1
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
2
|
Kuang G, Zhao Y, Wang L, Wen T, Liu P, Ma B, Peng Q, Xu F, Ye L, Fan J. Astragaloside IV Alleviates Acute Hepatic Injury by Regulating Macrophage Polarization and Pyroptosis via Activation of the AMPK/SIRT1 Signaling Pathway. Phytother Res 2025; 39:733-746. [PMID: 39660635 DOI: 10.1002/ptr.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Acute hepatic injury (AHI) is associated with poor prognosis in sepsis patient; however, to date, no specific therapeutic approach has been established for this disease. Therefore, we aimed to explore the effects and action mechanisms of Astragaloside IV (AS) on AHI. C57BL/6 mice, RAW264.7 cells, and bone marrow-derived macrophages were used in this study. Sepsis-associated AHI model mice were established using lipopolysaccharide + D-galactosamine. Pathological examination of liver tissues and serum alanine aminotransferase/aspartate aminotransferase was performed to evaluate the liver function. Moreover, inflammatory cytokine levels, proportion of M1/M2 macrophages and their marker levels, and cell pyroptosis-related indicator levels were determined in the liver of the AHI model mice with or without AS treatment. AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) expression was determined after AS treatment. Additionally, inflammatory cytokine levels, liver injury, and macrophage polarization were evaluated after inhibiting the AMPK/SIRT1 pathway. AS alleviated lipopolysaccharide + D-galactosamine-induced AHI and inhibited inflammatory reactions in the blood and liver of mice. AS also promoted the M1-to-M2 phenotypic transformation of macrophages in the liver of AHI model mice and in vitro, thereby decreasing the pro-inflammatory cytokine levels and increasing the anti-inflammatory cytokine levels. AS increased AMPK and SIRT1 levels in the liver and macrophages. Furthermore, AS improved liver injury by elevating the expression of the AMPK/SIRT1 signaling pathway and inhibiting pyroptosis in macrophages. Overall, AS alleviated AHI by promoting M1-to-M2 macrophage transformation and inhibiting macrophage pyroptosis via activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Gang Kuang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Bei Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
4
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Zeng S, Gao L, Wang K, Liu X, Hu Z, Zhao L. Along the gut-bone marrow signaling pathway: use of longan polysaccharides to regenerate blood cells after chemotherapy-induced myelosuppression. Food Funct 2024; 15:11888-11902. [PMID: 39434567 DOI: 10.1039/d4fo03758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Although it has been established that polysaccharides have an effect on bone marrow haematopoiesis, it remains unclear how polysaccharides regulate bone marrow haematopoiesis during absorption and metabolism in vivo. In this study, the effect of a longan polysaccharide of large molecular weight (TLPL) on the gut microbiota of mice and its implications for the haematopoietic process in bone marrow was discussed. Here, the results show that after 21 days of TLPL consumption, the respective quantities of white blood cells, platelets, hemoglobin and bone marrow nucleated cells were determined to be 3.18 ± 1.71 (109 L-1), 1238.10 ± 164.41 (109 L-1), 135.10 ± 4.95 (g L-1), and 1.70 × 107, which reached 56.98%, 117.28%, and 47.74%, respectively, of the results for NC. TLPL both increased the thymus and spleen indexes by up to 2.08 ± 0.64 (mg g-1) and 6.49 ± 2.45 (mg g-1), respectively. Additionally, TLPL remodeled the gut microbiota with a significant increase in Lactobacillus in particular, and a significant increase in the level of the potential intestinal metabolite lactate was detected in the serum. Most importantly, a similarly significant up-regulation of the gene expression of the lactate receptor, Gpr81, in the myeloid cells was observed. These changes contributed to the activation of the secretion of various cytokines associated with haematopoiesis, with the levels of G-CSF, EPO, SCF and PF4 increased by 2.44 times, 1.14 times, 1.56 times and 1.13 times, respectively, compared to the MC group, which subsequently accelerated production of bone marrow cells and blood cells. The findings of this study reveal the unique mechanism of dried longan polysaccharides in ameliorating myelosuppression and provide a feasible strategy for the treatment of chemotherapy-induced myelosuppression with bioactive polysaccharides.
Collapse
Affiliation(s)
- Shiai Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lan Gao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
6
|
Liu LW, Tang M, Zhang ZB, Zhou PP, Xue LP, Jia QQ, Zhao LG, Zuo LH, Sun Z. A stepwise integrated strategy to explore quality markers of Qishen Yiqi dripping pills against myocardial ischemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156182. [PMID: 39488103 DOI: 10.1016/j.phymed.2024.156182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Numerous experiments and clinical practices have demonstrated the effectiveness of Qishen Yiqi dripping pills (QSYQ) on myocardial ischemia (MI). However, the bioactive ingredients and mechanisms remain unclear, leading to huge gaps between quality control and biological effect of QSYQ. Discovering quality markers (Q-markers) based on effective components is crucial for ensuring stable quality and clinical effectiveness of QSYQ. PURPOSE To explore Q-markers of QSYQ against MI by a stepwise strategy integrating serum pharmacochemistry, network pharmacology, metabolomics, quantitative analysis, and cell experiments. METHODS Firstly, liquid/gas chromatography-mass spectrometry was applied to characterize chemical profiles of QSYQ in vitro and in vivo. Based on the serum migrating constituents, a component-target-MI interaction network was constructed. Subsequently, pharmacodynamics and metabolomics were conducted to evaluate cardioprotective effect and potential mechanism of QSYQ. Next, conjoint analysis of network pharmacology and metabolomics was performed to screen candidate Q-markers. Finally, the measurability and bioactivity were validated to justify their usage as Q-markers. RESULTS A total of 97 components were identified in QSYQ, 24 prototypes of which were detected in serum. The "component-target-disease" interaction network was constructed based on serum migrating constituents. Pharmacodynamic results showed that QSYQ effectively improved cardiac function, attenuated inflammatory cell infiltration, alleviated myocardial fibrosis, and reduced the levels of myocardial enzymes and oxidative stress in MI rats. Metabolomics study demonstrated that 59 metabolites were markedly altered in MI rats, 25 of which were significantly reversely regulated by QSYQ. After integrative analysis of network pharmacology and metabolomics, 12 components were selected as candidate Q-markers of QSYQ, and the contents were quantified. These candidate Q-markers displayed synergistic protective effects against H2O2-induced injury in H9c2 cells. Taken together, 12 components with properties of transitivity and traceability, effectiveness, measurability, and compatibility contribution were defined as representative Q-markers of QSYQ, including Astragaloside IV, Ononin, Calycosin, Formononetin, Rosmarinic acid, Cryptotanshinone, Salvianolic acid A, Tanshinol, Ginsenoside Rb1, Ginsenoside Rg1, Nerolidol, and Santalol. CONCLUSION In this study, a novel stepwise integrated strategy was presented for discovering Q-markers related to therapeutic effects of traditional Chinese medicine prescriptions. Twelve comprehensive and representative Q-markers of QSYQ were identified for the first time to improve its quality control.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Meng Tang
- The First Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, 450007, PR China
| | - Zhi-Bo Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Pei-Pei Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Lian-Ping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qing-Quan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Ling-Guo Zhao
- Center for Disease Prevention and Control of Baoan District, Shenzhen, Guangdong Province, 518101, PR China
| | - Li-Hua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
7
|
Wang X, Chen X, Wang Y, He X, Li L, Wang X, Huang Y, Fan G, Ni J. Astragaloside IV alleviates inflammation and improves myocardial metabolism in heart failure mice with preserved ejection fraction. Front Pharmacol 2024; 15:1467132. [PMID: 39640484 PMCID: PMC11618538 DOI: 10.3389/fphar.2024.1467132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) has grown to become the dominant form of heart failure worldwide. However, no unequivocally effective treatment for HFpEF has been identified in clinical trials. In this study, we report that Astragaloside IV (AS-IV) can be used to treat HFpEF. Methods Mice were fed on a high-fat diet and given 0.5 g/L L-NAME (in drinking water) for 10 weeks to establish the HFpEF model. After 10th weeks, the HFpEF mice were given 10 mg/kg empagliflozin, 10 mg/kg AS-IV, or 20 mg/kg AS-IV for 4 weeks. The echocardiography, blood pressure, hemodynamics, heart failure biomarkers, collagen deposition and fibrosis, histopathology, and inflammation in HFpEF mice were evaluated. Metabolic profiling based on NMR measurements was also performed. Myocardial glucose and fatty acid metabolism were evaluated. Results AS-IV improves cardiac function and myocardial remodeling in HFpEF mice. AS-IV attenuates systemic inflammatory infiltration and myocardial inflammation levels in HFpEF mice by decreasing the expression of plasma inflammatory markers GDF15, CRP, IL1RL1, and MCP-1, NLRP3, IL-1β, Caspase-1, and IL-6 in the myocardium of HFpEF mice. Metabolomic analysis suggested that AS-IV improved cardiac glucose and fatty acid metabolism in HFpEF mice. Further studies showed that AS-IV significantly improved Complex I activity, increased ATP production, and elevated plasma NAD + levels; AS-IV also significantly improved pyruvate dehydrogenase activity and decreased pyruvate and lactate accumulation, thereby improving glucose metabolism in the hearts of HFpEF mice. Conclusion These results provide novel evidence that Astragaloside IV alleviates inflammation and improves myocardial metabolism in HFpEF mice.
Collapse
Affiliation(s)
- Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinting Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyu He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
9
|
Tu J, Liu Q, Sun H, Gan L. Farrerol Alleviates Diabetic Cardiomyopathy by Regulating AMPK-Mediated Cardiac Lipid Metabolic Pathways in Type 2 Diabetic Rats. Cell Biochem Biophys 2024; 82:2427-2437. [PMID: 38878100 DOI: 10.1007/s12013-024-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent complication of diabetes mellitus characterized by cardiac dysfunction and myocardial remodeling. Farrerol (FA), an active ingredient in Rhododendron with various pharmacological activities, has an unclear specific role in DCM. Therefore, this study aims to investigate the effects of FA on DCM rats and elucidate its mechanism. The type 2 diabetes mellitus (T2DM) model was induced in adult male Sprague-Dawley rats by administering a high-fat diet for 8 weeks along with STZ injection. Subsequent to successful modeling, FA and the positive drug Dapagliflozin (Dapa) were orally administered via gavage for an additional 8-week period. After administration, the rats' body weight, fasting blood glucose, fasting insulin, and blood lipid profiles were quantified. Cardiac function was assessed through evaluation of cardiac function parameters, histopathological examination and measurement of myocardial enzyme markers were conducted to assess myocardial injury and fibrosis, Oil red O staining was utilized to evaluate myocardial lipid accumulation, wheat germ agglutinin (WGA) staining was used for assessing cardiomyocyte hypertrophy, and Western blot analysis was used to detect the proteins expression level of AMP-activated protein kinase (AMPK) pathway. The rat cardiomyocyte H9c2 were induced with palmitic acid to establish an in vitro cell model of myocardial lipid toxicity. Subsequently, the cells were subjected to treatment with FA and AMPK inhibitor Compound C, followed by assessment of lipid formation and expression levels of proteins related to the AMPK signaling pathway. The findings demonstrated that both FA and Dapa exhibited efficacy in ameliorating diabetic symptoms, cardiac dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, and lipid accumulation in T2DM rats. Additionally, they were found to enhance AMPK phosphorylation and PPARα expression while down-regulating CD36. Similarly, FA was observed to inhibit lipid formation in H9c2 and activate the AMPK signaling pathway. However, the improved effect of FA on lipotoxic cardiomyocytes induced by palmitic acid was partially reversed by Compound C. Therefore, the activation of the AMPK signaling pathway by FA may enhance cardiac lipid metabolism, thereby improving cardiac dysfunction and myocardial fibrosis in DCM rats.
Collapse
MESH Headings
- Animals
- Male
- Rats
- AMP-Activated Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Cell Line
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Lipid Metabolism/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jia Tu
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Qiaoling Liu
- Department of Neonatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Huirong Sun
- Department of Cardiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Luzhen Gan
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China.
| |
Collapse
|
10
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Wu Y, Zhang J, Wang W, Wu D, Kang Y, Fu L. MARK4 aggravates cardiac dysfunction in mice with STZ-induced diabetic cardiomyopathy by regulating ACSL4-mediated myocardial lipid metabolism. Sci Rep 2024; 14:12978. [PMID: 38839927 PMCID: PMC11153581 DOI: 10.1038/s41598-024-64006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.
Collapse
Affiliation(s)
- Yi Wu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jingqi Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Weiyi Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Dongdong Wu
- The First Affiliated Hospital of Jinzhou Medical University, 157 Renmin Street, Guta District, Jinzhou, 121000, China
| | - Yang Kang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
13
|
Cong X, Zhu X, Zhang X, Ning Z. Astragaloside IV inhibits angiotensin II-induced atrial fibrosis and atrial fibrillation by SIRT1/PGC-1α/FNDC5 pathway. Heliyon 2024; 10:e30984. [PMID: 38803993 PMCID: PMC11128467 DOI: 10.1016/j.heliyon.2024.e30984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Aims and objectives Astragaloside IV (AS-IV) has been found to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties, but its effect on atrial fibrosis is yet to be determined. This research investigates the protective role of AS-IV in angiotensin II (Ang II)-induced atrial fibrosis and atrial fibrillation (AF). Methods C57BL/6 male mice aged 8-10 weeks (n = 40) were subcutaneously administered Ang II (2.0 mg/kg/day) or saline, with AS-IV (80 mg/kg) intraperitoneally administered 2 h before Ang II infusion for 4 weeks. Biochemical, histological, and morphological analyses were carried out. Using transesophageal burst pacing, AF was generated in vivo. Results Here, we report that AS-IV treatment inhibited Ang II-induced AF development in mice (58 ± 5.86 vs 15.13 ± 2.16 %, p < 0.001). Ang II + AS-IV therapy was effective in reducing the atrial fibrotic area and decreasing the increase in smooth muscle alpha-actin (α-SMA)-positive myofibroblasts brought on by Ang II treatment (fibrotic area: 26.25 ± 3.81 vs 8.62 ± 1.83 %, p < 0.001 and α-SMA: 65.62 ± 10.63 vs 17.25 ± 1.78 %, p < 0.001). The reactive oxygen species (ROS) production was reduced by pretreatment with Ang II + AS-IV (9.20 ± 0.92 vs 2.63 ± 0.22 %/sec, p < 0.001). In addition, Ang II + AS-IV treatment suppressed oxidative stress in Ang II-induced atrial fibrosis (malondialdehyde: 701.78 ± 85.01 vs 504.07 ± 25.62 pmol/mg protein, p < 0.001; superoxide dismutase: 13.82 ± 1.25 vs 29.54 ± 2.45 U/mg protein, p < 0.001 and catalase: 11.43 ± 1.19 vs 20.83 ± 3.29 U/mg protein, p < 0.001, respectively). Moreover, Ang II + AS-IV decreased the expression of α-SMA, collagen III and collagen I (3.32 ± 0.53 vs 1.41 ± 0.20 fold, p < 0.001; 3.41 ± 0.55 vs 1.48 ± 0.18 fold, p < 0.001; 2.34 ± 0.55 vs 0.99 ± 0.17 fold, p < 0.001, respectively) while increasing the protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), and fibronectin type III domain-containing protein 5 (FNDC5) in Ang II-treated mice (0.22 ± 0.02 vs 0.57 ± 0.08 fold, p < 0.001; 0.28 ± 0.04 vs 0.72 ± 0.05 fold, p < 0.001; 0.38 ± 0.03 vs 0.68 ± 0.06 fold, p < 0.001, respectively). Conclusion Our data led us to speculate that AS-IV may protect against Ang II-induced atrial fibrosis and AF via upregulation of the SIRT1/PGC-1α/FNDC5 pathway.
Collapse
Affiliation(s)
- Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), No.1500 Zhou Yuan Road, Pudong New District, Shanghai, 201318, China
| | - Xi Zhu
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), No.1500 Zhou Yuan Road, Pudong New District, Shanghai, 201318, China
| | - Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), No.1500 Zhou Yuan Road, Pudong New District, Shanghai, 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), No.1500 Zhou Yuan Road, Pudong New District, Shanghai, 201318, China
| |
Collapse
|
14
|
Qu C, Tan X, Hu Q, Tang J, Wang Y, He C, He Z, Li B, Fu X, Du Q. A systematic review of astragaloside IV effects on animal models of diabetes mellitus and its complications. Heliyon 2024; 10:e26863. [PMID: 38439832 PMCID: PMC10909731 DOI: 10.1016/j.heliyon.2024.e26863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Context Diabetes mellitus (DM) is one of the fastest-growing diseases worldwide; however, its pathogenesis remains unclear. Complications seriously affect the quality of life of patients in the later stages of diabetes, ultimately leading to suffering. Natural small molecules are an important source of antidiabetic agents. Objective Astragaloside IV (AS-IV) is an active ingredient of Astragalus mongholicus (Fisch.) Bunge. We reviewed the efficacy and mechanism of action of AS-IV in animal and cellular models of diabetes and the mechanism of action of AS-IV on diabetic complications in animal and cellular models. We also summarized the safety of AS-IV and provided ideas and rationales for its future clinical application. Methods Articles on the intervention in DM and its complications using AS-IV, such as those published in SCIENCE, PubMed, Springer, ACS, SCOPUS, and CNKI from the establishment of the database to February 2022, were reviewed. The following points were systematically summarized: dose/concentration, route of administration, potential mechanisms, and efficacy of AS-IV in animal models of DM and its complications. Results AS-IV has shown therapeutic effects in animal models of DM, such as alleviating gestational diabetes, delaying diabetic nephropathy, preventing myocardial cell apoptosis, and inhibiting vascular endothelial dysfunction; however, the potential effects of AS-IV on DM should be investigated. Conclusion AS-IV is a potential drug for the treatment of diabetes and its complications, including diabetic vascular disease, cardiomyopathy, retinopathy, peripheral neuropathy, and nephropathy. In addition, preclinical toxicity studies indicate that it appears to be safe, but the safe human dose limit is yet to be determined, and formal assessments of adverse drug reactions among humans need to be further investigated. However, additional formulations or structural modifications are required to improve the pharmacokinetic parameters and facilitate the clinical use of AS-IV.
Collapse
Affiliation(s)
- Caiyan Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Nanjiang County Hospital of Chinese Medicine, Bazhong, 635600, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yangyang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Caiying He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - ZiJia He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaoxu Fu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China
| |
Collapse
|
15
|
Chen XY, Wang TT, Shen Q, Ma H, Li ZH, Yu XN, Huang XF, Qing LS, Luo P. Preclinical Investigations on Anti-fibrotic Potential of Long-Term Oral Therapy of Sodium Astragalosidate in Animal Models of Cardiac and Renal Fibrosis. ACS Pharmacol Transl Sci 2024; 7:421-431. [PMID: 38357273 PMCID: PMC10863439 DOI: 10.1021/acsptsci.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1β, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-β1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tian-Tian Wang
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Qing Shen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Collaborative
Innovation Center of Seafood Deep Processing, Zhejiang Province Joint
Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Ma
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Zhan-Hua Li
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xi-Na Yu
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xiao-Feng Huang
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| |
Collapse
|
16
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Qin S, Chen J, Zhong K, Li D, Peng C. Could Cyclosiversioside F Serve as a Dietary Supplement to Prevent Obesity and Relevant Disorders? Int J Mol Sci 2023; 24:13762. [PMID: 37762063 PMCID: PMC10531328 DOI: 10.3390/ijms241813762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is the basis of numerous metabolic diseases and has become a major public health issue due to its rapidly increasing prevalence. Nevertheless, current obesity therapeutic strategies are not sufficiently effective, so there is an urgent need to develop novel anti-obesity agents. Naturally occurring saponins with outstanding bio-activities have been considered promising drug leads and templates for human diseases. Cyclosiversioside F (CSF) is a paramount multi-functional saponin separated from the roots of the food-medicinal herb Astragali Radix, which possesses a broad spectrum of bioactivities, including lowering blood lipid and glucose, alleviating insulin resistance, relieving adipocytes inflammation, and anti-apoptosis. Recently, the therapeutic potential of CSF in obesity and relevant disorders has been gradually explored and has become a hot research topic. This review highlights the role of CSF in treating obesity and obesity-induced complications, such as diabetes mellitus, diabetic nephropathy, cardiovascular and cerebrovascular diseases, and non-alcoholic fatty liver disease. Remarkably, the underlying molecular mechanisms associated with CSF in disease therapy have been partially elucidated, especially PI3K/Akt, NF-κB, MAPK, apoptotic pathway, TGF-β, NLRP3, Nrf-2, and AMPK, with the aim of promoting the development of CSF as a functional food and providing references for its clinical application in obesity-related disorders therapy.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
18
|
Liu X, Ding Y, Jiang C, Ma X, Xin Y, Li Y, Zhang S, Shao B. Astragaloside IV ameliorates radiation-induced nerve cell damage by activating the BDNF/TrkB signaling pathway. Phytother Res 2023; 37:4102-4116. [PMID: 37226643 DOI: 10.1002/ptr.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
Radiation can induce nerve cell damage. Synapse connectivity and functionality are thought to be the essential foundation of all cognitive functions. Therefore, treating and preventing damage to synaptic structure and function is an urgent challenge. Astragaloside IV (AS-IV) is a glycoside extracted from Astragalus membranaceus (Fisch.). Bunge is a widely used traditional Chinese medicine in China with various pharmacological properties, including protective effects on the central nervous system (CNS). In this study, the effect of AS-IV on synapse damage and BDNF/TrkB signaling pathway in radiated C57BL/6 mice with X-rays was investigated. PC12 cells and primary cortical neurons were exposed to UVA in vitro. Open field test and rotarod test were used to observe the effects of AS-IV on the motor and explore the abilities of radiated mice. The pathological changes in the brain were observed by hematoxylin and eosin and Nissl staining. Immunofluorescence analysis was used to detect the synapse damage. The expressions of the BDNF/TrkB pathway and neuroprotection-related molecules were detected by Western blotting and Quantitative-RTPCR, respectively. The results showed that AS-IV could improve the motor and explore abilities of radiated mice, reduce pathological damage to the cortex, enhance neuroprotection functions, and activate BDNF/TrkB pathway. In conclusion, AS-IV could relieve radiation-induced synapse damage, at least partly through the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Chenxin Jiang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Ma
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Xin
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shengxiang Zhang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Baoping Shao
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Hu T, Wu Q, Yao Q, Yu J, Jiang K, Wan Y, Tang Q. PRDM16 exerts critical role in myocardial metabolism and energetics in type 2 diabetes induced cardiomyopathy. Metabolism 2023; 146:155658. [PMID: 37433344 DOI: 10.1016/j.metabol.2023.155658] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM) has increased over the past decades. Diabetic cardiomyopathy (DCM) is the leading cause of death in T2DM patients, however, the mechanism underlying DCM remains largely unknown. Here, we aimed to investigate the role of cardiac PR-domain containing 16 (PRDM16) in T2DM. METHODS We modeled mice with cardiac-specific deletion of Prdm16 by crossing the floxed Prdm16 mouse model with the cardiomyocyte-specific Cre transgenic mouse. The mice were continuously fed a chow diet or high-fat diet combining with streptozotocin (STZ) for 24 weeks to establish a T2DM model. DB/DB and adequate control mice were given a single intravenous injection of adeno-associated virus 9 (AAV9) carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting PRDM16 (AAV9-cTnT-shPRDM16) from the retro-orbital venous plexus to knockout Prdm16 in the myocardium. There were at least 12 mice in each group. Mitochondrial morphology and function were detected using transmission electron microscopy, western blot determining the protein level of mitochondrial respiratory chain complex, mitotracker staining and Seahorse XF Cell Mito Stress Test Kit. Untargeted metabolomics analysis and RNA-seq analysis were performed to determine the molecular and metabolic changes associated with Prdm16 deficiency. BODIPY and TUNEL staining were used to detect lipid uptake and apoptosis. Co-immunoprecipitation and ChIP assays were conducted to examine the potential underlying mechanism. RESULTS Prdm16 cardiac-specific deficiency accelerated cardiomyopathy and worsened cardiac dysfunction in mice with T2DM, aggravating mitochondrial dysfunction and apoptosis both in vivo and in vitro, while PRDM16 overexpression the deterioration. Prdm16 deficiency also caused cardiac lipid accumulation resulting in metabolic and molecular alterations in T2DM mouse models. Co-IP and luciferase assays confirmed that PRDM16 targeted and regulated the transcriptional activity, expression and interaction of PPAR-α and PGC-1α, while the overexpression of PPAR-α and PGC-1α reversed Prdm16 deficiency-induced cellular dysfunction in T2DM model. Moreover, PRDM16 regulated PPAR-α and PGC-1α and affected mitochondrial function by mainly depending on epigenetic regulation of H3K4me3. CONCLUSIONS These findings suggest that PRDM16 exerted its protective role in myocardial lipid metabolism and mitochondrial function in T2DM in a histone lysine methyltransferase activity-dependent manner by regulating PPAR-α and PGC-1α.
Collapse
Affiliation(s)
- Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Kebing Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Ying Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
20
|
Farrag EAE, Hammad MO, Safwat SM, Hamed S, Hellal D. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep 2023; 13:11043. [PMID: 37422477 PMCID: PMC10329689 DOI: 10.1038/s41598-023-37678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Diabetes mellitus is a common metabolic disorder. About two-thirds of diabetic patients develop diabetic cardiomyopathy (DCM), which becomes a challenging issue as it severely threatens the patient's life. Hyperglycemia and the resulting advanced glycated end products (AGE) and their receptor (RAGE)/High Mobility Group Box-1 (HMGB-1) molecular pathway are thought to be key players. Recently, artemisinin (ART) has gained more attention owing to its potent biological activities beyond its antimalarial effect. Herein, we aim to evaluate the effect of ART on DCM and the possible underlying mechanisms. Twenty-four male Sprague-Dawley rats were divided into: control, ART, type 2 diabetic and type 2 diabetic treated with ART groups. At the end of the research, the ECG was recorded, then the heart weight to body weight (HW/BW) ratio, fasting blood glucose, serum insulin and HOMA-IR were evaluated. Cardiac biomarkers (CK-MB and LDH), oxidative stress markers, IL-1β, AGE, RAGE and HMGB-1 expression were also measured. The heart specimens were stained for H&E as well as Masson's trichrome. DCM induced disturbances in all studied parameters; contrary to this, ART improved these insults. Our study concluded that ART could improve DCM through modulation of the AGE-RAGE/HMGB-1 signaling pathway, with subsequent impacts on oxidative stress, inflammation and fibrosis. ART could therefore be a promising therapy for the management of DCM.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Maha O Hammad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally M Safwat
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Li XX, Li D, Cui XY, Zhou K, Liu J, Lu JJ, Wu Y, Lin Q, Li Y. Astragaloside IV for Heart Failure: Preclinical Evidence and Possible Mechanisms, A Systematic Review and Meta-Analysis. Chin J Integr Med 2023:10.1007/s11655-023-3636-x. [PMID: 37221412 DOI: 10.1007/s11655-023-3636-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To explore the cardioprotective effects of astragaloside IV (AS-IV) in heart failure (HF). METHODS PubMed, Excerpta Medica Database (EMBASE), Cochrane Library, Web of Science, Wanfang Database, Chinese Bio-medical Literature and Retrieval System (SinoMed), China Science and Technology Journal Database (VIP), and China National Knowledge Infrastructure (CNKI) were searched from inception to November 1, 2021 for animal experiments to explore AS-IV in treating HF in rats or mice. The left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), left ventricular weight-to-body weight (LVW/BW) and B-type brain natriuretic peptide (BNP) were recorded. The qualities of included studies were assessed by the risk of bias according to the Cochrane handbook. Meta-analysis was performed using Stata 13.0. RESULTS Twenty-one articles involving 558 animals were considered. Compared with the control group, AS-IV improved cardiac function, specifically by increasing LVEF (mean difference (MD)=6.97, 95% confidence interval (CI)=5.92 to 8.03, P<0.05; fixed effects model) and LVFS (MD=7.01, 95% CI=5.84 to 8.81, P<0.05; fixed effects model), and decreasing LVEDD (MD=-4.24, 95% CI=-4.74 to -3.76, P<0.05; random effects model) and LVESD (MD=-4.18, 95% CI=-5.26 to -3.10, P<0.05; fixed effects model). In addition, the BNP and LVW/BW levels were decreased in the AS-IV treatment group (MD=-9.18, 95% CI=-14.13 to -4.22, P<0.05; random effects model; MD=-1.91, 95% CI=-2.42 to -1.39, P<0.05; random effects model). CONCLUSIONS AS-IV is a promising therapeutic agent for HF. However, this conclusion needs to be clinically validated in the future.
Collapse
Affiliation(s)
- Xing-Xing Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Yang Wu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
22
|
Sun Y, Ma Y, Sun F, Feng W, Ye H, Tian T, Lei M. Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. Heliyon 2023; 9:e15436. [PMID: 37113780 PMCID: PMC10126932 DOI: 10.1016/j.heliyon.2023.e15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aims and objectives Sepsis-associated liver injury is a common public health problem in intensive care units. Astragaloside IV (AS-IV) is an active component extracted from the Chinese herb Astragalus membranaceus, and has been shown to have anti-oxidation, anti-inflammation, and anti-apoptosis properties. The research aimed to investigate the protective effect of AS-IV in lipopolysaccharide (LPS)-induced liver injury. Methods Male C57BL/6 wild-type mice (6-8 week-old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and AS-IV (80 mg/kg) 2 h before the LPS injection. Biochemical and histopathological analyses were carried out to assess liver injury. The RT-qPCR analyzed the mRNA expression of IL-1β, TNF-α, and IL-6. The mRNA and protein expression of SIRT1, nuclear Nrf2, Nrf2, and HO-1 were measured by Western blotting. Results Serum alanine/aspartate aminotransferases (ALT/AST) analysis, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were showed that AS-IV protected against LPS-induced hepatotoxicity. The protection afforded by AS-IV was confirmed by pathological examination of the liver. Pro-inflammatory cytokines, including interleukin- 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were observed to be reversed by AS-IV after exposure to LPS. Western blot analysis demonstrated that AS-IV enhanced the expression levels of Sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Conclusions AS-IV protects against LPS-induced Liver Injury and Inflammation by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation.
Collapse
|
23
|
Li L, Zhang Y, Luo Y, Meng X, Pan G, Zhang H, Li Y, Zhang B. The Molecular Basis of the Anti-Inflammatory Property of Astragaloside IV for the Treatment of Diabetes and Its Complications. Drug Des Devel Ther 2023; 17:771-790. [PMID: 36925998 PMCID: PMC10013573 DOI: 10.2147/dddt.s399423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Astragali Radix is a significant traditional Chinese medication, and has a long history of clinical application in the treatment of diabetes mellitus (DM) and its complications. AS-IV is an active saponin isolated from it. Modern pharmacological study shows that AS-IV has anti-inflammatory, anti-oxidant and immunomodulatory activities. The popular inflammatory etiology of diabetes suggests that DM is a natural immune and low-grade inflammatory disease. Pharmacological intervention of the inflammatory response may provide promising and alternative approaches for the prevention and treatment of DM and its complications. Therefore, this article focuses on the potential of AS-IV in the treatment of DM from the perspective of an anti-inflammatory molecular basis. AS-IV plays a role by regulating a variety of anti-inflammatory pathways in multiple organs, tissues and target cells throughout the body. The blockade of the NF-κB inflammatory signaling pathway may be the central link of AS-IV's anti-inflammatory effect, resulting in a reduction in the tissue structure and function damage stimulated by inflammatory factors. In addition, AS-IV can delay the onset of DM and its complications by inhibiting inflammation-related oxidative stress, fibrosis and apoptosis signals. In conclusion, AS-IV has therapeutic prospects from the perspective of reducing the inflammation of DM and its complications. An in-depth study on the anti-inflammatory mechanism of AS-IV is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuwei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yudan Luo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xianghui Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People's Republic of China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Xu G, Huang B, Chen D, Ye R. Astragaloside IV Regulates Insulin Resistance and Inflammatory Response of Adipocytes via Modulating CTRP3 and PI3K/AKT Signaling. Diabetes Ther 2022; 13:1823-1834. [PMID: 36103112 PMCID: PMC9663774 DOI: 10.1007/s13300-022-01312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Emerging evidence showed that adipocytes are important regulators in controlling insulin resistance in type 2 diabetes mellitus (T2DM). So far, compounds isolated from natural plants have been widely studied for their roles in alleviating T2DM-associated complications. This work evaluated the actions of astragaloside IV (AS-IV) on insulin resistance and inflammatory biomarker expression in adipocytes and explored the potential mechanisms. METHODS Glucose consumption of the adipocytes was determined by a glucose assay kit; the mRNA expression levels of glucose transporter type 4 (GLUT-4), interleukin-6 (IL-6), TNF-α and C1q tumor necrosis factor-related protein 3 (CTRP3) were measured by quantitative real-time PCR (qRT-PCR); the protein levels were determined by western blot assay and enzyme-linked immunosorbent assay. RESULTS AS-IV concentration-dependently increased glucose consumption in the insulin resistance adipocytes. Further qRT-PCR results showed that AS-IV concentration-dependently reduced adipocyte IL-6 and TNF-α expression. Moreover, GLUT-4 expression in adipocytes was also significantly upregulated by AS-IV. Furthermore, we found that AS-IV concentration-dependently increased CTRP3 expression in adipocytes. CTRP3 silence decreased glucose consumption, upregulated IL-6 and TNF-α expression and downregulated GLUT-4 mRNA expression in 200 µM AS-IV-treated adipocytes. Moreover, AS-IV treatment enhanced the activity of phosphoinositide 3-kinase (PI3K)/AKT signaling in adipocytes, which was markedly attenuated by CTRP3 silencing. Importantly, inhibition of PI3K/AKT signaling also attenuated AS-IV induced an increase in glucose consumption and GLUT-4 expression and a decrease in IL-6 and TNF-α expression of adipocytes. CONCLUSIONS Collectively, our data indicated that AS-IV attenuated insulin resistance and inflammation in adipocytes via targeting CTRP3/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Guangning Xu
- Department of Traditional Chinese Medicine, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Baoyi Huang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Dongni Chen
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Renqun Ye
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| |
Collapse
|
25
|
Li H, Xu J, Zhang Y, Hong L, He Z, Zeng Z, Zhang L. Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy. Hum Cell 2022; 35:1684-1696. [PMID: 35925474 PMCID: PMC9515037 DOI: 10.1007/s13577-022-00758-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Astragaloside IV (AS-IV), as one of the main active components of Astragalus membranaceus, has been reported to have cardiovascular protective effects. However, the role and molecular mechanism of AS-IV in vascular senescence have not been clearly stated. The in vitro aging model was constructed using bleomycin (BLM) in vascular smooth muscle cells (VSMCs). Cell senescence were assessed through Western blotting analysis of aging markers, flow cytometry, and the β-galactosidase (SA-β-Gal) kit. Mitophagy was determined through transmission electron microscopy, TMRM staining, and Western blotting analysis of p62. A model of aging blood vessels was induced by D-gal. The vascular wall thickness of mice was also evaluated by H&E staining. Our data proved that AS-IV plays an anti-senescent role in vitro and in vivo. Results showed that AS-IV effectively improved mitochondrial injury, raised MMP, and mediated mitophagy in BLM-induced senescent VSMCs and D-gal induced aging mice. Parkin expression strengthened AS-IV's anti-senescent function. In conclusions, AS-IV attenuated BLM-induced VSMC senescence via Parkin to regulate mitophagy. Therefore, AS-IV-mediated Parkin might be a latent therapeutic agent and target for VSMC senescence.
Collapse
Affiliation(s)
- Huijun Li
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Zhijian He
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zhiheng Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
26
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
27
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
28
|
Prakoso D, De Blasio MJ, Tate M, Ritchie RH. Current landscape of preclinical models of diabetic cardiomyopathy. Trends Pharmacol Sci 2022; 43:940-956. [PMID: 35779966 DOI: 10.1016/j.tips.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Patients with diabetes have an increased risk of developing heart failure, preceded by (often asymptomatic) cardiac abnormalities, collectively called diabetic cardiomyopathy (DC). Diabetic heart failure lacks effective treatment, remaining an urgent, unmet clinical need. Although structural and functional characteristics of the diabetic human heart are well defined, clinical studies lack the ability to pinpoint the specific mechanisms responsible for DC. Preclinical animal models represent a vital component for understanding disease aetiology, which is essential for the discovery of new targeted treatments for diabetes-induced heart failure. In this review, we describe the current landscape of preclinical DC models (genetic, pharmacologically induced, and diet-induced models), highlighting their strengths and weaknesses and alignment to features of the human disease. Finally, we provide tools, resources, and recommendations to assist future preclinical translation addressing this knowledge gap.
Collapse
Affiliation(s)
- Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Diabetes, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
29
|
In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-κB signaling pathway. Saudi Pharm J 2022; 29:1432-1440. [PMID: 35002381 PMCID: PMC8720806 DOI: 10.1016/j.jsps.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives Danzhi Jiangtang capsule (DJC) is widely used for preventing and treating diabetic cardiomyopathy (DCM). However, the underlying mechanisms of the anti-inflammatory and antiapoptotic activities are unclear. Methods In the in vivo diabetic cardiomyopathy rat model, cardiac function was measured through echocardiography, histological changes in the myocardium were visualized using HE staining, and cardiomyocyte apoptosis was detected using TUNEL. The serum levels of anti-inflammatory cytokines were detected using ELISA. Finally, TLR4, MyD88, and NF-κB mRNA expressions were analyzed using RT-qPCR. In the in vitro experiments, the apoptosis rate of the H9c2 cells was detected using FCM; moreover, TLR4, MyD88 and NF-κB mRNA expressions were measured using RT-qPCR and related protein levels were investigated using Western blotting. Results In vivo, DJC effectively improved cardiac function, alleviated the pathological changes, and reduced the apoptosis rate. Moreover, DJC reduced TNF-α, IL-1β, and IL-6 activities, with significant inhibition of the TLR4, MyD88 and NF-κB p65 mRNA expression. Moreover, in vitro, DJC effectively inhibited high-glucose-induced H9c2 apoptosis-an effect similar to that for TAK242. Finally, both the DJC and TAK242 considerably reduced TLR4, MyD88, NF-κB, Bax, and caspase-3 protein expression but increased that of BCL-2. Conclusions DJC prevented the overactivation of the TLR4/MyD88/NF-κB signaling pathway and regulate cardiomyocyte apoptosis against DCM.
Collapse
|
30
|
Zhang C, Han M, Zhang X, Tong H, Sun X, Sun G. Ginsenoside Rb1 Protects Against Diabetic Cardiomyopathy by Regulating the Adipocytokine Pathway. J Inflamm Res 2022; 15:71-83. [PMID: 35023944 PMCID: PMC8743619 DOI: 10.2147/jir.s348866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Obesity and diabetes are often accompanied by chronic inflammation and insulin resistance, which lead to complications such as diabetic cardiomyopathy. Ginsenoside Rb1 has been used to treat diabetes and obesity and reduce inflammation as well as risk of heart diseases. However, the role of ginsenoside Rb1 in treating diabetic cardiomyopathy remains unclear. METHODS Diabetic mice were administered ginsenoside Rb1 for 12 weeks, and their body weight, body fat, and blood glucose levels as well as and serum insulin, lipids, and adipocytokine levels were assessed. Lipid accumulation, pathological morphology of the adipose tissue, liver, and heart were examined. Western blot and qRT-PCR were performed to investigate the molecular changes in response to ginsenoside Rb1 treatment. RESULTS Ginsenoside Rb1 treatment significantly reduced body weight and body fat, attenuated hyperglycemia and hyperlipidemia, and ameliorated insulin resistance and abnormal levels of adipocytokines in diabetic mice. In addition, lipid accumulation and inflammation reduced while the functions of heart improved in the ginsenoside Rb1-treated group. Furthermore, antioxidant function improved in the ginsenoside Rb1-treated diabetic hearts. PCR and Western blotting analyses revealed that the lipid-lowering effect of ginsenoside Rb1 and the resulting improvement of cardiac function could be attributed to the adipocytokine pathway, which promoted energy homeostasis and alleviated cardiac dysfunction. CONCLUSION Ginsenoside Rb1 lowered lipid levels in a adipocytokine-mediated manner and attenuated hyperglycemia/hyperlipidemia-induced oxidative stress, hypertrophy, inflammation, fibrosis, and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Meixin Han
- College of Pharmacy, Harbin University of Commerce, Harbin, People’s Republic of China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongna Tong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
31
|
El-Shafey M, El-Agawy MSED, Eldosoky M, Ebrahim HA, Elsherbini DMA, El-Sherbiny M, Asseri SM, Elsherbiny NM. Role of Dapagliflozin and Liraglutide on Diabetes-Induced Cardiomyopathy in Rats: Implication of Oxidative Stress, Inflammation, and Apoptosis. Front Endocrinol (Lausanne) 2022; 13:862394. [PMID: 35370937 PMCID: PMC8972060 DOI: 10.3389/fendo.2022.862394] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The current study aims to assess the protective effects of dapagliflozin (Dapa; a sodium-glucose cotransporter-2 inhibitor) and/or liraglutide (Lira; a glucagon-like peptide 1 agonist) in an experimental model of diabetic cardiomyopathy (DCM). A single dose of streptozotocin (STZ) was administrated to male Sprague-Dawley rats by intraperitoneal injection at a dose of 50 mg/kg to induce diabetes mellitus (DM). Dapa (1 mg/kg, orally), Lira (0.4 mg/kg, s.c.), and Dapa-Lira combination were administrated for 8 weeks once-daily. Blood samples were evaluated for glucose level and biochemical markers of cardiac functions. Cardiac tissue was dissected and assessed for redox homeostasis (malondialdehyde (MDA), glutathione (GSH), and catalase (CAT)), pro-inflammatory mediators (NF-κB and tumor necrosis factor-α (TNF-α)), and apoptotic effectors (caspase-3). Moreover, the effect of treatments on the cardiac cellular structure was studied. Dapa and/or Lira administration resulted in significant improvement of biochemical indices of cardiac function. Additionally, all treatment groups demonstrated restoration of oxidant/antioxidant balance. Moreover, inflammation and apoptosis key elements were markedly downregulated in cardiac tissue. Also, histological studies demonstrated attenuation of diabetes-induced cardiac tissue injury. Interestingly, Dapa-Lira combination treatment produced a more favorable protective effect as compared to a single treatment. These data demonstrated that Dapa, Lira, and their combination therapy could be useful in protection against DM-accompanied cardiac tissue injury, shedding the light on their possible utilization as adjuvant therapy for the management of DM patients.
Collapse
Affiliation(s)
- Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | - Mohamed Eldosoky
- Department of Neuroscience Technology-College of Applied Sciences, Jubail Imam Abdulraman bin Faisal University, Dammam, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- *Correspondence: Mohamed El-Sherbiny, ; Nehal M. Elsherbiny,
| | - Saad Mohamed Asseri
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- *Correspondence: Mohamed El-Sherbiny, ; Nehal M. Elsherbiny,
| |
Collapse
|
32
|
Wei Z, Jing Z, Pinfang K, Chao S, Shaohuan Q. Quercetin Inhibits Pyroptosis in Diabetic Cardiomyopathy through the Nrf2 Pathway. J Diabetes Res 2022; 2022:9723632. [PMID: 36624860 PMCID: PMC9825227 DOI: 10.1155/2022/9723632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/02/2023] Open
Abstract
The present study investigated whether quercetin promotes the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) to inhibit pyroptosis progression and ameliorate diabetic cardiomyopathy. We evaluated the protective effects of quercetin against diabetic cardiomyopathy by analyzing the expression of pyroptosis pathway proteins, myocardial cell apoptosis rate, degree of myocardial fibrosis, and serum inflammatory indices in the hearts of model rats with diabetes. We evaluated the expression of Nrf2 in the nucleus of cardiomyocytes and H9C2 cells to clarify the role of quercetin in promoting the nuclear translocation of Nrf2. In addition, we coincubated cardiomyocytes with the Nrf2 inhibitor ML385 to confirm that quercetin inhibits the diabetes-induced cardiomyocyte pyroptosis via the Nrf2 pathway. We found that quercetin promoted the nuclear translocation of Nrf2 in cardiac cells of diabetic rats, increased the expression of the antioxidant proteins HO-1, GCLC, and SOD, reduced the accumulation of ROS and the degree of cardiomyocyte apoptosis, and alleviated diabetes-induced cardiac fibrosis. The therapeutic effects of quercetin were further validated in H9C2 cardiomyocytes. Interestingly, ML385 prevented the beneficial effects of quercetin on diabetic cardiomyopathy, further indicating that the quercetin-mediated inhibition of pyroptosis requires the participation of the Nrf2 pathway. In conclusion, quercetin promoted the nuclear translocation of Nrf2, increased the expression of antioxidant factors in cells, and inhibited the progression of cell pyroptosis, thereby alleviating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Zhou Jing
- Department of Physiology of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Kang Pinfang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
- Department of Physiology of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Shi Chao
- Department of Cardiac Surgery of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Qian Shaohuan
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| |
Collapse
|
33
|
Natural and chemical compounds as protective agents against cardiac lipotoxicity. Biomed Pharmacother 2021; 145:112413. [PMID: 34781144 DOI: 10.1016/j.biopha.2021.112413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac lipotoxicity results from the deleterious effects of excess lipid deposition in cardiomyocytes. Lipotoxic cardiomyopathy involves cardiac lipid overload leading to changes in myocardial structure and function. Cardiac dysfunction has been associated with cardiac lipotoxicity through abnormal lipid metabolism. Lipid accumulation, especially saturated free fatty acids (SFFAs), in cardiac cells can cause cardiomyocyte distress and subsequent myocardial contractile dysfunction. Reducing the excess FAs supply or promoting FA storage is beneficial for cardiac function, especially under a lipotoxic condition. The protective effects of several compounds against lipotoxicity progression in the heart have been investigated. A variety of mechanisms has been suggested to prevent or treat cardiac lipotoxicity, including improvement of calcium homeostasis, lipid metabolism, and mitochondrial dysfunction. Known targets and signaling pathways involving a select group of chemicals that interfere with cardiac lipotoxicity pathogenesis are reviewed.
Collapse
|
34
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
35
|
Timosaponin alleviates oxidative stress in rats with high fat diet-induced obesity via activating Nrf2/HO-1 and inhibiting the NF-κB pathway. Eur J Pharmacol 2021; 909:174377. [PMID: 34302815 DOI: 10.1016/j.ejphar.2021.174377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Anemarrhena asphodeloides originated from the rhizome of Liliaceae Anemarrhena asphodeloides. One of the active pharmacological components of Anemarrhena asphodeloides is timosaponin (TSA), which reduces blood lipids and shows antioxidation and anti-inflammatory effects, but its mechanism is unclear. The objective of this study was to investigate the effect of TSA on oxidative stress induced by a long-term high-fat diet in obese rats. Body weight and the obesity index of the rats were measured during the experiment. Total antioxidant capacity (T-AOC), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) were used to detect oxidative stress indexes in serum and liver tissue. To observe the effect of TSA on the liver and adipose tissue of rats with oxidative stress, hematoxylin & eosin (H&E) staining was used. The p-NF-κB, NAD(P)H: quinone oxidoreductase 1 (NQO-1), Heme oxygenase 1 (HO-1), and Nrf2 in Nrf2/HO-1 and NF-κB pathways were assayed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. TSA was found to improve oxidative stress in obese rats by reducing MDA levels and increasing T-AOC and GSH-Px levels. Histological examination revealed that TSA effectively attenuated liver damage and improved obesity in rats. TSA was found to down-regulate the protein level of p-NF-κB and up-regulate the protein level of Nrf2/HO-1. These results suggested that TSA could effectively block inflammation and dyslipidemia in obese rats, thus improving oxidative stress, and its mechanism could be related to the Nrf2/HO-1 and NF-κB pathways.
Collapse
|
36
|
CEACAM1 Inhibited IκB-α/NF-κB Signal Pathway Via Targeting MMP-9/TIMP-1 Axis in Diabetic Atherosclerosis. J Cardiovasc Pharmacol 2021; 76:329-336. [PMID: 32569018 DOI: 10.1097/fjc.0000000000000868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is the most common and serious complication in type 2 diabetes mellitus (T2DM). Recent studies have emphasized that inflammation is the main cause of atherosclerosis. Studies have shown that carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) regulates the expression of matrix metallopeptidase 9 (MMP-9) after ischemic stroke to reduce inflammation. The aim of this study was to elucidate potential molecular mechanism of CEACAM1 on the inflammatory response in atherosclerosis. The serum levels of CEACAM1, MMP-9, and tissue inhibitors of metalloproteinase 1 (TIMP-1) in T2DM patients and healthy control was detected. The results showed that the levels of CEACAM1 and TIMP-1 were significantly decreased, and the levels of MMP-9 were significantly higher than those in the control group. Moreover, we also observed the effect of CEACAM1 on atherosclerosis in T2DM rats. Hematoxylin & eosin (HE) staining and oil red staining showed that CEACAM1 recombinant protein reduced intima-media thickness and the area of atherosclerotic plaques. To further explore the molecular mechanism of CEACAM1 regulating MMP-9/TIMP-1, we conducted experiments in rat aorta vascular endothelial cells and rat aorta smooth muscle cells. The result showed that CEACAM1 inhibits inflammatory response via MMP-9/TIMP-1 axis. Taken together, CEACAM1 attenuates diabetic atherosclerosis by inhibition of IκB/NF-κB signal pathway via MMP-9/TIMP-1 axis, which indicate that CEACAM1 is potentially amenable to therapeutic manipulation for clinical application in atherosclerosis in T2DM.
Collapse
|
37
|
Gur FM, Aktas I. The ameliorative effects of thymoquinone and beta-aminoisobutyric acid on streptozotocin-induced diabetic cardiomyopathy. Tissue Cell 2021; 71:101582. [PMID: 34171519 DOI: 10.1016/j.tice.2021.101582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac dysfunction observed in a patient with diabetes that may lead to heart failure. No specific treatment has yet been tested in DCM. Therefore, in this study, it was investigated that the potential of thymoquinone (TYM) and beta-aminoisobutyric acid (BAIBA) to treat DCM. Five groups (n = 7) were formed, namely control, diabetes, TYM, BAIBA and TYM + BAIBA, with a random selection from 35 adult male rats. Diabetes mellitus was induced by intraperitoneal administration of 50 mg/kg streptozotocin to all groups except the control. After establishing experimental diabetes, TYM (20 mg/kg/day) and BAIBA (100 mg/kg/day) were administered alone or in combination with other groups other than the control and diabetes groups for five weeks by gavage. Serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, and tissue malondialdehyde levels increased significantly, and tissue glutathione levels decreased in the diabetes group compared to the control group. An increase in the expression of tumor necrosis factor-α in the myocardium and the rate of fibrosis and apoptosis were found in the histopathological analysis. In the TYM and BAIBA groups, all pathological changes observed in the diabetes group improved significantly. The therapeutic effects of these agents on DCM are probably due to their antihyperglycemic, antidiabetic, antioxidant, and anti-inflammatory effects. The present results suggested that TYM and BAIBA have the potential therapeutic effects on DCM that were used alone or combined.
Collapse
Affiliation(s)
- Fatih Mehmet Gur
- Department of Histology and Embryology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Ibrahim Aktas
- Department of Pharmacology, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
38
|
Protective Effects of Huangqi Shengmai Yin on Type 1 Diabetes-Induced Cardiomyopathy by Improving Myocardial Lipid Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5590623. [PMID: 34249132 PMCID: PMC8238573 DOI: 10.1155/2021/5590623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the many complications of diabetes. DCM leads to cardiac insufficiency and myocardial remodeling and is the main cause of death in diabetic patients. Abnormal lipid metabolism plays an important role in the occurrence and development of DCM. Huangqi Shengmai Yin (HSY) has previously been shown to alleviate signs of heart disease. Here, we investigated whether HSY could improve cardiomyopathy caused by type 1 diabetes mellitus (T1DM) and improve abnormal lipid metabolism in the diabetic heart. Streptozotocin (STZ) was used to establish the T1DM mouse model, and T1DM mice were subsequently treated with HSY for eight weeks. The changes in the cardiac conduction system, histopathology, blood myocardial injury indices, and lipid content and expression of proteins related to lipid metabolism were evaluated. Our results showed that HSY could improve electrocardiogram; decrease the serum levels of CK-MB, LDH, and BNP; alleviate histopathological changes in cardiac tissue; and decrease myocardial lipid content in T1DM mice. These results indicate that HSY has a protective effect against T1DM-induced myocardial injury in mice and that this effect may be related to the improvement in myocardial lipid metabolism.
Collapse
|
39
|
Liu C, Li X, Shuai L, Dang X, Peng F, Zhao M, Xiong S, Liu Y, He Q. Astragaloside IV Inhibits Galactose-Deficient IgA1 Secretion via miR-98-5p in Pediatric IgA Nephropathy. Front Pharmacol 2021; 12:658236. [PMID: 33935780 PMCID: PMC8085534 DOI: 10.3389/fphar.2021.658236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose: The factor associated with IgA nephropathy (IgAN) is an abnormality of IgA known as galactose-deficient IgA1 (Gd-IgA1). The purpose of this study was to determine the molecular role played by miRNAs in the formation of Gd-IgA1 in IgAN and investigate the regulatory role of Astragaloside IV (AS-IV) in miRNAs. Patients and methods: Bioinformatics analysis, along with functional and mechanistic experiments, were used to investigate the relationship and function of miRNA, β-1, 3-galactosyltransferase (C1GALT1), Gd-IgA1, and AS-IV. Analyses involved a series of tools, including quantitative real-time polymerase chain reaction (qRT-qPCR), Western blot, enzyme-linked immunosorbent assay (ELISA), Vicia Villosa lectin-binding assay (VVA), Cell counting kit-8 assay (CCK-8), and the dual-luciferase reporter assay. Results: miRNA screening and validation showed that miR-98-5p was significantly upregulated in the peripheral blood mononuclear cells (PBMCs) of pediatric patients with IgAN compared with patients diagnosed with mesangial proliferative glomerulonephritis (MsPGN) and immunoglobulin A vasculitis nephritis (IgAV-N), and healthy controls (p < 0.05). Experiments with the dual-luciferase reporter confirmed that miR-98-5p might target C1GALT1. The overexpression of miR-98-5p in DAKIKI cells decreased both the mRNA and protein levels of C1GALT1 and increased the levels of Gd-IgA1 levels; these effects were reversed by co-transfection with the C1GALT1 plasmid, and vice versa. In addition, AS-IV downregulated the levels of Gd-IgA1 level in DAKIKI cells by inhibiting miR-98-5p. Conclusions: Our results revealed that AS-IV could inhibit Gd-IgA1 secretion via miR-98-5p. Increased levels of miR-98-5p in pediatric IgAN patients might affect the glycosylation of IgA1 by targeting C1GALT1. In addition, our analyses suggest that the pathogenesis of IgAN may differ from that of IgAV-N. Collectively, these results provide significant insight into the pathogenesis of IgAN and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Caiqiong Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanjun Shuai
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fangrong Peng
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiqiu Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Zhu Y, Su Y, Zhang J, Zhang Y, Li Y, Han Y, Dong X, Li W, Li W. Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR‑mediated autophagy. Mol Med Rep 2021; 23:437. [PMID: 33846768 PMCID: PMC8060804 DOI: 10.3892/mmr.2021.12076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic liver injury is a serious complication of type 2 diabetes mellitus (T2DM), which is often irreversible in the later stage, and affects the quality of life. Autophagy serves an important role in the occurrence and development of diabetic liver injury. For example, it can improve insulin resistance (IR), dyslipidaemia, oxidative stress and inflammation. Astragaloside IV (AS-IV) is a natural saponin isolated from the plant Astragalus membranaceus, which has comprehensive pharmacological effects, such as anti-oxidation, anti-inflammation and anti-apoptosis properties, as well as can enhance immunity. However, whether AS-IV can alleviate diabetic liver injury in T2DM and its underlying mechanisms remain unknown. The present study used high-fat diets combined with low-dose streptozotocin to induce a diabetic liver injury model in T2DM rats to investigate whether AS-IV could alleviate diabetic liver injury and to identify its underlying mechanisms. The results demonstrated that AS-IV treatment could restore changes in food intake, water intake, urine volume and body weight, as well as improve liver function and glucose homeostasis in T2DM rats. Moreover, AS-IV treatment promoted suppressed autophagy in the liver of T2DM rats and improved IR, dyslipidaemia, oxidative stress and inflammation. In addition, AS-IV activated adenosine monophosphate-activated protein kinase (AMPK), which inhibited mTOR. Taken together, the present study suggested that AS-IV alleviated diabetic liver injury in T2DM rats, and its mechanism may be associated with the promotion of AMPK/mTOR-mediated autophagy, which further improved IR, dyslipidaemia, oxidative stress and inflammation. Thus, the regulation of autophagy may be an effective strategy to treat diabetic liver injury in T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanhua Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
41
|
Zhang FX, Li M, Yuan YLL, Cui SS, Qiu ZC, Li RM. Dissection of the potential pharmacological mechanism of Rhizoma coptidis water extract against inflammation in diabetes mellitus via chemical profiling, network pharmacology and experimental validation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elucidating the therapeutical basis and functional mechanism of traditional Chinese medicine (TCM) is still a challenge faced by researchers since the effects of TCM are always achieved by the interactions of multiple components and multiple targets.
Collapse
Affiliation(s)
- Feng-xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Min Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yu-lin-lan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Shuang-Shuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zuo-cheng Qiu
- Guangzhou Key Laboratory of FormulaPattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Rui-man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Tan YQ, Chen HW, Li J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des Devel Ther 2020; 14:3731-3746. [PMID: 32982178 PMCID: PMC7507407 DOI: 10.2147/dddt.s272355] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD), the number one cause of death worldwide, has always been the focus of clinical and scientific research. Due to the high number of deaths each year, it is essential to find alternative therapies that are safe and effective with minimal side effects. Traditional Chinese medicine (TCM) has a long history of significant impact on the treatment of CVDs. The mode of action of natural active ingredients of drugs and the development of new drugs are currently hot topics in research on TCM. Astragalus membranaceus is a commonly used Chinese medicinal herb. Previous studies have shown that Astragalus membranaceus has anti-tumor properties and can regulate metabolism, enhance immunity, and strengthen the heart. Astragaloside IV (AS-IV) is the active ingredient of Astragalus membranaceus, which has a prominent role in cardiovascular diseases. AS-IV can protect against ischemic and hypoxic myocardial cell injury, inhibit myocardial hypertrophy and myocardial fibrosis, enhance myocardial contractility, improve diastolic dysfunction, alleviate vascular endothelial dysfunction, and promote angiogenesis. It can also regulate blood glucose and blood lipid levels and reduce the risk of cardiovascular diseases. In this paper, the mechanism of AS-IV intervention in cardiovascular diseases in recent years is reviewed in order to provide a reference for future research and new drug development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Heng-Wen Chen
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| |
Collapse
|