, and qPCR assays. A pathway blocker was applied to verify the role of the JNK-Fis1 signaling pathway in regulation of mitochondrial fission. The present study showed that loss of Sirt3 promoted tongue cancer cell death in a manner dependent on mitochondrial apoptosis. Mitochondrial oxidative stress, energy metabolism disorder, mitochondrial cyt-c liberation, and mitochondrial apoptosis activation were observed after Sirt3 silencing. Furthermore, we demonstrated that Sirt3 knockdown activated mitochondrial stress via triggering Fis1-related mitochondrial fission and that inhibition of Fis1-related mitochondrial fission abrogated the pro-apoptotic effect of Sirt3 knockdown on tongue cancer cells. To this end, we found that Sirt3 modulated Fis1 expression via the c-Jun N-terminal kinases (JNK) signaling pathway and that blockade of the JNK pathway attenuated mitochondrial stress and repressed apoptosis in Sirt3 knockdown cells. Altogether, our results identified a tumor-suppressive role for Sirt3 deficiency in tongue cancer via activation of the JNK-Fis1 axis and subsequent initiation of fatal mitochondrial fission. Given these findings, strategies to repress Sirt3 activity and enhance the JNK-Fis1-mitochondrial fission cascade have clinical benefits for patients with tongue cancer.
Collapse
Affiliation(s)
- Jichi Zhou
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Menghan Shi
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Man Li
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Long Cheng
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Jinsuo Yang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Xin Huang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
26
|
Xie Y, Lv Y, Zhang Y, Liang Z, Han L, Xie Y. LATS2 promotes apoptosis in non-small cell lung cancer A549 cells via triggering Mff-dependent mitochondrial fission and activating the JNK signaling pathway. Biomed Pharmacother 2018; 109:679-689. [PMID: 30551520 DOI: 10.1016/j.biopha.2018.10.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
LATS2 is a classical tumor suppressor that affects non-small cell lung cancer proliferation and mobilization. However, its role in lung cancer cell apoptosis is unknown. The aim of our study is to explore whether LATS2 activates mitochondria-related apoptosis in lung cancer cells. In the present study, A549 non-small cell lung cancer cells were transfected with a LATS2 adenovirus to induce LATS2 overexpression. Cell apoptosis was evaluated via the MTT assay, TUNEL staining, western blotting, trypan blue staining and ELISA. Mitochondrial function was measured using an immunofluorescence assay, western blotting and ELISA. The results demonstrated that LATS2 was downregulated in A549 lung cancer cells. Overexpression of LATS2 induced A549 cell apoptosis via activating mitochondrial fission. Subsequently, we confirmed that LATS2 modulated mitochondrial fission via the JNK-Mff signaling pathway. Inhibition of the JNK pathway and/or knockdown of Mff abolished the pro-apoptotic effect of LATS2 on A549 cells. Taken together, our results identified LATS2 as a classical tumor suppressor of lung cancer via triggering mitochondrial fission and activating the JNK-Mff signaling pathway. Our results lay the foundation for detailed study of the molecular mechanisms of LATS2 overexpression and regulation of mitochondrial fission for lung cancer treatment.
Collapse
Affiliation(s)
- Yudong Xie
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China.
| | - Yanping Lv
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Yanli Zhang
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Zhenzhen Liang
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Lili Han
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Yiyang Xie
- Sanquan College, Xinxiang Medicine University, China
| |
Collapse
|