1
|
Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol 2025; 16:1535555. [PMID: 40012626 PMCID: PMC11861102 DOI: 10.3389/fphar.2025.1535555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Luteolin is a flavonoid widely found in plants, including vegetables, botanical drugs, and fruits. Owing to its diverse pharmacological activities, such as anticancer, oxidative stress protection, anti-inflammatory, and neuron-preserving effects, luteolin has attracted attention in research and medicine. Luteolin exhibits therapeutic effects on various pulmonary disease models through multiple molecular mechanisms; these include inhibition of activation of the PI3K/Akt-mediated Nuclear Factor kappa-B (NF-κB) and MAPK signaling pathways, as well as the promotion of regulatory T cell (Treg) function and enhancement of alveolar epithelial sodium channel (ENaC) activity (alleviating inflammation and oxidative stress responses). Luteolin has therapeutic effects on chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary fibrosis, allergic asthma, and lung cancer. Luteolin, a naturally occurring polyphenol, is poorly water-soluble. The oral route may be ineffective because the gut poorly absorbs this type of flavonoid. Therefore, although luteolin exhibits significant biological activity, its clinical application is limited by challenges associated with its poor water solubility and low bioavailability, which are critical factors for its efficacy and pharmacological application. These challenges can be addressed by modifying the chemical structure and enhancing pharmaceutical formulations. We summarized the research advancements in improving the solubility and bioavailability of luteolin, as well as the effects of luteolin on various pulmonary diseases and their related mechanisms, with the aim of providing new ideas for researchers.
Collapse
Affiliation(s)
- Jialian Lv
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyue Song
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zixin Luo
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Duoqin Huang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
3
|
Bozkurt A, Halici H, Yayla M. Aquaporins: Potential Targets in Inflammatory Diseases. Eurasian J Med 2023; 55:106-113. [PMID: 39128069 PMCID: PMC11075024 DOI: 10.5152/eurasianjmed.2023.23357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 08/13/2024] Open
Abstract
Inflammation involves a long chain of molecular reactions and cellular activity designed to repair tissue damaged by various causes. The inflammatory process and its complex mechanisms have recently become a focus of interest for many researchers. After the onset of inflammation, various adverse conditions that initiate the inflammatory response need to be addressed; however, failure to limit the inflammatory reaction may result in the damage or destruction of host cells. Therefore, inflammatory reactions play a role in many diferent diseases. Aquaporins (AQPs), commonly referred to as water channels, are protein channels responsible for forming pores in the membranes of biological cells. Their main function is to aid in the movement of water between cells. Aquaporins not only regulate transepithelial fluid transport across membranes but also play a role in regulating essential events crucial for the inflammatory response. Aquaporins have been shown in many studies to have important roles in inflammatory diseases. This clearly indicates that AQPs may be potential targets for inflammatory diseases. This review summarizes the research to date on the structure and function of AQPs and provides an update on the relationship between AQPs and various human inflammatory diseases.
Collapse
Affiliation(s)
- Ayse Bozkurt
- Department of Pharmacology, Van Yüzüncü Yıl University Faculty of Pharmacy, Van, Turkey
| | - Hamza Halici
- Department of Pharmacology, Atatürk University Hınıs Vocational College, Erzurum, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine, Kars, Turkey
| |
Collapse
|
4
|
Karabulut Uzunçakmak S, Halıcı Z, Karakaya S, Kutlu Z, Sağlam YS, Bolat İ, Aydın P, Kılıç CS. Suberosin Alleviates Sepsis-Induced Lung Injury in A Rat Model of Cecal Ligation and Puncture. J INVEST SURG 2023; 36:1-9. [PMID: 36345760 DOI: 10.1080/08941939.2022.2136802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIMS Sepsis is one of the major problems encountered in intensive care units, causing organ damage and increasing mortality. Suberosin (SBR) is a type of coumarin with antioxidant and anti-inflammatory activities. The goal of this study is to explore the protective effects of SBR on the lungs in a rat model of sepsis. METHODS Male Wistar rats were utilized in this study. A cecal ligation and puncture (CLP) model was applied to induce sepsis. Rats were separated into six groups with nine animals in each group, including healthy control, SBR, CLP, and CLP + SBR (5, 10, and 20 mg/kg) groups. Superoxide dismutase (SOD), glutathione (GSH) enzyme activities, and malondialdehyde (MDA) level were measured via enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were evaluated by real-time polymerase chain reaction (RT-PCR). Histopathological changes in the lungs were investigated with hematoxylin and eosin (H&E). RESULTS MDA levels and GSH and SOD enzyme activities were negatively affected in the CLP group, but SBR treatment ameliorated these oxidative stress parameters in the SBR1-3 groups (p< 0.05). The mRNA expressions of TNF-α and IL-1β were increased in the CLP group, and SBR treatment decreased those expression levels in a dose-dependent manner (p < 0.05). Organ damage and necrosis were seen in the CLP group and were alleviated in the SBR3 group. Immunohistochemical (IHC) analysis of lung tissues demonstrated decreased TNF-α and IL-1β immunopositivity in the SBR1-3 groups (p< 0.05). CONCLUSIONS SBR ameliorated sepsis-related lung injury in a dose-dependent manner. This compound has significant potential as a future agent in the treatment of sepsis.
Collapse
Affiliation(s)
| | - Zekai Halıcı
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Zerrin Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Pelin Aydın
- Department of Anesthesia, Regional Education and Research Hospital, Erzurum, Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
6
|
Choi GY, Kim HB, Cho JM, Sreelatha I, Lee IS, Kweon HS, Sul S, Kim SA, Maeng S, Park JH. Umbelliferone Ameliorates Memory Impairment and Enhances Hippocampal Synaptic Plasticity in Scopolamine-Induced Rat Model. Nutrients 2023; 15:nu15102351. [PMID: 37242234 DOI: 10.3390/nu15102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by memory loss and cognitive decline. Among the suggested pathogenic mechanisms of AD, the cholinergic hypothesis proposes that AD symptoms are a result of reduced synthesis of acetylcholine (ACh). A non-selective antagonist of the muscarinic ACh receptor, scopolamine (SCOP) induced cognitive impairment in rodents. Umbelliferone (UMB) is a Apiaceae-family-derived 7-hydeoxycoumarin known for its antioxidant, anti-tumor, anticancer, anti-inflammatory, antibacterial, antimicrobial, and antidiabetic properties. However, the effects of UMB on the electrophysiological and ultrastructure morphological aspects of learning and memory are still not well-established. Thus, we investigated the effect of UMB treatment on cognitive behaviors and used organotypic hippocampal slice cultures for long-term potentiation (LTP) and the hippocampal synaptic ultrastructure. A hippocampal tissue analysis revealed that UMB attenuated a SCOP-induced blockade of field excitatory post-synaptic potential (fEPSP) activity and ameliorated the impairment of LTP by the NMDA and AMPA receptor antagonists. UMB also enhanced the hippocampal synaptic vesicle density on the synaptic ultrastructure. Furthermore, behavioral tests on male SD rats (7-8 weeks old) using the Y-maze test, passive avoidance test (PA), and Morris water maze test (MWM) showed that UMB recovered learning and memory deficits by SCOP. These cognitive improvements were in association with the enhanced expression of BDNF, TrkB, and the pCREB/CREB ratio and the suppression of acetylcholinesterase activity. The current findings indicate that UMB may be an effective neuroprotective reagent applicable for improving learning and memory against AD.
Collapse
Affiliation(s)
- Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Inturu Sreelatha
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - In-Seo Lee
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sehyun Sul
- Undergraduate Programs, Rutgers University, 100 Rockafeller Road, Suite 1008, Piscataway, NJ 08854, USA
| | - Sun Ae Kim
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
7
|
YÜKSEL TN, YAYLA M, KÖSE D, UĞAN RA, TOKTAY E, AKSU KILIÇLE P, ÇADIRCI E, HALICI Z. INVESTIGATION OF THE PROTECTIVE EFFECTS OF POMEGRANATE (Punica granatum L.) PEEL EXTRACT ON LIPOPOLYSACCHARIDE-INDUCED UVEITIS IN RATS. TRAKYA UNIVERSITY JOURNAL OF NATURAL SCIENCES 2023; 24:11-20. [DOI: 10.23902/trkjnat.1145462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Pomegranate peel contains bioactive ingredients such as flavonoids, ellagitannins, phenolics and proanthocyanidin compounds with high antioxidant activity. Pomegranate peel has antiapoptotic, antioxidant and anti-inflammatory effects due to its high punicalagin content. We aimed to determine the effect of pomegranate peel extract (PPE) on lipopolysaccharide (LPS)-induced uveitis. Sixty rats were seperated randomly into twelve groups (n = 5). The healthy group received intraperitoneal normal saline, the uveitis group received 200 μg/kg LPS, the dexamethasone (DEX) group received 200 μg/kg LPS plus 1 mg/kg DEX, the PPE100, PPE300 and PPE500 groups received 200 μg/kg LPS plus 100, 300 and 500 mg/kg PPE, respectively. The eye tissues were collected at 3rd and 24th hour. and investigated molecularly (Relative quantification of gene expression), biochemically (Superoxide dismutase activity, Glutathione and Malondialdehyde levels) and histopathologically (staining with Harris Hematoxylin and Eosin Y). Tumor Necrosis Factor-α, vascular endothelial growth factor, and Caspase-3 levels markedly decreased in a dose-dependent manner in the uveitic rats following PPE administration. PPE administration significantly ameliorated uveitic disorders in oxidative stress factors including Glutathione, Superoxide dismutase and Malondialdehyde, with its effects raising in a dose-dependent manner. PPE eliminated histopathological changes in eye tissues due to uveitis. PPE can be a promising agent by contributing to alternative preventive treatment methods for uveitis with its anti-inflammatory, antioxidative, antiapoptotic and antiangiogenic effects.
Collapse
Affiliation(s)
| | - Muhammed YAYLA
- KAFKAS ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ FARMAKOLOJİ ANABİLİM DALI
| | | | - Rüstem Anıl UĞAN
- ATATÜRK ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ, ECZACILIK MESLEK BİLİMLERİ BÖLÜMÜ, FARMAKOLOJİ ANABİLİM DALI
| | - Erdem TOKTAY
- KAFKAS ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| | - Pinar AKSU KILIÇLE
- KAFKAS ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, BİYOLOJİ BÖLÜMÜ, BİYOLOJİ PR
| | - Elif ÇADIRCI
- ATATÜRK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ FARMAKOLOJİ ANABİLİM DALI
| | - Zekai HALICI
- ATATÜRK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ FARMAKOLOJİ ANABİLİM DALI
| |
Collapse
|
8
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
9
|
Effect of isolated grandivittin from Ferulago trifida Boiss. (Apiaceae) on the proliferation and apoptosis of human lung cancer A549 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02419-3. [PMID: 36786818 DOI: 10.1007/s00210-023-02419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Lung cancer is one of the deadliest cancers in the world. Introducing new promising agents can help the chemotherapeutic management of cancer. In the knowledge of oncology, plants are of special interest as a rich source of new antineoplastic and chemotherapeutic agents. Grandivittin (GRA) is one of the main constituents of Ferulago trifida Boiss. with established medicinal, phytochemical, and pharmacological properties. This study aimed to isolate and evaluate the antineoplastic potential of grandivittin and its underlying mechanisms in human lung cancer A549 cells. The viability of the A549 cells after being treated with 0.1, 0.4, 0.7, 1, and 1.3 mM of GRA for three following days was measured using the MTT method. The early apoptosis and late apoptosis were assessed by fluorescence-activated cell sorter analysis through annexin V/PI staining. The expression of apoptotic agents' genes (caspase 3, caspase 9, Bcl2, Bax, and P53) was evaluated by the RT-PCR method. GRA increased apoptotic cells and decreased cell viability in a dose- and time-dependent manner, in which only 50% of cells survived at a dose of 0.7 mM. The expression of Bax, P53, caspase 3, and caspase 9 genes in the A549 cells was significantly upregulated after GRA treatment compared to control cells (P < 0.05). On the other hand, Bcl2 was significantly downregulated after GRA treatment (P < 0.05). The results indicated that GRA can activate cell death in A549 lung carcinoma cells by inducing both DNA toxicity p53 and cascade-dependent pathways. Therefore, GRA may be a potential new therapeutic agent for the treatment of lung cancer.
Collapse
|
10
|
Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Dall’Acqua S, Zengin G. Plants' bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front Pharmacol 2022; 13:1046523. [PMID: 36588685 PMCID: PMC9800845 DOI: 10.3389/fphar.2022.1046523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a severe inflammatory response to systemic infection and is a threatening cause of death in intensive care units. In recent years, a number of studies have been conducted on the protective effect of natural products against sepsis-induced organ injury. However, a comprehensive review of these studies indicating the mechanisms of action of the bioactive compounds is still lacking. In this context, this review aimed to provide an updated analysis of the mechanism of action of plants' secondary metabolites in the management of sepsis. Scopus, Science Direct, Google Scholar, and PubMed were searched from inception to July 2022. A variety of secondary metabolites were found to be effective in sepsis management including allicin, aloin, cepharanthine, chrysin, curcumin, cyanidin, gallic acid, gingerol, ginsenoside, glycyrrhizin, hesperidin, kaempferol, narciclasine, naringenin, naringin, piperine, quercetin, resveratrol, rosmarinic acid, shogaol, silymarin, sulforaphane, thymoquinone, umbelliferone, and zingerone. The protective effects exerted by these compounds can be ascribed to their antioxidant properties as well as induction of endogenous antioxidant mechanisms, and also via the downregulation of inflammatory response and reduction of biochemical and inflammatory markers of sepsis. These findings suggest that these secondary metabolites could be of potential therapeutic value in the management of sepsis, but human studies must be performed to provide strength to their potential clinical relevance in sepsis-related morbidity and mortality reduction.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | | | - Lesetja Jan Legoabe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| |
Collapse
|
11
|
Kose D, Un H, Ugan RA, Halici Z, Cadirci E, Tastan TB, Kahramanlar A. Aprepitant: an antiemetic drug, contributes to the prevention of acute lung injury with its anti-inflammatory and antioxidant properties. J Pharm Pharmacol 2021; 73:1302-1309. [PMID: 34160038 DOI: 10.1093/jpp/rgab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We investigated, the effects of aprepitant (APRE) on the lung tissues of rats with an experimental polymicrobial sepsis model (CLP: cecal ligation and puncture) biochemically, molecularly and histopathologically. METHODS A total of 40 rats were divided into 5 groups with 8 animals in each group. Group 1 (SHAM), control group; Group 2 (CLP), cecal ligation and puncture; Group 3 (CLP + APRE10), rats were administered CLP + 10 mg/kg aprepitant; Group 4 (CLP + APRE20), rats were administered CLP + 20 mg/kg aprepitant; and Group 5 (CLP + APRE40), rats were administered CLP + 40 mg/kg aprepitant. A polymicrobial sepsis model was induced with CLP. After 16 h, lung tissues were taken for examination. Tumour necrosis factor α (TNF-α) and nuclear factor-kappa b (NFK-b) messenger ribonucleic acid (mRNA) expressions were analysed by real-time PCR (RT-PCR), biochemically antioxidant parameters such as superoxide dismutase (SOD) and glutathione (GSH) and oxidant parameters such as malondialdehyde (MDA) and lung damage histopathologically. KEY FINDINGS AND CONCLUSIONS The GSH level and SOD activity increased while the MDA level and the expressions of TNF-α and NFK-b were reduced in the groups treated with APRE, especially in the CLP + APRE40 group. The histopathology results supported the molecular and biochemical results.
Collapse
Affiliation(s)
- Duygu Kose
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Harun Un
- Faculty of Pharmacy, Department of Biochemistry, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Faculty of Medicine, Department of Histology and Embryology Department, Binali Yıldırım University, Erzincan, Turkey
| | - Aysenur Kahramanlar
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
12
|
Celebi D, Aydin P, Cinar I, Kutlu Z, Calik I, Halici Z, Bilici D, Bayraktutan Z. Protective effect of luteolin on acute lung injury in a rat model of sepsis. Biotech Histochem 2020; 96:579-585. [PMID: 33176504 DOI: 10.1080/10520295.2020.1846787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the effects of luteolin (LUT) treatment on acute lung injury caused by cecal ligation and puncture (CLP) induced septic rats. We also investigated the relation between LUT and the cytokines, interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). LUT was administered 1 h after CLP surgery. Administration of LUT reduced the glutathione level and superoxide dismutase activity in rat lung tissues. We also found significant reduction of malondialdehyde following LUT treatment. LUT administration also reduced TNF-α and IL-10 mRNA expression in lung tissue. Histopathologic investigation of lung tissue supported our biochemical and molecular findings. Administration of LUT ameliorated lung injury in CLP induced septic rats owing to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Demet Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Ataturk University, Erzurum, Turkey
| | - Pelin Aydin
- Department of Anesthesia, Regional Education and Research Hospital, Erzurum, Turkey
| | - Irfan Cinar
- Faculty of Medicine, Department of Pharmacology, Kastamonu University, Kastamonu, Turkey
| | - Zerrin Kutlu
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| | - Ilknur Calik
- Faculty of Medicine, Department of Pathology, Fırat University, Elazığ, Turkey
| | - Zekai Halici
- Faculty of Medicine,Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Dilek Bilici
- Department of Microbiology, Regional Education and Research Hospital, Erzurum, Turkey
| | - Zafer Bayraktutan
- Faculty of Medicine, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|