1
|
Jin Z, Xiao X, Gui L, Lu Q, Zhang J. Determination of doxorubicin in plasma and tissues of mice by UPLC-MS/MS and its application to pharmacokinetic study. Heliyon 2024; 10:e35123. [PMID: 39157405 PMCID: PMC11328074 DOI: 10.1016/j.heliyon.2024.e35123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
A rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of doxorubicin (DOX) in mouse plasma and tissues, including the heart, liver, spleen, lung, kidney and tumor, and to investigate the pharmacokinetics and distribution in mice. In this study, daunorubicin (DNR) was used as an internal standard, and the mobile phase consisted of ammonium formate 2 mM containing 0.1 % formic acid (A) and acetonitrile (B), the chromatographic column was ACQUITY UPLC BEHTM C18 with a gradient elution at a flow rate of 0.2 mL/min. Electrospray ionization (ESI) in positive ion pattern was utilized for the ion separation of DOX, with the ions used for quantitative analysis being DOX m/z 544.28 → 397.10 and DNR m/z 528.35 → 321.08, respectively. The results showed that a good linear relationship in the calibration curve range of 1-800 ng/mL in mouse plasma and 1-2500 ng/g in tissues (R2 > 0.99) with the limits of quantification of 1 ng/mL in plasma and tissues. The method exhibited good matrix effect and extraction recovery, with the intra-day and inter-day precision of plasma and tissue were less than 10.3 % and 15.4 %, and the relative error (RE) were both less than ±14.8 % and ±18.9 %, respectively. The stability results under different conditions were found to be accurate. It also revealed the distribution of DOX in various tissues of mice, with the concentration ranking as liver > heart > kidney > spleen > lung > tumor. This method was successfully used to the study for the pharmacokinetics in plasma and drug distribution in tissues of BALB/c mice.
Collapse
Affiliation(s)
- Zhilin Jin
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xue Xiao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| |
Collapse
|
2
|
de Cristo Soares Alves A, Rosane Dallemole D, Medeiro Ciocheta T, Ferreira Weber A, da Silva Gündel S, Visioli F, Figueiró F, Stanisçuaski Guterres S, Raffin Pohlmann A. Chicken embryo model for in vivo acute toxicological and antitumor efficacy evaluation of lipid nanocarrier containing doxorubicin. Int J Pharm X 2023; 6:100193. [PMID: 38204452 PMCID: PMC10777201 DOI: 10.1016/j.ijpx.2023.100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Nanoencapsulation of chemotherapeutics, including doxorubicin, can endow the formulations with unique properties, such as a decrease in adverse effects and toxicity. The chicken embryo model is an alternative and well-accepted strategy for evaluating the toxicity and efficacy of drugs and nanoformulations. Therefore, this study proposes the development of a new lipid nanocarrier for doxorubicin delivery (NanoLip-Dox) and posterior evaluation of toxicological profile and antitumoral efficacy against a breast tumor in chicken embryos. NanoLip-Dox showed a unimodal particle size (< 150 nm), negative zeta potential (-19.5 mV), absence of drug crystals, drug content of 0.099 mg·mL-1, and high entrapment efficiency (95%). NanoLip-Dox did not cause toxicity in the chicken embryos; in contrast, doxorubicin hydrochloride induced moderate irritation in the chorioallantoic membrane (at 862.1 μmol·L-1), a survival rate of 50% (at 1.7 μmol·L-1), and an increase in aspartate aminotransferase (at 862.1, 344.8, and 172.4 μmol·L-1). In addition, NanoLip-Dox (at 1.7 μmol·L-1) showed potent antitumor efficacy with a high tumor remission percentage (40.9 ± 9.7%) compared to the control group (8.6 ± 14.8%). These findings together with the absence of toxicity concerning morphological characteristics, weights of embryos and organs, hematologic parameters, and enzymatic activity (alanine aminotransferase, aspartate aminotransferase, and creatinine) suggest the safety and efficacy of NanoLip-Dox.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Danieli Rosane Dallemole
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Taiane Medeiro Ciocheta
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Samanta da Silva Gündel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fabricio Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| |
Collapse
|
3
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
4
|
Wu X, Hua X, Xu K, Song Y, Lv T. Zebrafish in Lung Cancer Research. Cancers (Basel) 2023; 15:4721. [PMID: 37835415 PMCID: PMC10571557 DOI: 10.3390/cancers15194721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zebrafish is increasingly used as a model organism for cancer research because of its genetic and physiological similarities to humans. Modeling lung cancer (LC) in zebrafish has received significant attention. This review focuses on the insights gained from using zebrafish in LC research. These insights range from investigating the genetic and molecular mechanisms that contribute to the development and progression of LC to identifying potential drug targets, testing the efficacy and toxicity of new therapies, and applying zebrafish for personalized medicine studies. This review provides a comprehensive overview of the current state of LC research performed using zebrafish, highlights the advantages and limitations of this model organism, and discusses future directions in the field.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Xin Hua
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
| | - Ke Xu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Yong Song
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
5
|
Moldovan C, Frumuzachi O, Babotă M, Pinela J, Barros L, Rocchetti G, López V, Lucini L, Crișan G, Mocan A. Untargeted phytochemical profiling and biological activity of small yellow onion (Allium flavum L.) from different regions of Romania. Food Chem 2023; 426:136503. [PMID: 37301042 DOI: 10.1016/j.foodchem.2023.136503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study examined the phytochemical profiles (mainly phenolics, carotenoids, and organosulfur compounds) and biological effects of hydroalcoholic extracts of Allium flavum (AF), a species of the Allium genus commonly known as small yellow onion. Unsupervised and supervised statistical approaches revealed clear differences between extracts prepared with samples collected from different areas of Romania. Overall, the AFFF (AF flowers collected from Făget) extract was the best source of polyphenols, also showing the highest antioxidant capacity evaluated through both in vitro DPPH, FRAP, and TEAC anti-radical scavenging assays and cell-based OxHLIA and TBARS assays. All the tested extracts exhibited α-glucosidase inhibition potential, while only the AFFF extract exhibited anti-lipase inhibitory activity. The phenolic subclasses annotated were positively correlated with the assessed antioxidant and enzyme inhibitory activities. Our findings suggested that A. flavum has bioactive properties worth exploring further, being a potential edible flower with health-promoting implications.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Víctor López
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
7
|
Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Can Polyphenols Inhibit Ferroptosis? Antioxidants (Basel) 2022; 11:antiox11010150. [PMID: 35052654 PMCID: PMC8772735 DOI: 10.3390/antiox11010150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Polyphenols, a diverse group of naturally occurring molecules commonly found in higher plants, have been heavily investigated over the last two decades due to their potent biological activities—among which the most important are their antioxidant, antimicrobial, anticancer, anti-inflammatory and neuroprotective activities. A common route of polyphenol intake in humans is through the diet. Since they are subjected to excessive metabolism in vivo it has been questioned whether their much-proven in vitro bioactivity could be translated to in vivo systems. Ferroptosis is a newly introduced, iron-dependent, regulated mode of oxidative cell death, characterized by increased lipid peroxidation and the accumulation of toxic lipid peroxides, which are considered to be toxic reactive oxygen species. There is a growing body of evidence that ferroptosis is involved in the development of almost all chronic diseases. Thus, ferroptosis is considered a new therapeutic target for offsetting many diseases, and researchers are putting great expectations on this field of research and medicine. The aim of this review is to critically analyse the potential of polyphenols to modulate ferroptosis and whether they can be considered promising compounds for the alleviation of chronic conditions.
Collapse
|
9
|
Pavic A, Ilic-Tomic T, Glamočlija J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J Fungi (Basel) 2021; 7:834. [PMID: 34682255 PMCID: PMC8540621 DOI: 10.3390/jof7100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400-500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Jasmina Glamočlija
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
10
|
Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion ( Allium cepa L.). Front Nutr 2021; 8:669805. [PMID: 34368207 PMCID: PMC8339303 DOI: 10.3389/fnut.2021.669805] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Onion (Allium cepa L.) is a common vegetable, widely consumed all over the world. Onion contains diverse phytochemicals, including organosulfur compounds, phenolic compounds, polysaccharides, and saponins. The phenolic and sulfur-containing compounds, including onionin A, cysteine sulfoxides, quercetin, and quercetin glucosides, are the major bioactive constituents of onion. Accumulated studies have revealed that onion and its bioactive compounds possess various health functions, such as antioxidant, antimicrobial, anti-inflammatory, anti-obesity, anti-diabetic, anticancer, cardiovascular protective, neuroprotective, hepatorenal protective, respiratory protective, digestive system protective, reproductive protective, and immunomodulatory properties. Herein, the main bioactive compounds in onion are summarized, followed by intensively discussing its major health functions as well as relevant molecular mechanisms. Moreover, the potential safety concerns about onion contamination and the ways to mitigate these issues are also discussed. We hope that this paper can attract broader attention to onion and its bioactive compounds, which are promising ingredients in the development of functional foods and nutraceuticals for preventing and managing certain chronic diseases.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Fang-Jun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Hang Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Bao-He Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Lu X, Lu L, Gao L, Wang Y, Wang W. Calycosin attenuates doxorubicin-induced cardiotoxicity via autophagy regulation in zebrafish models. Biomed Pharmacother 2021; 137:111375. [PMID: 33761601 DOI: 10.1016/j.biopha.2021.111375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
Anthracyclines are highly effective chemotherapeutics for antineoplastic treatment. However, cumulative cardiotoxicity is the main side effect with poor prognosis. No mechanism-based therapy is currently available to reverse chronic anthracycline-induced cardiotoxicity (AIC) after the deterioration of cardiac function. Calycosin (CA) is the main compound extracted from the traditional Chinese medicine Astragalus, and it has diverse beneficial effects, including autophagy modulation, anti-inflammatory and anti-tumor effects. Autophagy dysregulation is an important pathological event in AIC. Our study demonstrated a cardioprotective effect of CA in a zebrafish embryonic AIC model. To assess the effect of CA on late-onset chronic AIC, adult zebrafish were treated with CA 28 days after doxorubicin (DOX) injection, at which point heart function was obviously impaired. The results demonstrated that DOX blocked autophagic activity in adult zebrafish 8 weeks post-injection, and CA treatment improved heart function and restored autophagy. Further in vitro experiments demonstrated that atg7, which encodes an E1-like activating enzyme, may play an essential role in the CA regulation of autophagy. In conclusion, we used a rapid pharmacological screening system in embryo-adult zebrafish in vivo and elucidated the mechanism of gene targeting in vitro.
Collapse
Affiliation(s)
- Xiaoguang Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural Antioxidants, Health Effects and Bioactive Properties of Wild Allium Species. Curr Pharm Des 2020; 26:1816-1837. [PMID: 32013820 DOI: 10.2174/1381612826666200203145851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is an increasing interest from the pharmaceutical and food industry in natural antioxidant and bioactive compounds derived from plants as substitutes for synthetic compounds. The genus Allium is one of the largest genera, with more than 900 species, including important cultivated and wild species, having beneficial health effects. OBJECTIVE The present review aims to unravel the chemical composition of wild Allium species and their healthrelated effects, focusing on the main antioxidant compounds. For this purpose, a thorough study of the literature was carried out to compile reports related to health effects and the principal bioactive compounds. Considering the vast number of species, this review is divided into subsections where the most studied species are presented, namely Allium ampeloprasum, A. flavum, A. hookeri, A. jesdianum, A. neapolitanum, A. roseum, A. stipitatum, A. tricoccum, and A. ursinum, with an additional composite section for less studied species. METHODS The information presented in this review was obtained from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar and Researchgate, using as keywords the respective names of the studied species (both common and Latin names) and the additional terms of"antioxidants" "health effects" and "bioactive properties". CONCLUSION The genus Allium includes several wild species, many of which are commonly used in traditional and folklore medicine while others are lesser known or are of regional interest. These species can be used as sources of natural bioactive compounds with remarkable health benefits. Several studies have reported these effects and confirmed the mechanisms of action in several cases, although more research is needed in this field. Moreover, considering that most of the studies refer to the results obtained from species collected in the wild under uncontrolled conditions, further research is needed to elucidate the effects of growing conditions on bioactive compounds and to promote the exploitation of this invaluable genetic material.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, Pennsylvania, United States
| | - Nikos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
13
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
14
|
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. PLANTS 2020; 9:plants9101345. [PMID: 33053800 PMCID: PMC7601530 DOI: 10.3390/plants9101345] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.
Collapse
|
15
|
Kothari D, Lee WD, Kim SK. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants (Basel) 2020; 9:E888. [PMID: 32961762 PMCID: PMC7555649 DOI: 10.3390/antiox9090888] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allium species are revered worldwide as vegetables, condiments, and spices as well as the therapeutic agents in traditional medicine. The bioactive compounds in alliums mainly include organosulfur compounds, polyphenols, dietary fibers, and saponins. Flavonoids, particularly flavonols from alliums, have been demonstrated to have the antioxidant, anticancer, hypolipidemic, anti-diabetic, cardioprotective, neuroprotective, and antimicrobial activities. However, flavonols are mostly characterized from onions and have not been comprehensively reviewed across different species. This article therefore focuses on flavonol profiles from different Allium species, their health effects, underlying molecular mechanisms, and bioavailability. Intriguingly, the functional health effects of flavonols were mainly ascribed to their antioxidant and anti-inflammatory activities involving a cascade of multiple signaling pathways. Although the Allium-derived flavonols offer tremendous potential in preventing chronic disease risks, in-depth studies are needed to translate their clinical application.
Collapse
Affiliation(s)
| | | | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (D.K.); (W.-D.L.)
| |
Collapse
|
16
|
Sirangelo I, Sapio L, Ragone A, Naviglio S, Iannuzzi C, Barone D, Giordano A, Borriello M. Vanillin Prevents Doxorubicin-Induced Apoptosis and Oxidative Stress in Rat H9c2 Cardiomyocytes. Nutrients 2020; 12:2317. [PMID: 32752227 PMCID: PMC7468857 DOI: 10.3390/nu12082317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (doxo) is an effective anticancer compound in several tumor types. However, as a consequence of oxidative stress induction and ROS overproduction, its high cardiotoxicity demands urgent attention. Vanillin possesses antioxidant, antiproliferative, antidepressant and anti-glycating properties. Therefore, we investigated the potential vanillin protective effects against doxo-induced cardiotoxicity in H9c2 cells. Using multiparametric approach, we demonstrated that vanillin restored both cell viability and damage in response to doxo exposure. Contextually, vanillin decreased sub-G1 appearance and caspase-3 and PARP1 activation, reducing the doxo-related apoptosis induction. From a mechanistic point of view, vanillin hindered doxo-induced ROS accumulation and impaired the ERK phosphorylation. Notably, besides the cardioprotective effects, vanillin did not counteract the doxo effectiveness in osteosarcoma cells. Taken together, our results suggest that vanillin ameliorates doxo-induced toxicity in H9c2 cells, opening new avenues for developing alternative therapeutic approaches to prevent the anthracycline-related cardiotoxicity and to improve the long-term outcome of antineoplastic treatment.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Angela Ragone
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Margherita Borriello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| |
Collapse
|
17
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
18
|
Anti-Virulence Potential and In Vivo Toxicity of Persicaria maculosa and Bistorta officinalis Extracts. Molecules 2020; 25:molecules25081811. [PMID: 32326481 PMCID: PMC7221584 DOI: 10.3390/molecules25081811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional remedies represent potential candidates for integration with modern medical practice, but credible data on their activities are often scarce. For the first time, the anti-virulence potential and the safety for human use of the ethanol extracts of two medicinal plants, Persicaria maculosa (PEM) and Bistorta officinalis (BIO), have been addressed. Ethanol extracts of both plants exhibited anti-virulence activity against the medically important opportunistic pathogen Pseudomonas aeruginosa. At the subinhibitory concentration of 50 µg/mL, the extracts demonstrated a maximal inhibitory effect (approx. 50%) against biofilm formation, the highest reduction of pyocyanin production (47% for PEM and 59% for BIO) and completely halted the swarming motility of P. aeruginosa. Both extracts demonstrated better anti-quorum sensing and antibiofilm activities, and a better ability to interfere with LasR receptor, than the tested dominant extracts’ constituents. The bioactive concentrations of the extracts were not toxic in the zebrafish model system. This study represents an initial step towards the integration of P. maculosa and B. officinalis for use in the treatment of Pseudomonas infections.
Collapse
|