1
|
Wang R, Yan J, Zhang H, Zhu X, Xie D, Wang T, Li X. New insights into heavy metal cadmium-induced liver injury: prominent role of programmed cell death mechanisms. Toxicology 2025:154169. [PMID: 40318836 DOI: 10.1016/j.tox.2025.154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The heavy metal cadmium (Cd) is an important environmental factor that induces liver injury and contributes to liver disease. Ongoing research aims to refine our understanding of the pathogenesis of cadmium-induced liver injury and the interactions between the various mechanisms. Oxidative stress, described as a pathophysiological basis of liver injury, is a process in which reactive oxygen species are generated, causing the destruction of hepatocyte structure and cellular dysfunction. Additionally, the activation of oxidative stress downstream signals regulates several forms of cell death, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, which significantly contributes to liver damage. Furthermore, the interplay between different types of programmed cell death highlights the complexity of liver injury mechanisms. This review summarizes the role of programmed cell death in Cd-induced liver injury and explores the relationships between different programmed cell death pathways, which is expected to provide new insights into the mechanisms of Cd-induced liver injury.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou 730000, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Tingting Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou 730000, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, China; Clinical Research Center for General Surgery of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
2
|
Huang D, Qiu M, Luo K, Zhu Y, Zhang S, He Z, Hu X, Cao Z. Puerarin prevents cadmium-induced endoplasmic reticulum stress via SIRT1-dependent PERK-CHOP pathway in HepG2 cells. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40230287 DOI: 10.3724/abbs.2025039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Cadmium (Cd) is a high-risk heavy metal that induces oxidative stress, endoplasmic reticulum (ER) stress and inflammation, damaging organs such as the liver. Puerarin (PUE) has been shown to treat liver injury and especially prevent Cd-induced hepatic damage via its antioxidant activity. Sirtuin 1 (SIRT1), a histone deacetylase, is a key protector against various stress insults. However, its role in the protection of PUE against Cd-induced liver damage has not been clarified. Thus, this study is designed to elucidate the molecular mechanism in the human hepatoma cell line HepG2. The results first reveal that Cd-induced apoptosis is significantly restored by PUE pretreatment, as confirmed by the CCK-8, flow cytometric, Hoechst 33258 and TUNEL assays. Mechanistically, PUE significantly decreases ROS production and increases SOD levels in Cd-treated HepG2 cells. Moreover, PUE pretreatment alleviates ER stress by inhibiting the PERK-eIF2α-ATF4-CHOP axis and subsequently partially restores ER function as revealed by decreased Ca 2+ release from the ER. In addition, further study demonstrates that PUE upregulates SIRT1 expression, which suppresses the PERK signaling cascade and reduces CHOP levels. Collectively, our results first demonstrate that PUE protects HepG2 cells from Cd-induced apoptosis at least partially by inhibiting the PERK-eIF2α-ATF4-CHOP pathway in a SIRT1 expression-dependent manner. Puerarin appears to have great potential as a hepatoprotective agent.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Qiu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Kuanhong Luo
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yanzhe Zhu
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Siyu Zhang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhen He
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhaohui Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Liu Y, Fu K, Leng A, Zhang L, Qu J. Spotlight on the accumulation of heavy metals in Traditional Chinese medicines: A holistic view of pollution status, removal strategies and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176025. [PMID: 39244068 DOI: 10.1016/j.scitotenv.2024.176025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The accumulation of heavy metal in circulating TCMs has attracted widespread attention because the security and therapeutic efficacy are inevitably imperiled by the survival ecological environment and human production activities. How to reduce the pollution level and improve the toxicity damage becomes an urgent issue. This article provides a comprehensive overview of the current status of heavy metal contamination over a thousand types of single herbal (botanical, animal and mineral medicines) and TCM preparations published over nearly two decades. The survey revealed that growth ecosystems (soil, water sources), anthropogenic factors (harvesting, processing, storage), specific varieties and medicinal parts utilized as well as the inherent resistance capacity are the key factors that affect the accumulation of heavy metals in TCMs. And Pb, Cu and Cr are the major cumulative elements for botanicals, while mineral and animal medicines are dominated by As and Cu elements, respectively. Ongoing efforts aimed at mitigating the level and translocation rate of heavy metals by optimized cultivation processes, appropriate processing methodologies and advanced adsorption techniques are effective removal strategies. And the prospects of TCMs as a detoxifying agent for heavy metal toxicity damage posed development potential. Besides, the correlation between the speciation of arsenic (As) and chromium (Cr) and their toxicity should also be elaborated in order to provide effective references for standardizing drug dosage and cycle. And the imperative from the perspective of improving limitations standards of HMs for animal medicines, external preparations and folk medicines as well as exploring the interaction mechanisms between heavy metals and active ingredients of TCMs provides the direction for the follow-up study.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, The first affiliated hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Kangzhe Fu
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Aijing Leng
- Department of Traditional Chinese Medicine, The first affiliated hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The first affiliated hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
4
|
Gong X, Guo C, Liu J, Li Z, Ruan J, Tang M, Gu J, Shi H. Unraveling cadmium-driven liver inflammation with a focus on arachidonic acid metabolites and TLR4/ IκBα /NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117177. [PMID: 39418721 DOI: 10.1016/j.ecoenv.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Epidemiological studies have demonstrated exposure to cadmium ion (Cd2+) is significantly associated with the incidence and aggravation of nonalcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Cd2+ exposure could alter lipid metabolism, and changed lipid metabolites are significantly associated with NASH. Arachidonic acid (ArA) is an omega-6 polyunsaturated fatty acid. Promotion of ArA synthesis and profile changes by Cd2+ exposure potentially to cause NAFLD. ArA metabolism pathway has been identified to enrich in Cd2+ exposure-facilitated NASH. ArA could be generation an impressive metabolic profile through mainly three pathways, including Cyclooxygenases (COX), Lipoxygenases (LOX) and Cytochrome P450 (CYP450) pathway. However, the functions of these metabolites and underlying mechanism in hepatic inflammation are still not clear. In present study, by integrative transcriptomics and metabolomics analysis, we identified that the fatty acid metabolic process and the pro-inflammatory NF-κB signaling pathway were enriched in Cd2+-regulated differentially expressed genes (DEGs) and Cd2+-altered differential metabolites, such as, fatty acid biosynthesis, degradation, and ArA metabolism. The metabolites levels of LOX pathway products 5-HETE and leukotriene C4 (LTC4), and COX catalytic product prostaglandin D2 (PGD2) were significantly elevated in Cd2+ exposed mouse livers. 5-HETE, LTC4, and PGD2 were significantly positive correlated with NF-κB signaling. In addition, the synthase of 20-Hydroxyeicosatetraenoic acid (20-HETE), CYP450 gene 4 family (CYP4A32), was also involved in NF-κB signaling network. Results from both in vitro and in vivo proved that Cd2+ exposure increased ArA metabolite to PGD2 and 20-HETE, and upregulated the mRNA level of their catalytic enzyme PGDS and CYP4A32. Cd2+-induced ArA metabolite to PGD2 and 20-HETE promoted activation of TLR4/IκBα/NF-κB signaling and pro-inflammatory of hepatocytes. Our study explores novel molecular mechanism of Cd2+ exposure-aggravated liver diseases and provides potential novel targets for in hepatic inflammatory treatments and prevention.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zehua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
5
|
Buranasudja V, Sanookpan K, Vimolmangkang S, Binalee A, Mika K, Krobthong S, Kerdsomboon K, Kumkate S, Poolpak T, Kidhakarn S, Yang KM, Limcharoensuk T, Auesukaree C. Pretreatment with aqueous Moringa oleifera Lam. leaf extract prevents cadmium-induced hepatotoxicity by improving cellular antioxidant machinery and reducing cadmium accumulation. Heliyon 2024; 10:e37424. [PMID: 39309955 PMCID: PMC11416483 DOI: 10.1016/j.heliyon.2024.e37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Cadmium (Cd) is a highly harmful pollutant that poses a serious threat to human health. The liver is the primary organ for Cd accumulation, and Cd-induced hepatotoxicity has been shown to be strongly correlated with an oxidative imbalance in hepatocytes. Our previous studies in the eukaryotic model organism Saccharomyces cerevisiae revealed that not only co-treatment but also pretreatment with aqueous Moringa oleifera Lam. leaf extract (AMOLE) effectively mitigated Cd toxicity by reducing intracellular Cd accumulation and Cd-mediated oxidative stress. In this study, we therefore investigated the preventive effect of AMOLE against Cd toxicity in human HepG2 hepatocytes. The results showed that, similar to the case of the yeast model, pretreatment with AMOLE prior to Cd exposure also significantly inhibited Cd-induced oxidative stress in HepG2 cells. Untargeted LC-MS/MS-based metabolomic analysis of AMOLE revealed that its major phytochemical constituents were organic acids, particularly phenolic acids and carboxylic acids. Additionally, DPPH-HPTLC fingerprints suggested that quercetin and other flavonoids possibly contribute to the antioxidant activities of AMOLE. Based on our findings, it appears that pretreatment with AMOLE prevented Cd-induced hepatotoxicity via three possible mechanisms: i) direct elimination of free radicals by AMOLE antioxidant compounds; ii) upregulation of antioxidant defensive machinery (GPx1, and HO-1) via Nrf2 signaling cascade to improve cellular antioxidant capacity; and iii) reduction of intracellular Cd accumulation, probably by suppressing Cd uptake. These data strongly suggest the high potential of AMOLE for clinical utility in the prevention of Cd toxicity.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Nabsolute Co., Ltd., Bangkok, 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asma Binalee
- HPTLC Center, Chula PharTech Co., Ltd., Bangkok, 10330, Thailand
| | - Kamil Mika
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, Krakow, PL, 30-688, Poland
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Siraprapa Kidhakarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
6
|
Wang T, Yan L, Wang L, Sun J, Qu H, Ma Y, Song R, Tong X, Zhu J, Yuan Y, Gu J, Bian J, Liu Z, Zou H. VPS41-mediated incomplete autophagy aggravates cadmium-induced apoptosis in mouse hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132243. [PMID: 37562348 DOI: 10.1016/j.jhazmat.2023.132243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Exposure to cadmium (Cd), an environmental heavy metal contaminant, is a serious threat to global health that increases the burden of liver diseases. Autophagy and apoptosis are important in Cd-induced liver injury. However, the regulatory mechanisms involved in the progression of Cd-induced liver damage are poorly understood. Herein, we investigated the role of vacuolar protein sorting 41 (VPS41) in Cd-induced autophagy and apoptosis in hepatocytes. We used targeted VPS41 regulation to elucidate the mechanism of Cd-induced hepatotoxicity. Our data showed that Cd triggered incomplete autophagy by downregulating VPS41, aggravating Cd-induced hepatocyte apoptosis. Mechanistically, Cd-induced VPS41 downregulation interfered with the mTORC1-TFEB/TFE3 axis, leading to an imbalance in autophagy initiation and termination and abnormal activation of autophagy. Moreover, Cd-induced downregulation of VPS41 inhibited autophagosome-lysosome fusion, leading to blocked autophagic flux. This triggers incomplete autophagy, which causes excessive P62 accumulation, accelerating Caspase-9 (CASP9) cleavage. Incomplete autophagy blocks clearance of cleaved CASP9 (CL-CASP9) via the autophagic pathway, promoting apoptosis. Notably, VPS41 overexpression alleviated Cd-induced incomplete autophagy and apoptosis, independent of the homotypic fusion and protein sorting complex. This study provides a new mechanistic understanding of the relationship between autophagy and apoptosis, suggesting that VPS41 is a new therapeutic target for Cd-induced liver damage.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou 225009, Jiangsu, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Huayi Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
7
|
Wan XM, Zheng C, Zhou XL. Puerarin prevents cadmium-induced mitochondrial fission in AML-12 cells via Sirt1-dependent pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114302. [PMID: 36399995 DOI: 10.1016/j.ecoenv.2022.114302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Recent investigations have revealed that puerarin (PU) alleviates cadmium (Cd)-caused hepatic damage via inhibiting oxidative stress. Mitochondria are dynamic organelles and play a critical part in regulating the occurrence of oxidative stress, but the role of mitochondria in the protection of PU against hepatocellular damage caused by Cd exposure remains unknown. Thus, this study was aimed to clarify this issue using mouse hepatocyte AML-12 cell line. Transmission electron microscopy analysis firstly showed that PU prevents Cd-induced mitochondrial ultrastructure damage. Mitochondrial network image analysis by confocal microscopy revealed that PU exerts the protection against Cd-induced cytotoxicity via restoring mitochondrial network fragmentation. Also, mitochondrial dynamic protein expression profiles showed that enhanced fission protein levels and inhibited fusion protein levels in Cd-treated cells were significantly reversed by PU, suggesting the protective effect of PU against Cd-induced mitochondrial fission. Moreover, changes of intracellular ATP level and protein levels of key regulators involving in mitochondrial biogenesis indicated that Sirtuin-1(Sirt1) pathway may be involved in the protection of Cd-impaired mitochondrial function by PU. Next, Sirt1 protein levels in treated cells were effectively regulated by genetic knockdown or chemical agonist SRT1720. Accordingly, alleviation of Cd-induced mitochondrial fission assays and cell viability by PU was markedly regulated by SRT1720 or Sirt1 knockdown, suggesting the indispensable role of Sirt1 in this process. Collectively, these findings highlight that PU prevents Cd-induced mitochondrial fission to alleviate cytotoxicity via Sirt1-dependent pathway, which provide novel evidences to fully understand the hepatoprotective action of PU against heavy metal toxicity.
Collapse
Affiliation(s)
- Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072, China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072, China.
| |
Collapse
|
8
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
9
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Xu Y, Wei X, Li X, Chen Y, Mao X, Chen G, Liu C. Cadmium inhibits signal transducer and activator of transcription 6 leading to pancreatic β cell apoptosis. Endocr J 2022; 69:361-371. [PMID: 34719525 DOI: 10.1507/endocrj.ej21-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The toxic heavy metal cadmium has been proven to cause pancreatic dysfunction and lead to the development of DM. However, the underlying mechanisms have not been completely elucidated. Here, we investigated the effects of cadmium on the pancreatic β cell line MIN6 and explored the underlying mechanisms. The Cell Counting Kit-8 (CCK8) assay and flow cytometry were used to determine cell viability and apoptosis in MIN6 cells. The expression levels of signal transducer and activator of transcription 6 (STAT6) were assessed by western blotting. We further assessed the effects of cadmium on the function of pancreatic β cells under high glucose levels using enzyme-linked immunosorbent assay (ELISA) and western blotting. Insulin secretion and expression were decreased by cadmium in MIN6 cells. In addition, cadmium suppressed cell viability and promoted apoptosis of MIN6 cells, downregulated insulin secretion and genesis of MIN6 cells under high glucose conditions, while inhibiting STAT6. Furthermore, after treatment with IL-4, the activator of STAT6, the MIN6 cell viability suppression and apoptosis promotion effect caused by cadmium were blocked. In conclusion, cadmium inhibits pancreatic β cell MIN6 growth by regulating the activation of STAT6. Our findings reveal a new mechanism of cadmium toxicity in pancreatic β cells.
Collapse
Affiliation(s)
- Yijiao Xu
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Xiao Wei
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Xingjia Li
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Yu Chen
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Xiaodong Mao
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Guofang Chen
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| | - Chao Liu
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine, Qixia District, Nanjing, China, 210028
- Key Laboratory of State Administration of Traditional Chinese Medicine for TCM Syndrome & Treatment of Yingbing, Jiangsu Province Academy of Traditional Chinese Medicine, Qixia District, Nanjing, China, 210028
| |
Collapse
|
11
|
Liu L, Zhao L, Liu Y, Yu X, Qiao X. Rutin Ameliorates Cadmium-Induced Necroptosis in the Chicken Liver via Inhibiting Oxidative Stress and MAPK/NF-κB Pathway. Biol Trace Elem Res 2022; 200:1799-1810. [PMID: 34091842 DOI: 10.1007/s12011-021-02764-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is a recognized toxic metal and exerts serious hepatotoxicity in animals and humans. Rutin (RUT) is a dietary bioflavonoid with strong antioxidant and anti-inflammatory potential. However, little is known about the alleviating effect of RUT against Cd-induced liver necroptosis. The aim of this study was to ascertain the ameliorative mechanism of RUT on necroptosis triggered by Cd in chicken liver. One hundred twenty-eight 100-day-old Isa hens were randomly divided into four groups: the control group, RUT group, Cd + RUT cotreated group, and Cd group. Cd exposure prominently elevated Cd accumulation and the activities of liver function indicators (ALT and AST). Furthermore, the histopathological results, the overexpression of genes (RIPK1, RIPK3, and MLKL) related to the necroptosis pathway, and low Caspase 8 levels in Cd-exposed chicken liver indicated that Cd intoxication induced necroptosis in chicken liver. Meanwhile, Cd administration drastically increased the levels of oxidizing stress biomarkers (ROS production, MDA content, iNOS activity, and NO generation), and obviously reduced the activities of antioxidant enzymes (SOD, GPx, and CAT) and total antioxidant capacity (T-AOC) in chicken liver. Cd treatment promoted the expression of the main members of the MAPK and NF-κB pathways (JNK, ERK, P38, NF-κB, and TNF-α) and activated heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90). However, RUT application remarkably alleviated these Cd-induced variations and necroptosis injury. Overall, our study demonstrated that RUT might prevent Cd-induced necroptosis in the chicken liver by inhibiting oxidative stress and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China.
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China
| | - Xiaoli Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
12
|
Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C. Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 2022; 229:111730. [DOI: 10.1016/j.jinorgbio.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
13
|
Kong A, Zhang Y, Ning B, Li K, Ren Z, Dai S, Chen D, Zhou Y, Gu J, Shi H. Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca 2+ homeostasis. Chem Biol Interact 2021; 348:109649. [PMID: 34516972 DOI: 10.1016/j.cbi.2021.109649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) exposure induced lipid metabolic disorder with changes in lipid composition, as well as triglyceride (TG) levels. Liver is the main organ maintaining body TG level and previous studies suggested that Cd exposure might increase TG synthesis but reduce TG uptake in liver. However, the effects of Cd exposure on TG secretion from liver and underlying mechanism are still unclear. In the present study, the data revealed that Cd exposure increased TG levels in the HepG2 cells and the cultured medium by increasing the expression of microsomal triglyceride transfer protein (MTTP), which was abrogated by siRNA knockdown of MTTP. MTTP was synergistically accumulated after Cd exposure or treated with proteasome inhibitor MG132 and lysosome inhibitor chloroquine (CQ), which suggested the Cd increased MTTP protein stability by inhibiting both the proteasome and the lysosomal protein degradation pathways. In addition, our results demonstrated that Cd exposure inhibited the lysosomal acidic degradation pathway through disrupting endoplastic reticulum (ER) Ca2+ homeostasis. Cd-induced MTTP protein and TG levels were significantly reduced by pretreatments of BAPTA/AM chelation of intracellular Ca2+, 2-APB inhibition of ER Ca2+ release channel inositol 1,4,5-trisphosphate receptor (IP3R) and CDN1163 activation of ER Ca2+ reuptake pump sarcoplasmic reticulum Ca2+-ATPase (SERCA). These results suggest that Cd-induced ER Ca2+ release impaired the lysosomal acidity, which associated with MTTP protein accumulation and contributed to increased TG levels.
Collapse
Affiliation(s)
- Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bo Ning
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhen Ren
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuya Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; School of Food and Biological Engineering, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
14
|
Niture S, Lin M, Qi Q, Moore JT, Levine KE, Fernando RA, Kumar D. Role of Autophagy in Cadmium-Induced Hepatotoxicity and Liver Diseases. J Toxicol 2021; 2021:9564297. [PMID: 34422041 PMCID: PMC8371627 DOI: 10.1155/2021/9564297] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic pollutant that is associated with several severe human diseases. Cd can be easily absorbed in significant quantities from air contamination/industrial pollution, cigarette smoke, food, and water and primarily affects the liver, kidney, and lungs. Toxic effects of Cd include hepatotoxicity, nephrotoxicity, pulmonary toxicity, and the development of various human cancers. Cd is also involved in the development and progression of fatty liver diseases and hepatocellular carcinoma. Cd affects liver function via modulation of cell survival/proliferation, differentiation, and apoptosis. Moreover, Cd dysregulates hepatic autophagy, an endogenous catabolic process that detoxifies damaged cell organelles or dysfunctional cytosolic proteins through vacuole-mediated sequestration and lysosomal degradation. In this article, we review recent developments and findings regarding the role of Cd in the modulation of hepatotoxicity, autophagic function, and liver diseases at the molecular level.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Keith E. Levine
- RTI International, Research Triangle Park, Durham, NC 27709, USA
| | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
15
|
Li G, Rao H, Xu W. Puerarin plays a protective role in chondrocytes by activating Beclin1-dependent autophagy. Biosci Biotechnol Biochem 2021; 85:621-625. [PMID: 33624774 DOI: 10.1093/bbb/zbaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 11/14/2022]
Abstract
Puerarin can protect chondrocytes, whereby ameliorating osteoarthritis. Puerarin also promotes autophagy. Autophagy maintains chondrocyte homeostasis. The role of autophagy in puerarin-protected chondrocytes is unknown. Puerarin promoted chondrocyte autophagy. Puerarin-protected chondrocytes were reversed by autophagy inhibitors and Beclin1 inhibitor. 3-MA or Beclin1 inhibitor in vivo reversed puerarin-ameliorated cartilage damage of osteoarthritis mice. Thus, puerarin can protect chondrocytes through Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Guishuang Li
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hongming Rao
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Weihong Xu
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Guan Y, Zhao X, Song N, Cui Y, Chang Y. Albicanol antagonizes Cd-induced apoptosis through a NO/iNOS-regulated mitochondrial pathway in chicken liver cells. Food Funct 2021; 12:1757-1768. [PMID: 33502412 DOI: 10.1039/d0fo03270k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cadmium (Cd) induces hepatocyte injury by oxidative stress. Albicanol is a sesquiterpenoid extracted from the medicinal plant Dryopteris fragrans that has previously been shown to exhibit anti-aging and antioxidant activity. In this study, we explored the mechanism of albicanol inhibition of the Cd-induced apoptosis of chicken hepatoma cells (LMH) by treating these cells with CdCl2 (25 μM) and/or albicanol (2.5 × 10-5 μg mL-1) for 24 h. Under Cd treatment, the research results showed that the apoptosis rate markedly increased in LMH cells. In addition, the iNOS activity and NO content increased significantly, which promoted the expressions of genes associated with the mitochondrial apoptosis pathway (Bax, CytC, Caspase-3 and Caspase-9) and inhibited the expression of Bcl-2 in this pathway. However, Cd + albicanol co-treatment significantly reduced the apoptosis rate and the expressions of iNOS and genes associated with the mitochondrial apoptosis pathway (Bax, CytC, Caspase-3 and Caspase-9), and promoted the expression of Bcl-2 in this pathway. In addition, molecular docking supported a link between the albicanol ligand and the iNOS receptor. These results indicated that albicanol can inhibit Cd-induced apoptosis by regulating the NO/iNOS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Yalin Guan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Dong W, Zhang K, Liu G, Tan Y, Zou H, Yuan Y, Gu J, Song R, Zhu J, Liu Z. Puerarin prevents cadmium-induced disorder of testicular lactic acid metabolism in rats by activating 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:945-957. [PMID: 33404196 DOI: 10.1002/tox.23096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) interferes with the function of the male reproductive system; however, the molecular mechanism is poorly understood. This study aimed to evaluate the effect of puerarin (PU) on Cd-induced testicular lactic acid metabolism disorder. Weaning male Sprague-Dawley rats were pre-fed for 7 days, weighed, and randomly divided into four groups: Control group, CdAc2 group, CdAc2 + PU group, PU group. The results showed that Cd accumulated in the testis, the testicles became congested and shrank, and the testis index decreased in the rats treated in the CdAc2 group. Cadmium exposure reduced the serum concentration of testosterone, and the concentration of lactic acid and pyruvate in the testis. Cd decreased testicular superoxide dismutase activity and total antioxidant capacity, and increased testicular malondialdehyde levels. Cd reduced the level of ATP, glycolytic gene expression, and lactate production-related proteins in the testis. Cd also decreased the expression of 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins in the testis. However, these negative effects were attenuated by PU administration. In summary, Cd reduces the production of lactic acid in the testis of rats, while PU administration restores the production of lactic acid and reduces the toxicity of Cd to the testis of rats.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Wang T, Wang L, Zhang Y, Sun J, Xie Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Puerarin Restores Autophagosome-Lysosome Fusion to Alleviate Cadmium-Induced Autophagy Blockade via Restoring the Expression of Rab7 in Hepatocytes. Front Pharmacol 2021; 12:632825. [PMID: 33935722 PMCID: PMC8079953 DOI: 10.3389/fphar.2021.632825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms by which the environmental pollutant cadmium (Cd) induces cell injury. Puerarin (Pue, a monomeric Chinese herbal medicine extract) has been reported to alleviate Cd-induced cell injury by regulating autophagy pathways; however, its detailed mechanisms are unclear. In the present study, to investigate the detailed mechanisms by which Pue targets autophagy to alleviate Cd hepatotoxicity, alpha mouse liver 12 (AML12) cells were used to construct a model of Cd-induced hepatocyte injury in vitro. First, the protective effect of Pue on Cd-induced cell injury was confirmed by changes in cell proliferation, cell morphology, and cell ultrastructure. Next, we found that Pue activated autophagy and mitigated Cd-induced autophagy blockade. In this process, the lysosome was further activated and the lysosomal degradation capacity was strengthened. We also found that Pue restored the autophagosome-lysosome fusion and the expression of Rab7 in Cd-exposed hepatocytes. However, the fusion of autophagosomes with lysosomes and autophagic flux were inhibited after knocking down Rab7, and were further inhibited after combined treatment with Cd. In addition, after knocking down Rab7, the protective effects of Pue on restoring autophagosome-lysosome fusion and alleviating autophagy blockade in Cd-exposed cells were inhibited. In conclusion, Pue-mediated alleviation of Cd-induced hepatocyte injury was related to the activation of autophagy and the alleviation of autophagy blockade. Pue also restored the fusion of autophagosomes and lysosomes by restoring the protein expression of Rab7, thereby alleviating Cd-induced autophagy blockade in hepatocytes.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yilin Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
19
|
Yu ZM, Wan XM, Xiao M, Zheng C, Zhou XL. Puerarin induces Nrf2 as a cytoprotective mechanism to prevent cadmium-induced autophagy inhibition and NLRP3 inflammasome activation in AML12 hepatic cells. J Inorg Biochem 2021; 217:111389. [PMID: 33607539 DOI: 10.1016/j.jinorgbio.2021.111389] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
Liver is the main target organ of cadmium (Cd) toxicity and puerarin (PU) has been shown to prevent Cd-induced hepatic cell damage via its antioxidant activity. Nrf2 acts as a critical regulator of cellular defense against various oxidative insults, but its role in the protection of PU against Cd-induced hepatic damage has not yet been clarified. Hereby, this study was designed to investigate the underlying mechanism using mouse hepatocyte line AML-12. Data firstly showed that Cd-inhibited Nrf2 pathway was markedly restored by PU treatment, assessed by Nrf2 nuclear translocation, protein levels of Keap1 and Nrf2 downstream target genes. Accordingly, Cd-reduced protein levels of antioxidant enzymes were significantly up-regulated by PU. Next, Nrf2 silencing cellular model was established to further elucidate the role of Nrf2 in the protection of PU against Cd-induced hepatic damage. Attenuation of Cd-induced autophagy inhibition and autophagosome accumulation by PU was remarkably countered by Nrf2 silencing. Moreover, alleviation of Cd-induced NLRP3 inflammasome activation by PU was distinctly prevented by Nrf2 knockdown, assessed by protein levels of NLRP3 inflammosome complex and downstream IL-18 and IL-1β production. Collectively, our data suggest that PU restores Cd-induced Nrf2 inhibition to prevent autophagy inhibition and NLRP3 inflammasome activation, providing novel insights into the protection of PU against Cd-induced hepatic cell damage.
Collapse
Affiliation(s)
- Zhao-Ming Yu
- Dazhou Women's and Children's Hospital, No. 99 Baqu East Road, Tongchuan district, Dazhou, Sichuan 635000, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|
20
|
Zhao X, Li X, Wang S, Yang Z, Liu H, Xu S. Cadmium exposure induces mitochondrial pathway apoptosis in swine myocardium through xenobiotic receptors-mediated CYP450s activation. J Inorg Biochem 2021; 217:111361. [PMID: 33581611 DOI: 10.1016/j.jinorgbio.2021.111361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) pollution has become an important public and environmental health issue. Xenobiotic receptors (XRs, aryl hydrocarbon receptor, AHR; constitutive androstane receptor, CAR; pregnane X receptor, PXR) modulate downstream cytochrome P450 enzymes (CYP450s) expression to metabolize xenobiotics and environmental contaminants. However, the underlying mechanisms of cardiotoxicity induced by Cd(II) in swine and the roles of XRs and CYP450s remain poorly understood. In this study, the cardiotoxicity of Cd(II) was investigated by establishing a Cd(II)-exposed swine model (CdCl2, 20 mg Cd/Kg diet). Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay and transmission electron microscope were used to observe the apoptosis. Antioxidant capacity was evaluated by free radicals contents and antioxidant enzymes activities. RT-PCR and western blot were used to measure the expression of XRs, CYP450s and apoptosis-related genes. Our results revealed that Cd(II) exposure activated the XRs and increased the CYP450s expression, contributing to the production of reactive oxygen species (ROS). Cd(II) exposure restrained the antioxidant capacity, causing oxidative stress. Moreover, mitogen-activated protein kinase (MAPK) pathway including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38) was activated, triggering the mitochondrial apoptotic pathway. In brief, we concluded that Cd(II) caused mitochondrial pathway apoptosis in swine myocardium via the oxidative stress-MAPK pathway, and XRs-mediated CYP450s expression might participate in this process through promoting the ROS.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Li X, Li H, Cai D, Li P, Jin J, Jiang X, Li Z, Tian L, Chen G, Sun J, Bai W. Chronic oral exposure to cadmium causes liver inflammation by NLRP3 inflammasome activation in pubertal mice. Food Chem Toxicol 2020; 148:111944. [PMID: 33359024 DOI: 10.1016/j.fct.2020.111944] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a potentially toxic trace element frequently existed in foods, water, and air, threatening liver function from its continuous bioaccumulation and induction of oxidative stress and inflammation. However, the hepatotoxicity of Cd during puberty remains unclear. In this study, pubertal mice were given cadmium chloride at a dose of 5.0 mg/kg·bw by gavage, and the liver damage was investigated at different treatment points of 10, 20, and 30 days. After Cd exposure, there is an obvious inflammatory hepatocyte infiltration accompanied by more apoptotic cells at 20 days and an increase in alanine aminotransferases and aspartate aminotransferases in circulation at 30 days. Additionally, the soaring TNF-α and MCP-1 were found in liver, and the mRNA expression of pro-inflammatory cytokines (IL-1α, IL-1β, and IL-18) and anti-inflammatory cytokines (TGF-β, IL-10, and IL-13) were both significantly upregulated. Moreover, the activated M1 and M2 macrophages were confirmed in charge of these cytokines release. Most importantly, the data validated a pivotal role of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in Cd-induced inflammation in liver at puberty. Collectively, our results suggested that low-dose Cd oral exposure can cause liver inflammation via activation of NLRP3 inflammasome and give rise to severe liver injury at puberty.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Ping Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Jietian Jin
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, PR China; The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Guobing Chen
- Division of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
22
|
Liu H, Wang Y, Ren Z, Ji X, Peprah FA, Zhang X, Dai S, Zhou Y, Gu J, Shi H. Dietary cadmium exposure causes elevation of blood ApoE with triglyceride level in mice. Biometals 2020; 33:241-254. [DOI: 10.1007/s10534-020-00247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
|
23
|
Alipour MR, Karimi-Sales E. Molecular mechanisms of protective roles of isoflavones against chemicals-induced liver injuries. Chem Biol Interact 2020; 329:109213. [DOI: 10.1016/j.cbi.2020.109213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
24
|
Wang X, Wang T, Pan T, Huang M, Ren W, Xu G, Amin HK, Kassab RB, Abdel Moneim AE. Senna alexandrina extract supplementation reverses hepatic oxidative, inflammatory, and apoptotic effects of cadmium chloride administration in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5981-5992. [PMID: 31863371 DOI: 10.1007/s11356-019-07117-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Senna alexandrina is traditionally used for its antioxidant and anti-inflammatory properties, but little information is available concerning its potential protective effects against cadmium, which is a widespread environmental toxicant that causes hepatotoxicity. Here, we explored the effects of S. alexandrina extract (SAE) on cadmium chloride (CdCl2)-induced liver toxicity over 4 weeks in rats. Rats were allocated into four groups: control, SAE (100 mg/kg), CdCl2 (0.6 mg/kg), and SAE + CdCl2, respectively. Cadmium level in hepatic tissue, blood transaminases, and total bilirubin as indicators of liver function were assessed. Oxidative stress indices [malondialdehyde (MDA), nitrate/nitrite (NO), and glutathione (GSH)], antioxidant molecules [superoxide dismutase (SOD, catalase (CAT), glutathione-derived enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2)], pro-inflammatory mediators [interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α)], apoptosis proteins (Bcl-2, Bax, and caspase-3), and histological alterations to the liver were examined. SAE administration before CdCl2 exposure decreased cadmium deposition in liver tissue and the blood liver function indicators. SAE pre-treatment prevented oxidative, inflammatory, and apoptotic reactions and decreased histological alterations to the liver caused by CdCl2 exposure. SAE can be used as a promising protective agent against CdCl2-induced hepatotoxicity by increasing Nrf2 expression. Graphical abstract.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Graduate School, Tianjin Medical University, Tianjin, 300051, China
| | - Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, Neimenggu, China
| | - Tingting Pan
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Weihua Ren
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Geliang Xu
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
25
|
Xu Y, Xiong Y, Xu C, Xu C. Standard Puerarin Prevents Diabetic Renal Damage by Inhibiting miRNA-140-5p Expression. Diabetes Metab Syndr Obes 2020; 13:3947-3958. [PMID: 33122931 PMCID: PMC7591269 DOI: 10.2147/dmso.s273952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/29/2020] [Indexed: 12/21/2022] Open
Abstract
AIM This study was designed to use in vivo and in vitro approaches to evaluate puerarin in diabetes-induced renal injury. MATERIALS AND METHODS SD rats were divided into NC (normal control), Model (diabetic induced renal injury model), SP-L (model rats treated with low-dose standard puerarin), SP-M (model rats treated with middle-dose standard puerarin), and SP-H (model rats treated with high-dose standard puerarin) groups. We evaluated fasting blood-glucose (FBG), urinary albumin/creatinine ratio (UACR), body weight, and kidney index (KI) in the different groups. TNF-α, IL-1β, and IL-6 concentrations were measured using Elisa assays. HE staining and TUNEL assays were used to evaluate pathology and apoptosis in kidney tissues, respectively. Relative gene and protein expression was measured using RT-qPCR and Western blot assays. Apoptosis was measured using flow cytometry. The correlation between miRNA-145-5p and TLR4 was assessed using dual-luciferase reporter gene assays. RESULTS The pathology and apoptosis cell number were deteriorate in Model group; TNF-α, IL-1β and IL-6 concentrations, FGB, UACR and KI were increased and body weight was depressed; meanwhile, relative gene and proteins expressions (miRNA-145-5p, TLR4, MyD88 and NF-κB p65) were significantly different in Model group in vivo and vitro study compared with NC group. SP treatment significantly improved the pathology and apoptosis levels in the tissues, as well as TNF-α, IL-1β and IL-6 concentrations, FGB, UACR, body weight, and KI. In vitro cell studies revealed that SP could prevent renal injury induced by diabetes through the miRNA-145-5p/TLR4 axis. CONCLUSION SP prevents diabetes-induced renal damage via miRNA-145-5p overexpression and reduces TLR4/MyD88/NF-κB (p65) pathway activation in vitro and in vivo.
Collapse
Affiliation(s)
- Yanmei Xu
- Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province430033, People’s Republic of China
| | - Yan Xiong
- Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province430033, People’s Republic of China
| | - Chen Xu
- Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province430033, People’s Republic of China
| | - Chuanwen Xu
- Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province430033, People’s Republic of China
- Correspondence: Chuanwen XuDepartment of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 473 Hanzheng Street, Qiaokou District, Wuhan City, Hubei Province430033, People’s Republic of ChinaTel +86-18607171819 Email
| |
Collapse
|
26
|
Zhang G, Wang Y, Tang G, Ma Y. Puerarin inhibits the osteoclastogenesis by inhibiting RANKL-dependent and -independent autophagic responses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:269. [PMID: 31615565 PMCID: PMC6794871 DOI: 10.1186/s12906-019-2691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Background Puerarin exerts therapeutic effect on osteoporosis due to its inhibitory effect on the formation of osteoclasts. Puerarin is also widely established as an autophagy inhibitor. The study aimed to investigate the significance of autophagy in Puerarin-treated osteoclast formation. Methods Osteoclast precursors (OCPs) derived from bone marrow-derived macrophages (BMMs) were treated with Puerarin along with RANKL or without RANKL, and then the autophagic parameters of OCPs (including autophagic proteins, LC3 transformation, autophagosome or LC3-puncta) were observed through Western Blotting, Transmission Electron Microscopy and Immunofluorescence assays. Next, after using overexpression vectors of autophagic genes (Atg7, Atg5 and BECN1) to alter autophagy activity, OCP proliferation was measured by Ethynyl deoxyuridine (EdU) assays and Cell Counting Kit-8 (CCK-8) kit, and osteoclast differentiation was assessed by Tartrate-resistant acid phosphatase (TRAP) staining. Results The results showed that Puerarin could directly inhibit the autophagy and proliferation of OCPs. Importantly, overexpression of autophagic genes Atg5, Atg7 and BECN1 reversed Puerarin-inhibited OCP autophagy and proliferation. What’s more, RANKL could promote the autography of OCPs, which was recovered by Puerarin treatment. Interestingly, different from single-Puerarin treatment, we found that in the presence of RANKL, only BECN1 overexpression significantly reversed Puerarin-inhibited osteoclast differentiation and OCP autophagy. Conclusion In conclusion, Puerarin could inhibit the OCP autophagy in the presence or absence of RANKL, which blocked the OCP proliferation and osteoclast differentiation respectively. Moreover, BECN1 plays an essential role in Puerarin-inhibited osteoclastogenesis. Our study provides potential clue to further complete the intrinsic mechanism of Puerarin in treating osteoporosis.
Collapse
|