1
|
Yin L, Fan Y, Zhong X, Meng X, He Z, Hong Z, Chen J, Zhang Q, Kong M, Wang J, Tong Y, Bi Q. The Therapeutic Potential of Pristimerin in Osteoarthritis: Mechanistic Insights from in vitro and in vivo Studies. Drug Des Devel Ther 2024; 18:5445-5459. [PMID: 39628956 PMCID: PMC11612203 DOI: 10.2147/dddt.s490388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Osteoarthritis (OA), a degenerative disease marked by cartilage erosion and synovial proliferation, has led to an increased interest in natural plant-based compounds to slow its progression. Pristimerin(Pri), a triterpenoid compound derived from Tripterygium wilfordii, has demonstrated anti-inflammatory and antioxidant characteristics. This study explores the protective effects of Pri on OA and its potential mechanisms. Methods In this study, we examined the impact of Pri on the expression of inflammatory factors and extracellular matrix(ECM) degradation induced by IL-1β in chondrocyte experiments. Bioinformatics analysis was then performed to investigate the potential signaling pathways involved in Pri's protective effects. Finally, the efficacy of Pri in reducing cartilage degradation was further evaluated in a destabilization of the medial meniscus (DMM) mouse model. Results Utilizing bioinformatics analysis and in vitro studies, it was revealed that Pri inhibits the activation of NF-κB and MAPK signaling pathways, leading to the reversal of upregulated MMP-13 (matrix metalloproteinases-13), iNOS (inducible nitric oxide synthase), and COX-2(cyclooxygenase-2) elicited by IL-1β stimulation, as well as the partial restoration of Collagen-II levels. Furthermore, in a DMM mouse model, the group treated with Pri exhibited reduced cartilage degradation and slowed OA progression compared to the modeling group. Conclusion This research highlights Pri as a potential therapeutic agent for delaying OA progression.
Collapse
Affiliation(s)
- Li Yin
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Yong Fan
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Xugang Zhong
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Xiang Meng
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Zeju He
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Zheping Hong
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Jihang Chen
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Qiong Zhang
- Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Mingxiang Kong
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Jiao Wang
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Yu Tong
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Qing Bi
- Department of Sports Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People’s Republic of China
| |
Collapse
|
2
|
Shimizu Y, Luo H, Murohara T. Disease-Specific Alteration of Cardiac Lymphatics: A Review from Animal Disease Models to Clinics. Int J Mol Sci 2024; 25:10656. [PMID: 39408983 PMCID: PMC11477446 DOI: 10.3390/ijms251910656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
For many years, the significance of cardiac lymphatic vessels was largely overlooked in clinical practice, with little consideration given to their role in the pathophysiology or treatment of cardiac diseases. However, recent research has brought renewed attention to these vessels, progressively illuminating their function and importance within the realm of cardiovascular science. Experimental studies, particularly those utilizing animal models of cardiac disease, have demonstrated a clear relationship between cardiac lymphatic vessels and both the pathogenesis and progression of these conditions. These findings have prompted a growing interest in potential therapeutic applications that specifically target the cardiac lymphatic system. Conversely, while clinical investigations into cardiac lymphatics remain limited, recent studies have begun to explore their identification through specific surface markers, as well as the expression dynamics of lymphangiogenic factors. These studies have increasingly highlighted associations of lymphatic dysfunction with inflammation and fibrosis, both of which negatively impact cardiac function and remodeling across various pathological states. Despite these advances, comprehensive reviews of the current knowledge regarding the cardiac lymphatic vasculature, particularly within specific disease contexts, remain scarce. This review aims to address this gap by providing a detailed synthesis of existing reports, encompassing both animal model research and studies on human clinical specimens, with a special focus on the role of cardiac lymphatic vessels in different disease states.
Collapse
|
3
|
Pan S, Yu X, Liu M, Liu J, Wang C, Zhang Y, Ge F, Fan A, Zhang D, Chen M. Banxia Xiexin decoction promotes gastric lymphatic pumping by regulating lymphatic smooth muscle cell contraction and energy metabolism in a stress-induced gastric ulceration rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118015. [PMID: 38499261 DOI: 10.1016/j.jep.2024.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.
Collapse
Affiliation(s)
- Shutao Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Mingyu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yao Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fei Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Angran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing, 101121, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
5
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
7
|
Wang SS, Zhu XX, Wu XY, Zhang WW, Ding YD, Jin SW, Zhang PH. Interaction Between Blood Vasculatures and Lymphatic Vasculatures During Inflammation. J Inflamm Res 2023; 16:3271-3281. [PMID: 37560514 PMCID: PMC10408656 DOI: 10.2147/jir.s414891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Physiological activity cannot be regulated without the blood and lymphatic vasculatures, which play complementary roles in maintaining the body's homeostasis and immune responses. Inflammation is the body's initial response to pathological injury and is responsible for protecting the body, removing damaged tissues, and restoring and maintaining homeostasis in the body. A growing number of researches have shown that blood and lymphatic vessels play an essential role in a variety of inflammatory diseases. In the inflammatory state, the permeability of blood vessels and lymphatic vessels is altered, and angiogenesis and lymphangiogenesis subsequently occur. The blood vascular and lymphatic vascular systems interact to determine the development or resolution of inflammation. In this review, we discuss the changes that occur in the blood vascular and lymphatic vascular systems of several organs during inflammation, describe the different scenarios of angiogenesis and lymphangiogenesis at different sites of inflammation, and demonstrate the prospect of targeting the blood vasculature and lymphatic vasculature systems to limit the development of inflammation and promote the resolution of inflammation in inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Shun Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xin-Xu Zhu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xin-Yi Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Wen-Wu Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yang-Dong Ding
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Pu-Hong Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Yip F, Lai B, Yang D. Role of Coxsackievirus B3-Induced Immune Responses in the Transition from Myocarditis to Dilated Cardiomyopathy and Heart Failure. Int J Mol Sci 2023; 24:ijms24097717. [PMID: 37175422 PMCID: PMC10178405 DOI: 10.3390/ijms24097717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Collapse
Affiliation(s)
- Fione Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Lai
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
9
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Yang G, Zhou S, He H, Shen Z, Liu Y, Hu J, Wang J. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy. Front Pharmacol 2022; 13:1022627. [PMID: 36523490 PMCID: PMC9744761 DOI: 10.3389/fphar.2022.1022627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2024] Open
Abstract
Background: According to the theory of traditional Chinese medicine, phlegm and blood stasis (PBS) is the pathological basis for coronary heart disease (CHD). This study aimed to explore the biological basis of PBS syndrome in CHD. Methods: Using a strategy that integrated RNA-seq, DIA-based proteomics, and untargeted metabolomics on 90 clinic samples, we constructed a "gene-protein-metabolite" network for CHD-PBS syndrome. We expanded the sample size and validated the differential genes and metabolites in the network through enzyme-linked immunosorbent assay. Results: Our findings revealed that the "gene-protein-metabolite" network of CHD-PBS syndrome included 33 mRNAs, four proteins, and 25 metabolites. JNK1, FOS, CCL2, CXCL8, PTGS2, and CSF1 were all poorly expressed in the PBS group during the sequencing stage, whereas arachidonic acid (AA) was highly expressed. During the validation stage, JNK1, AP-1, CCL2, and CXCL8 were poorly expressed, whereas PTGS2, CSF1, and AA were highly expressed. The area under the receiver operating curve was as follows: CSF1 [0.9635, 95%CI (0.9295, 0.9976)] >JNK1 [0.9361, 95% CI (0.8749, 0.9972)] >CXCL8 [0.8953, 95% CI (0.8222, 0.9684)] > CCL2 [0.8458, 95% CI (0.7676, 0.9241)] >AP-1 [0.7884, 95%CI (0.6869, 0.8899)]. The logistic regression model composed of CSF1 and JNK1 showed the greatest diagnostic value and significance for PBS syndrome. Conclusion: PBS syndrome is characterized by low levels of FOS, AP-1, CCL2, CXCL8, and JNK1 and elevated levels of PTGS2 and CSF1, implying that the AA metabolism is abnormal and that the JNK/AP-1 pathway is inhibited. PBS syndromes, as a subtype of CHD, may have unique molecular changes. Background. Globally, coronary heart disease (CHD) is the leading cause of death, and this would likely continue until 2030 (Mirzaei et al., 2009, 95, 740-746). According to the disease course, CHD can be classified as chronic stable CHD (or chronic coronary syndrome) and acute coronary syndrome (ACS) (Katus et al., 2017; Knuuti, 2019). Although stable CHD is not as lethal as ACS, it has a varied incidence range and patients with CHD have prolonged angina. Some symptoms of stable angina are alleviated with pharmacological therapy, but it cannot eliminate recurrent angina (Rousan et al., 2017). The clinical outcomes were not significantly improved in patients who underwent revascularization compared with those who received optimal pharmacological therapy (Shaw et al., 2008; Antman and Braunwald, 2020). A bottleneck appears to exist in CHD treatment, and traditional Chinese medicine (TCM) can act as a favorable complement. Because of its individualized treatment approach, TCM is widely practiced in eastern civilizations (Teng et al., 2016). TCM has become a principal complement in western countries (Wieland et al., 2013). Like "disease" is used in western medicine, "syndrome" is used in TCM to comprehend anomalous human conditions on the basis of patients' symptoms, tongue, and pulse (Li et al., 2012). On the basis of disease-syndrome diagnose, a TCM doctor can subclassify CHD patients into various categories, such as phlegm and blood stasis (PBS) syndrome, cold congealing and Qi stagnation syndrome, and Qi stagnation and blood stasis syndrome. PBS syndrome has recently emerged as a hot research topic in the TCM field. Objective diagnosis, expert consultations, and efficacy evaluation scales have been developed for PBS syndrome (Ren et al., 2020; Liu et al., 2021; Zheng et al., 2022). The concept of "omics" originates from the genome. It refers to the vocabulary generated by biological molecules at different levels to describe high-sequence molecular biological data resources (Dai and Shen, 2022). RNA, protein, and metabolites decipher the essence of complex etiologies, and the integration of transcriptomics, proteomics, and metabolomics are becoming a promising research mode (Pan et al., 2022). Multi-omics studies have revealed the biological characteristics of APOE transgenic mice, bronchopulmonary dysplasia, and plant tolerant to heavy metals (Singh et al., 2016; Lal et al., 2018; Mohler et al., 2020). Over the past few years, many academic achievements related to CHD-PBS syndrome have been accrued in the single-omic area. For example, Zhou identified the differential metabolites between PBS syndrome and Qi and Yin deficiency syndrome by using the urine samples of 1072 volunteers. Some of the specific metabolites of PBS syndrome are pyroglutamic acid, glutaric acid, glucose, mannitol, and xanthine (Zhou et al., 2019). Li's metabolomic study suggested that valine, leucine, isoleucine, and glycerol phospholipid metabolism could represent PBS syndrome (Zheng et al., 2022). Although some progress has been made in the understanding of PBS syndrome in CHD through the studies conducted, some issues still exist, such as a single-omics level, a lack of in-depth research, an inability to verify each other's research results, and a lack of validation of research conclusions. Overall, a systematic description of the biological foundation of PBS syndrome is lacking. Thus, the present study utilizes system biology methodologies and constructs a multi-omics network by integrating differential genes, proteins, and metabolites to systematically and comprehensively reveal the biological basis of CHD-PBS syndrome. The current study explored 1) the characteristics of the transcriptome, proteome, and metabolome for CHD-PBS syndrome; 2) the "gene-protein-metabolite" network based on differential genes (DGs), differential proteins (DPs), and differential metabolites (DMs); 3) the key biological process and metabolic pathway most related to PBS syndrome; and 4) quantitative results and the diagnostic potential of biomarkers for PSB syndrome. Materials and methods. Multi-omics sequencing, bioinformatics analysis, and clinical validation research strategy. We collected the blood samples from healthy subjects as well as CHD patients with PBS and non-phlegm and blood stasis (NPBS) syndrome to compare the differences between them by subjecting the samples to the transcriptome, proteome, and metabolomics analyses. Bioinformatics analysis identified differential molecules as well as related biological processes and pathways. Next, the "gene-protein-metabolite" network was constructed using the MetaboAnalyst database, String database, and Cytoscape software. We selected molecules with strong centrality and biological association as potential PBS syndrome biomarkers and recruited more volunteers for further validation by enzyme-linked immunosorbent assay (ELISA). Finally, the ROC curve was utilized to assess the level and diagnostic efficacy of various molecules (Figure 1).
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyuan Zhou
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoqiang He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zinuo Shen
- School of traditional chinese medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- *Correspondence: Jun Hu, ; Jie Wang,
| |
Collapse
|
11
|
Nuclear Factor Kappa B Promotes Ferritin Heavy Chain Expression in Bombyx mori in Response to B. mori Nucleopolyhedrovirus Infection. Int J Mol Sci 2022; 23:ijms231810380. [PMID: 36142290 PMCID: PMC9499628 DOI: 10.3390/ijms231810380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ferritin heavy chain (FerHCH) is a major component of ferritin and plays an important role in maintaining iron homeostasis and redox equilibrium. Our previous studies have demonstrated that the Bombyx mori ferritin heavy chain homolog (BmFerHCH) could respond to B. mori nucleopolyhedrovirus (BmNPV) infection. However, the mechanism by which BmNPV regulates the expression of BmFerHCH remains unclear. In this study, BmFerHCH increased after BmNPV infection and BmNPV infection enhanced nuclear factor kappa B (NF-κB) activity in BmN cells. An NF-κB inhibitor (PDTC) reduced the expression of the virus-induced BmFerHCH in BmN cells, and overexpression of BmRelish (NF-κB) increased the expression of virus-induced BmFerHCH in BmN cells. Furthermore, BmNPV infection enhanced BmFerHCH promoter activity. The potential NF-κB cis-regulatory elements (CREs) in the BmFerHCH promoter were screened by using the JASPAR CORE database, and two effective NF-κB CREs were identified using a dual luciferase reporting system and electrophoretic mobility shift assay (EMSA). BmRelish (NF-κB) bound to NF-κB CREs and promoted the transcription of BmFerHCH. Taken together, BmNPV promotes activation of BmRelish (NF-κB), and activated BmRelish (NF-κB) binds to NF-κB CREs of BmFerHCH promoter to enhance BmFerHCH expression. Our study provides a foundation for future research on the function of BmFerHCH in BmNPV infection.
Collapse
|
12
|
Vasques‐Nóvoa F, Angélico‐Gonçalves A, Alvarenga JM, Nobrega J, Cerqueira RJ, Mancio J, Leite‐Moreira AF, Roncon‐Albuquerque R. Myocardial oedema: pathophysiological basis and implications for the failing heart. ESC Heart Fail 2022; 9:958-976. [PMID: 35150087 PMCID: PMC8934951 DOI: 10.1002/ehf2.13775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration, cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular communication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of cardiac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeutic avenues.
Collapse
Affiliation(s)
- Francisco Vasques‐Nóvoa
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - António Angélico‐Gonçalves
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - José M.G. Alvarenga
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - João Nobrega
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Jennifer Mancio
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Adelino F. Leite‐Moreira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Roberto Roncon‐Albuquerque
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| |
Collapse
|
13
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
14
|
He X, Zhang Y, Xu Y, Xie L, Yu Z, Zheng J. Function of the P2X7 receptor in hematopoiesis and leukemogenesis. Exp Hematol 2021; 104:40-47. [PMID: 34687808 DOI: 10.1016/j.exphem.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at tissue injury and inflammation sites. The P2X7 receptor is an ATP-gated ion channel known for its cytotoxic activity. However, P2X7 receptors also play important roles in the growth of cancer and the immune regulation. Functional P2X7 receptor is widely expressed in murine and human hematopoietic stem cells and their lineages, including monocytes, macrophages, mast cells, and B or T lymphocytes, and participates in various physiological and pathologic activities. Therefore, it is not surprising that the P2X7 receptor is important for the normal hematopoiesis and leukemogenesis. Here, we summarize the biological functions of P2X7 receptor during both normal hematopoiesis and leukemogenesis. In particular, we found that ATP levels are dramatically increased in the leukemic bone marrow niche and the fates of leukemia-initiating cells of acute myeloid leukemia are tightly controlled by P2X7 expression and ATP-P2X7-mediated signaling pathways. These findings strongly indicate that the P2X7 receptor may be considered a potential biomarker of hematological malignancies in bone marrow niches, and its antagonists may be useful for the leukemia treatment in addition to the traditional chemotherapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22020723. [PMID: 33450863 PMCID: PMC7828321 DOI: 10.3390/ijms22020723] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases, including psoriasis, systemic lupus erythematosus (SLE), and rheumatic arthritis (RA), are caused by a combination of environmental and genetic factors that lead to overactivation of immune cells and chronic inflammation. Since oxidative stress is a common feature of these diseases, which activates leukocytes to intensify inflammation, antioxidants could reduce the severity of these diseases. In addition to activating leukocytes, oxidative stress increases the production of lipid mediators, notably of endocannabinoids and eicosanoids, which are products of enzymatic lipid metabolism that act through specific receptors. Because the anti-inflammatory CB2 receptors are the predominant cannabinoid receptors in leukocytes, endocannabinoids are believed to act as anti-inflammatory factors that regulate compensatory mechanisms in autoimmune diseases. While administration of eicosanoids in vitro leads to the differentiation of lymphocytes into T helper 2 (Th2) cells, eicosanoids are also necessary for the different0iation of Th1 and Th17 cells. Therefore, their antagonists and/or the genetic deletion of their receptors abolish inflammation in animal models of psoriasis—RA and SLE. On the other hand, products of non-enzymatic lipid peroxidation, especially acrolein and 4-hydroxynonenal-protein adducts, mostly generated by an oxidative burst of granulocytes, may enhance inflammation and even acting as autoantigens and extracellular signaling molecules in the vicious circle of autoimmune diseases.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence:
| |
Collapse
|
17
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
18
|
García-Becerril GE, Cruz-Montalvo AE, De La Cruz MA, Ares MA, Moreno-Ruiz LA, García-Chequer AJ, Maldonado-Bernal C, Gómez-Jiménez LM, Flores-García CA, Garrido-Garduño MH, Cárdenas-Mondragón MG. Differential expression of coxsackievirus and adenovirus receptor in endomyocardial tissue of patients with myocarditis. Mol Med Rep 2019; 20:2189-2198. [PMID: 31257515 PMCID: PMC6691199 DOI: 10.3892/mmr.2019.10444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Recent studies demonstrated that the expression of coxsackievirus and adenovirus receptor (CAR) is implicated in the pathophysiology of myocarditis. The aim of the present study was to assess the association between active and borderline myocarditis and CAR expression in endomyocardial tissues, and analyze the association between CAR expression and treatment response. An analytic, cross-sectional, retrospective study was performed in 26 patients with myocarditis and 10 control subjects without heart disease. Myocardial biopsies were obtained and CAR transcription was measured by reverse transcription-quantitative polymerase chain reaction analysis. The association between CAR mRNA levels and the response to immunosuppressive or conventional therapy (treatment responders, n=17; non-responders, n=9) or with the type of histological myocarditis (active myocarditis, n=16; borderline myocarditis, n=10) was analyzed. CAR transcription levels were significantly lower (P=0.012) in patients with myocarditis compared with controls, and a significant decrease was observed (P=0.023) in CAR mRNA levels among patients with borderline myocarditis compared with the no myocarditis group. Patients responding to therapy exhibited higher CAR mRNA levels (P=0.036) compared with patients not responding to treatment, as evaluated based on clinical and echocardiographic criteria (immunosuppressive therapy, n=8; conventional therapy, n=1). Myocarditis in non-responders was associated with fewer clinical manifestations and lower CAR mRNA levels. A significant difference was only found regarding the use of oral steroids in patients with active myocarditis who responded to treatment (P=0.02), with no difference in borderline myocarditis. In conclusion, the transcriptional level of CAR is low in the endomyocardial tissue of patients with myocarditis, and it is lower in borderline myocarditis and in non-responder patients. These findings may enable early identification of patients who may benefit from treatment and timely determination of prognosis.
Collapse
Affiliation(s)
- Gustavo E García-Becerril
- Clínica de Insuficiencia Cardiaca, UMAE Hospital de Cardiología del Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Aníbal E Cruz-Montalvo
- Unidad de Cuidados Intensivos Cardiovasculares, UMAE Hospital de Cardiología del Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miguel A De La Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría 'Dr. Silvestre Frenk Freund', Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría 'Dr. Silvestre Frenk Freund', Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Luis A Moreno-Ruiz
- Servicio de Hospitalización Adultos, UMAE Hospital de Cardiología del Centro Médico Nacional Siglo‑XXI, IMSS, Mexico City 06720, Mexico
| | - Adda J García-Chequer
- Laboratorio en Biología del Desarrollo, Unidad de Hemato‑Oncología e Investigación del Hospital Infantil de México, 'Federico Gómez', Secretaria de Salud, Mexico City 06720, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, 'Federico Gómez', Secretaria de Salud, Mexico City 06720, Mexico
| | - Luz M Gómez-Jiménez
- Servicio de Patología UMAE Hospital de Especialidades del Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Cesar A Flores-García
- Servicio de Patología, UMAE Hospital de Cardiología del Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Martín H Garrido-Garduño
- Clínica de Insuficiencia Cardiaca, UMAE Hospital de Cardiología del Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - María G Cárdenas-Mondragón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría 'Dr. Silvestre Frenk Freund', Centro Médico Nacional Siglo‑XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Kraft L, Erdenesukh T, Sauter M, Tschöpe C, Klingel K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res Cardiol 2019; 114:11. [DOI: 10.1007/s00395-019-0719-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
|
20
|
Omura S, Kawai E, Sato F, Martinez NE, Minagar A, Al-Kofahi M, Yun JW, Cvek U, Trutschl M, Alexander JS, Tsunoda I. Theiler's Virus-Mediated Immunopathology in the CNS and Heart: Roles of Organ-Specific Cytokine and Lymphatic Responses. Front Immunol 2018; 9:2870. [PMID: 30619258 PMCID: PMC6295469 DOI: 10.3389/fimmu.2018.02870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces different diseases in the central nervous system (CNS) and heart, depending on the mouse strains and time course, with cytokines playing key roles for viral clearance and immune-mediated pathology (immunopathology). In SJL/J mice, TMEV infection causes chronic TMEV-induced demyelinating disease (TMEV-IDD) in the spinal cord about 1 month post-inoculation (p.i.). Unlike other immunopathology models, both pro- and anti-inflammatory cytokines can play dual roles in TMEV-IDD. Pro-inflammatory cytokines play beneficial roles in viral clearance while they are also detrimental in immune-mediated demyelination. Anti-inflammatory cytokines suppress not only protective anti-viral immune responses but also detrimental autoreactive immune responses. Conversely, in C3H mice, TMEV infection induces a non-CNS disease, myocarditis, with three distinctive phases: phase I, viral pathology with interferon and chemokine responses; phase II, immunopathology mediated by acquired immune responses; and phase III, cardiac fibrosis. Although the exact mechanism(s) by which a single virus, TMEV, induces these different diseases in different organs is unclear, our bioinformatics approaches, especially principal component analysis (PCA) of transcriptome data, allow us to identify the key factors contributing to organ-specific immunopathology. The PCA demonstrated that in vitro infection of a cardiomyocyte cell line reproduced the transcriptome profile of phase I in TMEV-induced myocarditis; distinct interferon/chemokine-related responses were induced in vitro in TMEV-infected cardiomyocytes, but not in infected neuronal cells. In addition, the PCA of the in vivo CNS transcriptome data showed that decreased lymphatic marker expressions were weakly associated with inflammation in TMEV infection. Here, dysfunction of lymphatic vessels is shown to potentially contribute to immunopathology by delaying the clearance of cytokines and immune cells from the inflammatory site, although this can also confine the virus at these sites, preventing virus spread via lymphatic vessels. On the other hand, in the heart, dysfunction of lymphatics was associated with reduced lymphatic muscle contractility provoked by pro-inflammatory cytokines. Therefore, TMEV infection may induce different patterns of cytokine expressions as well as lymphatic vessel dysfunction by rather different mechanisms between the CNS and heart, which might explain observed patterns of organ-specific immunopathology.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahmoud Al-Kofahi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J. Winny Yun
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Urska Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - J. Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
21
|
Blei F. Update December 2018. Lymphat Res Biol 2018. [DOI: 10.1089/lrb.2018.29054.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|