1
|
Grabowska K, Żmudzki P, Galanty A, Podolak I. Simultaneous Quantification of Bioactive Triterpene Saponins Calenduloside E and Chikusetsusaponin IVa in Different Plant Parts of Ten Amaranthaceae Species by UPLC-ESI-MS/MS Method. Molecules 2025; 30:1088. [PMID: 40076312 PMCID: PMC11901714 DOI: 10.3390/molecules30051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Calenduloside E (CE) and chikusetsusaponin IVa (ChIVa) are triterpene saponins with multidirectional bioactivity. In this study, the contents of CE and ChIVa were determined in the roots, stems, leaves, and fruits of ten wild-growing species of Amaranthaceae. To achieve optimal extraction conditions for both saponins, maceration, shaking-assisted maceration, and ultrasound-assisted and heat reflux extraction were compared. A sensitive, specific, and rapid UPLC-MS/MS method was developed and validated for the simultaneous quantification of CE and ChIVa. The results showed that CE and ChIVa coexisted in most of the species analyzed, except for Ch. hybridum. For the first time, the presence of CE and ChIVa was noted in L. polysperma, A. patula, B. bonus-henricus, O. rubra, and O. glauca. Of the species analyzed, the highest ChIVa content was found in the fruit of A. sagittata (13.15 mg/g dw), L. polysperma (12.20 mg/g dw), and Ch. album (10.0 mg/g dw), and in the fruit and roots of Ch. strictum (5.52 and 7.77 mg/g dw, respectively). The highest amount of CE was determined in the fruit of A. sagittata (7.84 mg/g dw) and Ch. strictum (6.54 mg/g dw). These saponin-abundant plant parts of Amaranthaceae spp. may be considered convenient sources of these bioactive saponins.
Collapse
Affiliation(s)
- Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland;
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| |
Collapse
|
2
|
Yang H, Zhao Y, Chen Y, Yang T, Dou X, Li J, Yang G, Feng G, Fang H, Fan H, Zhang S. Dexmedetomidine Alleviates Acute Stress-Induced Acute Kidney Injury by Attenuating Inflammation and Oxidative Stress via Inhibiting the P2X 7R/NF-κB/NLRP3 Pathway in Rats. Inflammation 2025; 48:412-425. [PMID: 38896231 DOI: 10.1007/s10753-024-02065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to investigate the potential protective effects of Dexmedetomidine (DEX) against acute kidney injury (AKI) induced by acute stress (AS). Wistar rats were divided into five groups: Control, DEX, AS, AS + DEX, and AS + A438079. The results showed that AS led to AKI by increasing inflammatory biomarkers and oxidative stress-related indicators. The acute stress model in rats was successfully established. Renal function, histopathology, oxidative stress, and inflammation were assessed. Localization of P2X7 receptor (P2X7R) was determined by immunofluorescence. Additionally, the key inflammatory proteins of the P2X7R/NF-κB/NLRP3 signaling pathway were measured by Western blotting. DEX significantly improved kidney function, alleviated kidney injury, and reduced oxidative stress and inflammation. DEX inhibited the activation of the P2X7R, decreased the expression of NF-κB, NLRP3 inflammasome, and Caspase-1, and inhibited the expression of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Furthermore, DEX also alleviated AS-induced AKI by inhibiting the excessive production of reactive oxygen species (ROS) and reducing oxidative stress. In conclusion, DEX attenuates AS-induced AKI by mitigating inflammation and oxidative stress through the inhibition of the P2X7R/NF-κB/NLRP3 pathway in rats.
Collapse
Affiliation(s)
- Haotian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Academy of Agricultural Science Branch of Animal Husbandry and Veterinary Branch, Qiqihar, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Agricultural University, Qingdao, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyi Dou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junfeng Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guiyan Yang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, USA
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Fang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shuai Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Luo Y, Wu Z, Zhang Y, Qiao Y, Wei Y, Yan X, Ma X, Huang X, Zhong X, Ye Z, Lu X, Liao H. β-ecdysone/PLGA composite scaffolds promote skull defect healing in diabetic rat. Front Bioeng Biotechnol 2025; 12:1536102. [PMID: 39872465 PMCID: PMC11770018 DOI: 10.3389/fbioe.2024.1536102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Diabetes mellitus often leads to bone metabolism disorders, hindering bone regeneration and delaying the healing of bone defects. β-Ecdysone, a plant-derived hormone known for its wide range of physiological activities, possesses hypoglycemic effects and promotes osteogenic differentiation. This study developed a composite PLGA slow-release scaffold loaded with β-ecdysone to enhance its bioavailability through topical administration and to investigate its potential to heal diabetic bone defects. Methods The composite scaffolds were fabricated using solution casting/particle leaching and freeze-drying techniques. Then a series of characterizations were subjected to test the performance of composite scaffolds, and in vitro safety of the composite scaffolds was tested by CCK8 assay and live/dead cell staining. Further, micro-CT and histology to evaluate the effect of β-E/PLGA composite scaffolds on healing of skull defects in diabetic rats at 4 and 8 weeks after implantation. Simultaneously, the safety of the scaffolds in vivo was also evaluated. Results The material characterization results indicated that, in comparison to the single-pore size scaffold, the composite scaffold exhibited superior porosity, swelling ratio, drug loading capacity, and mechanical properties. Additionally, the composite scaffolds showed appropriate degradation performance and sustained drug release profiles. The CCK8 cytotoxicity assay and live/dead cell staining demonstrated that BMSCs survived and proliferated on the composite scaffold under both low-glucose and high-glucose conditions. Micro-CT and histological investigation demonstrated that β-E/PLGA composite scaffolds promoted new bone growth in the skull defect region of diabetic rats. Conclusion Overall, these findings suggest that the β-E/PLGA composite scaffolds promote the healing of bone defects in diabetic rats. The combination of β-ecdysone and tissue-engineered scaffolds presents a promising approach for treating diabetes-related bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongbing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Shi J, Li S, Yi L, Gao M, Cai J, Yang C, Ma Y, Mo Y, Wang Q. Levistolide a Attenuates Acute Kidney Injury in Mice by Inhibiting the TLR-4/NF-κB Pathway. Drug Des Devel Ther 2024; 18:5583-5597. [PMID: 39654604 PMCID: PMC11625643 DOI: 10.2147/dddt.s476548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is characterized by a significant reduction in kidney function and the accumulation of metabolites such as Creatinine (CRE) and Blood Urea Nitrogen (BUN). Levistolide A (LA), an active component of Ligusticum chuanxiong, offers multiple therapeutic benefits, including cardiovascular and neuroprotection, antitumor and analgesic effects, as well as anti-inflammatory, antioxidant, antifibrotic, and proapoptotic actions. However, the underlying mechanism of LA in treating AKI has not been fully elucidated. Methods In this study, we established a glycerol-induced AKI model in mice to evaluate the protective effects of LA. Renal function was assessed by measuring levels of CRE and BUN. Histological analyses were performed to evaluate kidney tissue damage. Additionally, oxidative stress markers, apoptosis indicators, inflammatory cell infiltration, and inflammatory mediator levels were assessed. The involvement of the TLR-4/NF-κB signaling pathway was investigated through molecular assays. Results LA treatment significantly ameliorated glycerol-induced AKI in mice, evidenced by reduced levels of CRE and BUN. Histological examination revealed decreased renal tissue damage in LA-treated groups. LA exerted antioxidant effects by increasing the levels of Glutathione (GSH) and Superoxide Dismutase (SOD), while reducing Reactive Oxygen Species (ROS) accumulation. Apoptosis in renal tissues was attenuated, as indicated by decreased caspase-3 activation. Furthermore, LA reduced the infiltration of inflammatory cells and the release of inflammatory mediators such as TNF-α and IL-6. Mechanistically, LA suppressed the inflammatory response by inhibiting the TLR-4/NF-κB signaling pathway, as demonstrated by reduced NF-κB activation and decreased expression of TLR-4. Conclusion Levistolide A mitigates acute kidney injury through its antioxidative properties and modulation of the TLR-4/NF-κB signaling pathway. These findings provide valuable insights into the therapeutic potential of LA for AKI treatment and lay the groundwork for further mechanistic studies.
Collapse
Affiliation(s)
- Jiahui Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shuangwei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Langping Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yousheng Mo
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Lyu YR, Kwon OJ, Park B, Jung HA, Lee GY, Kim CS. Efficacy and Safety of Useul for Dry Eye Disease: Protocol for a Randomized, Double-Blind, Placebo-Controlled, Parallel, Phase 2 Clinical Trial. Healthcare (Basel) 2024; 12:2383. [PMID: 39685004 DOI: 10.3390/healthcare12232383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction: Dry eye disease (DED) is a very frequently encountered ocular disease, making it a growing public health burden. However, current treatments for DED present unmet medical needs owing to their side effects or ineffectiveness. Therefore, an effective and safe therapeutic agent to manage DED is needed. Method and Analysis: We planned a phase 2, dose-finding, double-blind, randomized placebo-controlled trial to evaluate the efficacy and safety of two different doses of USL (Useul), the extract of Achyranthis Radix, compared with placebo, for DED. USL has been found to protect against DED by inducing tear secretion and improving corneal irregularity via anti-inflammatory effects, which will provide new therapeutic options. One hundred and twenty participants will be enrolled, after assessing the inclusion/exclusion criteria, at Daejeon University Daejeon Korean Medicine Hospital. Enrolled participants will be allocated to standard-dose USL, high-dose USL, or placebo groups in a 1:1:1 ratio and will be required to administer the trial medication twice a day for 12 weeks and visit the clinic five times. For efficacy outcomes, objective endpoints of fluorescein corneal staining score, tear break-up time, Schirmer's test, and meibomian test and subjective endpoints of Ocular Surface Disease Index, visual analog scale, Standard Patient Evaluation for Eye Dryness-II, and biomarkers will be assessed throughout the trial. Safety will be assessed based on adverse events, vital signs, laboratory tests, visual acuity, and intraocular pressure. Discussion: Our study results are expected to provide clinical evidence for the use of DED as an effective and safe agent for DED.
Collapse
Affiliation(s)
- Yee-Ran Lyu
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - O-Jin Kwon
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bongkyun Park
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun-A Jung
- Department of Oriental Ophthalmology, Otolaryngology & Dermatology, College of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea
| | | | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
- Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
6
|
Huq AKMM, Stanslas J, Nizhum N, Uddin MN, Maulidiani M, Roney M, Abas F, Jamal JA. Estrogenic post-menopausal anti-osteoporotic mechanism of Achyranthes aspera L.: Phytochemicals and network pharmacology approaches. Heliyon 2024; 10:e38792. [PMID: 39469676 PMCID: PMC11513486 DOI: 10.1016/j.heliyon.2024.e38792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Hormone replacement therapy is used to treat postmenopausal syndrome caused by estrogen deficiency, but it has been linked to an increased risk of breast cancer. In India, Achyranthes aspera L. is traditionally used to treat menstrual problems; however, there is a lack of mechanistic evidence of its phytoestrogenicity. Therefore, this study investigated the estrogenic activity of A. aspera on estrogen-responsive MCF-7 breast cancer cells. In a cell proliferation assay, the MeOH fraction (100 μg/mL) exhibited the highest proliferation effect (PE) of 138 % (p < 0.001) and relative proliferation effect (RPE) of 96.5 %, compared to 17β-estradiol (0.01 μM: 143 % PE, p < 0.001; 100 % RPE). The MeOH fraction was shown to upregulate the oestrogen marker genes trefoil factor 1 and progesterone receptor by 20.14-23.94 folds and 10.83-14.83 folds, respectively. Twelve phenolics were identified by LC-MS/MS in the active MeOH fraction, i.e. quinic acid, kaempferol hexoside, kaempferol 3-O-(2″-O-galloyl)-glucoside)-β-D-glucoside, geniposide, 3-O-(6'-O-(9Z,12Z-octadecadienoyl)-β-D-glucopyranosyl)-stigmast-5,22E-dien-3β-ol, kaempferol-3-O-glucoside (astragalin), 3,30-di-O-methylellagic acid isomer, procyanidin, naringin, propapyriogenin A2, (3β,22E,24R)-23-methylergosta-5,7,22-trien-3-ol and 6-prenylapigenin. Through network pharmacology, the potential effects, and mechanisms of these compounds in osteoporosis were revealed. About 55 target genes were linked to osteoporosis. GO and KEGG enrichment suggest regulation of female reproductive hormone related signaling pathways, which are also associated with estrogen dependent osteoporosis. Molecular docking analysis of the compounds revealed potential interactions with hERα receptor for 3-O-(6'-O-(9Z,12Z-octadecadienoyl)-β-D-glucopyranosyl)-stigmast-5,22E-dien-3β-ol and kaempferol-3-O-glucoside (astragalin) (docking scores of -9.3 and -10.1 kcal/mol, respectively) as compared to 17β-estradiol (-9.3 kcal/mol). These results suggest the estrogenicity of A. aspera via an ERα-associated mechanism and support its traditional usage in the management of menopausal-related problems.
Collapse
Affiliation(s)
- AKM Moyeenul Huq
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nisarat Nizhum
- Pharmaceutical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Pahang, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jamia Azdina Jamal
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Si H, Chen Y, Hu D, Yao S, Yang J, Wen X. A graminan type fructan from Achyranthes bidentata prevents the kidney injury in diabetic mice by regulating gut microbiota. Carbohydr Polym 2024; 339:122275. [PMID: 38823933 DOI: 10.1016/j.carbpol.2024.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of β-1,2-linked Fruf, β-2,6-linked-Fruf and β-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.
Collapse
Affiliation(s)
- Huayang Si
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yimeng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dejun Hu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Sainan Yao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Yin H, Yan Q, Li Y, Tang H. Dihydromyricetin Nanoparticles Alleviate Lipopolysaccharide-Induced Acute Kidney Injury by Decreasing Inflammation and Cell Apoptosis via the TLR4/NF-κB Pathway. J Funct Biomater 2024; 15:249. [PMID: 39330225 PMCID: PMC11433252 DOI: 10.3390/jfb15090249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous research, chitosan-tripolyphosphate-encapsulated nanoparticles of dihydromyricetin (CS-DMY-NPs) have been proven to have potential protective effects against cisplatin-induced AKI. Here, we investigated the protective effects and mechanisms of DMY and its nano-formulations against LPS-induced AKI by assessing pathological and inflammatory changes in mice. In mice with LPS-AKI treated with 300 mg/kg CS-DMY-NPs, the levels of creatinine (Cr), blood urea nitrogen (BUN), and KIM-1 were significantly reduced by 56%, 49%, and 88%, respectively. CS-DMY-NPs can upregulate the levels of GSH, SOD, and CAT by 47%, 7%, and 14%, respectively, to inhibit LPS-induced oxidative stress. Moreover, CS-DMY-NPs decreased the levels of IL-6, IL-1β, and MCP-1 by 31%, 49%, and 35%, respectively, to alleviate the inflammatory response. TUNEL and immunohistochemistry showed that CS-DMY-NPs reduced the number of apoptotic cells, increased the Bcl-2/Bax ratio by 30%, and attenuated renal cell apoptosis. Western blot analysis of renal tissue indicated that CS-DMY-NPs inhibited TLR4 expression and downregulated the phosphorylation of NF-κB p65 and IκBα. In summary, DMY prevented LPS-induced AKI by increasing antioxidant capacity, reducing inflammatory responses, and blocking apoptosis, and DMY nanoparticles were shown to have a better protective effect for future applications.
Collapse
Affiliation(s)
- Hongmei Yin
- School of Animal Science, Xichang University, Xichang 615012, China
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaohua Yan
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinglun Li
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaqiao Tang
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
10
|
Liang Y, Fan T, Bai M, Cui N, Li W, Wang J, Guan Y. Chikusetsu Saponin IVa liposomes modified with a retro-enantio peptide penetrating the blood-brain barrier to suppress pyroptosis in acute ischemic stroke rats. J Nanobiotechnology 2024; 22:393. [PMID: 38965602 PMCID: PMC11223377 DOI: 10.1186/s12951-024-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.
Collapse
Affiliation(s)
- Yitong Liang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Min Bai
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Na Cui
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Yang F, Zhang K, Dai X, Jiang W. Preliminary Exploration of Potential Active Ingredients and Molecular Mechanisms of Yanggan Yishui Granules for Treating Hypertensive Nephropathy Using UPLC-Q-TOF/MS Coupled with Network Pharmacology and Molecular Docking Strategy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:7967999. [PMID: 38766523 PMCID: PMC11101260 DOI: 10.1155/2024/7967999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Kailun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiaohua Dai
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Wang X, Sheng Y, Guan J, Zhang F, Lou C. Sanmiao wan alleviates inflammation and exhibits hypouricemic effect in an acute gouty arthritis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117764. [PMID: 38219882 DOI: 10.1016/j.jep.2024.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanmiao wan (SMW), a classical traditional Chinese medicine (TCM) formula, has been employed to treat gouty diseases in clinic as early as Yuan dynasty. It shows remarkably therapeutic effects in acute gouty arthritis (GA). However, the potential mechanisms of SMW are still not fully revealed. AIM OF THE STUDY The objective of this project is to evaluate the pharmacological effects and possible mechanisms of SMW in a rat model of acute GA. MATERIALS AND METHODS Monosodium urate (MSU) suspension was injected into the ankle joint of rats to establish acute GA model. The inflammation was evaluated by measuring the posterior ankle diameter. The pathological status of synovial tissue was assessed by hematoxylin eosin (HE), Masson, and picrosirius red staining. The level of IL-6 was measured using ELISA kit. The levels of blood urea nitrogen (BUN), creatinine (CR), UA (uric acid), and xanthine oxidase (XOD) in the serum were measured using standard diagnostic kits. The percentage of Th17 cells in blood samples was performed using flow cytometry. Moreover, RT-qPCR was performed to examine the mRNA level of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, immunofluorescence was carried out to assess the expression of STAT3 in the synovial tissue. RESULTS SMW effectively alleviated the inflammation and improved the pathological status of the ankle joint in rats with acute GA. It significantly suppressed the release of proinflammatory cytokine (IL-6). Meanwhile, the levels of UA, BUN, and CR were markedly reduced after SMW treatment. A remarkable reduction of XOD activity was observed in the study. Importantly, SMW treatment significantly reduced the frequency of Th17 cells, decreased the mRNA levels of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, the suppression of STAT3 was also demonstrated using immunofluorescence in SMW-treated group. CONCLUSION SMW showed significant anti-inflammatory and hypouricemic effects in a rat model of GA. It is an effective TCM formula for GA therapy.
Collapse
Affiliation(s)
- Xiaoqian Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Fengling Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
13
|
Guo H, Wang M, Shang Y, Zhang B, Zhang S, Liu X, Cao P, Fan Y, Tan K. Apoptosis-related prognostic biomarkers and potential targets for acute kidney injury based on machine learning algorithm and in vivo experiments. Apoptosis 2024; 29:303-320. [PMID: 37789227 DOI: 10.1007/s10495-023-01896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Acute kidney injury (AKI) is a common critical illness in hospitalized patients, characterized by a rapid decline in kidney function over a short period, which can seriously endanger the patient's life. Currently, there is a lack of precise and universal AKI diagnostic biomarkers in clinical practice. In this study, weighted gene coexpression network analysis (WGCNA), differential expression analysis, univariate and multivariate logistic regression analyses, receiver operating characteristic (ROC) curves, and immune cell infiltration were performed to identify apoptosis-related biomarkers that can be used for AKI diagnosis. Three core apoptosis-related genes (ARGs), CBFB, EGF and COL1A1, were identified as AKI biomarkers. More importantly, an apoptosis-related signature containing three hub ARGs was validated as a diagnostic model. The hub genes exhibited good correlations with glomerular filtration rate (GFR) and serum creatinine (SCr) in the Nephroseq kidney disease database. Additionally, CIBERSORT immune infiltration analysis indicated that these core ARGs may affect immune cell recruitment and infiltration in AKI patients. Subsequently, we investigated the alteration of the expression levels of three core ARGs in AKI samples using single-cell RNA sequencing analysis and analyzed the cell types that mainly expressed these ARGs. More importantly, the expression of core ARGs was validated in folic acid- and cisplatin-induced AKI mouse models. In summary, our study identified three diagnostic biomarkers for AKI, explored the roles of ARGs in AKI progression and provided new ideas for the clinical diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Hanyao Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Meixia Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Sidi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiaoyu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
14
|
Zhang R, Qin C, Zhang J, HonghongRen, Wang Y, Wu Y, Zhao L, Wang J, Zhang J, Liu F. DNA hypomethylation of Syk induces oxidative stress and apoptosis via the PKCβ/P66shc signaling pathway in diabetic kidney disease. FASEB J 2024; 38:e23564. [PMID: 38522019 DOI: 10.1096/fj.202301579r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic alterations, especially DNA methylation, have been shown to play a role in the pathogenesis of diabetes mellitus (DM) and its complications, including diabetic kidney disease (DKD). Spleen tyrosine kinase (Syk) is known to be involved in immune and inflammatory disorders. We, therefore, investigated the possible involvement of Syk promoter methylation in DKD, and the mechanisms underlying this process. Kidney tissues were obtained from renal biopsies of patients with early and advanced DKD. A diabetic mouse model (ApoE-/- DM) was generated from ApoE knockout (ApoE-/-) mice using a high-fat and high-glucose diet combined with low-dose streptozocin intraperitoneal injection. We also established an in vitro model using HK2 cells. A marked elevation in the expression levels of Syk, PKCβ, and P66shc in renal tubules was observed in patients with DKD. In ApoE-/- DM mice, Syk expression and the binding of Sp1 to the Syk gene promoter were both increased in the kidney. In addition, the promoter region of the Syk gene exhibited hypomethylation. Syk inhibitor (R788) intervention improved renal function and alleviated pathologic changes in ApoE-/- DM mice. Moreover, R788 intervention alleviated oxidative stress and apoptosis and downregulated the expression of PKCβ/P66shc signaling pathway proteins. In HK2 cells, oxLDL combined with high-glucose stimulation upregulated Sp1 expression in the nucleus (compared with control and oxLDL groups), and this was accompanied by an increase in the binding of Sp1 to the Syk gene promoter. SP1 silencing downregulated the expression of Syk and inhibited the production of reactive oxygen species and cell apoptosis. Finally, PKC agonist intervention reversed the oxidative stress and apoptosis induced by Syk inhibitor (R406). In DKD, hypomethylation at the Syk gene promoter was accompanied by an increase in Sp1 binding at the promoter. As a consequence of this enhanced Sp1 binding, Syk gene expression was upregulated. Syk inhibitors could attenuate DKD-associated oxidative stress and apoptosis via downregulation of PKCβ/P66shc signaling pathway proteins. Together, our results identify Syk as a promising target for intervention in DKD.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HonghongRen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Zhang P, Guo E, Xu L, Shen Z, Jiang N, Liu X. Knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney. BMC Nephrol 2024; 25:79. [PMID: 38443846 PMCID: PMC10916237 DOI: 10.1186/s12882-024-03513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Enwei Guo
- Department of Intensive Care Unit, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Zhenhua Shen
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Na Jiang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Xinhui Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China.
| |
Collapse
|
16
|
Zhang L, Zhang H, Xie Q, Feng H, Li H, Li Z, Yang K, Ding J, Gao G. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne) 2024; 11:1326843. [PMID: 38449881 PMCID: PMC10915071 DOI: 10.3389/fmed.2024.1326843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of cartilage that affects the quality of life and has increased in morbidity and mortality in recent years. Cartilage homeostasis and dysregulation are thought to be important mechanisms involved in the development of OA. Many studies suggest that lncRNAs are involved in cartilage homeostasis in OA and that lncRNAs can be used to diagnose or treat OA. Among the existing therapeutic regimens, lncRNAs are involved in drug-and nondrug-mediated therapeutic mechanisms and are expected to improve the mechanism of adverse effects or drug resistance. Moreover, targeted lncRNA therapy may also prevent or treat OA. The purpose of this review is to summarize the links between lncRNAs and cartilage homeostasis in OA. In addition, we review the potential applications of lncRNAs at multiple levels of adjuvant and targeted therapies. This review highlights that targeting lncRNAs may be a novel therapeutic strategy for improving and modulating cartilage homeostasis in OA patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Qian Xie
- The Third Clinical Medicine School, Nanchang University, Nanchang, China
| | - Haiqi Feng
- Queen Mary School, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Guicheng Gao
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Xiong H, Huang TY, Chang YL, Su WT. Achyranthes bidentate extracts protect the IL-1β-induced osteoarthritis of SW1353 chondrocytes. J Biosci Bioeng 2023; 136:462-470. [PMID: 37778956 DOI: 10.1016/j.jbiosc.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Osteoarthritis, the most common joint disease worldwide, is a degenerative disease characterized by cartilage degeneration and inflammation. The active ingredients in the traditional Chinese medicinal plant Achyranthes bidentate can be used to treat waist, leg, and joint pain caused by rheumatism arthralgia. In this study, we identified the optimal microwave extraction protocol for saponins from A. bidentate, evaluated their protective effects against IL-1β-induced inflammation in SW1353 human chondrocytes, and explored their protective pathway. The microwave-extraction parameters required to obtain the maximum yield of A. bidentate saponins using 80% ethanol were identified using response surface methodology. The parameters were solid-liquid ratio, 1:10; extraction time, 20 min; power, 721 W; temperature, 65 °C. The actual yield of saponins extracted was to be 194.01 μg/mg extract. The SW1353 cells were pretreated with A. bidentate extract (ABE) at a concentration of 50 or 100 μg/mL for 3 h, after which an inflammatory response was stimulated using IL-1β. The ABE significantly reduced the expression of proinflammatory factors IL-6, TNF-α, COX-2, iNOS, PGE2, and NO, and inhibited NF-κB activity, effectively attenuating the inflammatory response. ABE also inhibited MMP13 and ADAMTS-5 expression, reducing IL-1β-induced degradation of the extrachondral matrix. This confirmed that ABE effectively inhibits NF-κB activity and reduces IL-1β-induced inflammation, extracellular matrix degradation, and expression of apoptotic proteins Bax and caspase-3. Therefore, ABE has potential as a new botanical drug for preventing osteoarthritis.
Collapse
Affiliation(s)
- Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Yu-Lo Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan.
| |
Collapse
|
18
|
Chen Q, Yang Z, Sun X, Long R, Shen J, Wang Z. Inokosterone activates the BMP2 to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and improve bone loss in ovariectomized rats. Biochem Biophys Res Commun 2023; 682:349-358. [PMID: 37839103 DOI: 10.1016/j.bbrc.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Evidence suggests that enhancing the osteogenic ability of bone marrow-derived mesenchymal stem cells (BMSCs) may be beneficial in the fight against osteoporosis (OP) effects. Inokosterone (IS) is a major active constituent of Achyranthis bidentatae radix (ABR), which stimulates osteogenic differentiation of mouse embryonic osteoblasts. This study aims to investigate effect of IS on OP using osteogenic differentiated BMSCs and ovariectomy (OVX)-induced OP rats. The BMSCs were treated with 50, 100, or 200 mg/L IS and OP rats were given 2 or 4 mg/kg of IS by gavage. Cell viability, the osteogenic differentiation marker protein expression level, and mineralization were observed. This study proved that IS improved cell viability, osteogenic differentiation, and cellular mineralization in BMSCs and raised expression levels of bone morphogenetic protein-2 (BMP2), Smad1, runt-related transcription factor 2 (RUNX2), collagen I, ALP, and OCN. By BMP2 knockdown/overexpression, this study also proved the BMP2 signaling pathway activation is a potential biological mechanism of IS to improve osteogenic differentiation and mineralization in osteogenic differentiated BMSCs. In OVX-induced OP rats, IS was observed to antagonize bone loss, improve osteogenic differentiation marker protein expression levels, and activate BMP-2, smad1, and RUNX2. These findings provide scientific support for further investigation of the biological mechanisms of IS in ameliorating OP.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Zhihua Yang
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Xiangyi Sun
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Ruchao Long
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Jianwei Shen
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Zhen Wang
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China.
| |
Collapse
|
19
|
Hamed AB, El-Abhar HS, Abdallah DM, Ahmed KA, Abulfadl YS. Prunetin in a GPR30-dependent manner mitigates renal ischemia/reperfusion injury in rats via interrupting indoxyl sulfate/TLR4/TRIF, RIPK1/RIPK3/MLKL, and RIPK3/PGAM5/DRP-1 crosstalk. Saudi Pharm J 2023; 31:101818. [PMID: 37868646 PMCID: PMC10587762 DOI: 10.1016/j.jsps.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The potential health benefits of phytochemicals in preventing and treating diseases have gained increasing attention. Here, we proved that the methylated isoflavone prunetin possesses a reno-therapeutic effect against renal ischemia/reperfusion (I/R) insult by activating G protein-coupled receptor 30 (GPR30). After choosing the therapeutic dose of prunetin against renal I/R injury in the pilot study, male Sprague Dawley rats were allocated into 5 groups; viz., sham-operated (SO), SO injected with 1 mg/kg prunetin intraperitoneally for three successive days, untreated I/R, I/R treated with prunetin, and I/R treated with G-15, the selective GPR30 blocker, followed by prunetin. Treatment with prunetin reversed the I/R renal injury effect and majorly restored normal renal function and architecture. Mechanistically, prunetin restored the I/R-induced depletion of renal GPR30, an impact that was canceled by the pre-administration of G-15. Additionally, post-administration of prunetin normalized the boosted inflammatory markers indoxyl sulfate, TLR4, and TRIF and abrogated renal cell demise by suppressing necroptotic signaling, verified by the inactivation of p-RIPK1, p-RIPK3, and p-MLKL while normalizing the inhibited caspase-8. Besides, prunetin reversed the I/R-mediated mitochondrial fission by inhibiting the protein expression of PGMA5 and p-DRP-1. All these favorable impacts of prunetin were nullified by G-15. To sum up, prunetin exhibited a significant reno-therapeutic effect evidenced by the enhancement of renal morphology and function, the suppression of the inflammatory cascade indoxyl sulfate/TLR4/TRIF, which turns off the activated/phosphorylated necroptotic trajectory RIPK1/RIPK3/MLKL, while enhancing caspase-8. Additionally, prunetin opposed the mitochondrial fission pathway RIPK3/PGMA5/DRP-1, effects that are mediated via the activation of GPR30.
Collapse
Affiliation(s)
- Ahmed B. Hamed
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasmin S. Abulfadl
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
20
|
Zeng M, Feng A, Wang L, Li K, Zhou J. Aralia saponin A isolated from Achyranthes bidentata Bl. ameliorates LPS/D-GalN induced acute liver injury via SPHK1/S1P/S1PR1 pathway in vivo and in vitro. Int Immunopharmacol 2023; 124:110912. [PMID: 37699301 DOI: 10.1016/j.intimp.2023.110912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Acute liver injury (ALI) refers to a disease in which the liver is affected by factors such as chemical substances, alcohol, and virus infection in a short time, resulting in damage to liver cells. Achyranthes bidentata Bl. with the hepatoprotective activity has attracted great attention. In this study, a pentacyclic triterpenoid (Aralia saponin A, AsA) was isolated from roots of Achyranthes bidentata Bl. and its anti-ALI activity, as well as the mechanisms, were investigated for the first time. METHODS AsA (10 or 20 mg/kg, i.g.) was administered over a period of 1 weeks, following which liver injury was induced by LPS (10 µg/kg)/D-GalN (700 mg/kg). H&E staining of liver, Aspartate amino transferase (AST), Alanine transaminase (ALT) and cytokines was employed to investigate ALI relevant features. The mitochondrial morphology and levels of mitochondrial membrane potential (MMP), oxidative stress balance, apoptosis, average fluorescence intensity of 2-DG, natural killer (NK) cells in liver tissues were determined to assess the oxidative stress damage and inflammatory injury. Transcriptomics and metabonomics analysis were employed to clarify the mechanisms. Additionally, the mRNA and protein expression levels of Sphingosine 1-phosphate (S1P), Sphingosine kinase-1 (SPKH1), Sphingosine 1 phosphate receptor 1 (S1PR1), Sphingosine 1 phosphate receptor 3 (S1PR3), TNF receptor associated factor 2 (TRAF-2), Phospho-NF- kappaB p65 (p-P65), NF- kappaB p65 (P65), Proto-oncogene ras (Ras), Ras-related C3 botulinum toxin substrate (Rac), Phospholipase C (PLC), Interleukin 6 (IL-6), Tumor necrosis factor α (TNF-α), Interleukin 1β (IL-1β), Vascular cell adhesion molecule 1 (Vcam1), CC chemokine ligand-2 (Ccl2) were analyzed. The mediating role of SPHK1 in the observed effects caused by AsA was assessed by investigatin SPHK1 transfection silencing/overexpression against AsA in AML12 cells induced by LPS/D-GalN. RESULTS AsA can ameliorate liver function, inflammation, mitochondrial structure and oxidative stress in the ALI model. Meanwhile, AsA led to downregulated expression of proteins associated with sphingolipid signaling pathway. Silencing of SPHK1 led to enhanced protective effects of AsA, while over-expression of SPHK1 led to degraded protective effects of AsA in LPS/D-GalN-induced AML12 cells, suggesting that ALI is regulated by active molecules of AsA by means of SPHK1 mediation. CONCLUSIONS AsA can ameliorate LPS/D-GalN-induced ALI by inhibiting inflammation and oxidative stress via the SPHK1/S1P/S1PR1 pathway. In this way, a molecular justification is provided for AsA application in ALI treatment.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Aozi Feng
- Department of Clinical Research, Jinan University, Guangzhou 510632, China
| | - Li Wang
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China.
| | - Kun Li
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China
| | - Jihong Zhou
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China
| |
Collapse
|
21
|
Feng M, Luo F, Wu H, Chen Y, Zuo J, Weng X, Chen G, Zhong J. Network Pharmacology Analysis and Machine-Learning Models Confirmed the Ability of YiShen HuoXue Decoction to Alleviate Renal Fibrosis by Inhibiting Pyroptosis. Drug Des Devel Ther 2023; 17:3169-3192. [PMID: 37900883 PMCID: PMC10612518 DOI: 10.2147/dddt.s420135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose YiShen HuoXue decoction (YSHXD) is a formulation that has been used clinically for the treatment of renal fibrosis (RF) for many years. We aimed to clarify therapeutic effects of YSHXD against RF and potential pharmacological mechanisms. Materials and Methods We used network pharmacology analysis and machine-learning to screen the core components and core targets of YSHXD against RF, followed by molecular docking and molecular dynamics simulations to confirm the reliability of the results. Finally, we validated the network pharmacology analysis experimentally in HK-2 cells and a rat model of RF established by unilateral ureteral ligation (UUO). Results Quercetin, kaempferol, luteolin, beta-sitosterol, wogonin, stigmasterol, isorhamnetin, baicalein, and dihydrotanshinlactone progesterone were identified as the main active components of YSHXD in the treatment of unilateral ureteral ligation-induced RF, with IL-6, IL1β, TNF, AR, and PTGS2 as core target proteins. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of YSHXD predicted by network pharmacology analysis was confirmed in HK-2 cells and UUO rats. YSHXD downregulated NLRP3, ASC, NF-κBp65, Caspase-1, GSDMD, PTGS2, IL-1β, IL-6, IL-18, TNF-α, α-SMA and upregulated HGF, effectively alleviating the RF process. Conclusion YSHXD exerts important anti-inflammatory and anti-cellular inflammatory necrosis effects by inhibiting the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathway, indicating that YSHXD represents a new strategy and complementary approach to RF therapy.
Collapse
Affiliation(s)
- MinChao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - HuiMin Wu
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Yushan Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Jinjin Zuo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Xueying Weng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Guozhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Jian Zhong
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
22
|
Wen C, Li T, Wang B, Jin C, Li S, Li Y, Li M, Ding K. A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol 2023; 248:125785. [PMID: 37451376 DOI: 10.1016/j.ijbiomac.2023.125785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Achyranthes bidentata (A. bidentata) is a famous traditional Chinese medicine (TGM) for treatment osteoporosis. Polysaccharides, a major factor for shaping the gut microbiota, are the primary ingredients of A. bidentata. However, bioactivity of A. bidentata polysaccharide on human gut microbiota (HGM) remains unknown. Here, a homogeneous pectic polysaccharide A23-1 with average molecular weight of 93.085 kDa was extracted and purified from A. bidentata. And A23-1 was compsed of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 7.26: 0.76: 5.12: 2.54: 23.51: 60.81. GC-MS, partial acid hydrolysis and NMR results indicated the backbone of A23-1 was composed of 1, 2, 4-Rhap and 1, 4-GlapA, while the branches were composed of galactose, arabinose, glucose and glucuronic acid. Further, A23-1 was found to be degraded into monosaccharides and fragments. Taking Bacteroides thetaiotaomicron (BT) as a model, we suggested three polysaccharide utilization loci (PULs) might be involved in the A23-1 degradation. Degraded products generated by BO might not support the growth of probiotics. Besides, acetate and propionate as the main end products were generated by Bacteroides spp. and probiotics utilizing A23-1. These findings suggested A23-1 was possible one of food sources of human gut Bacteroides spp.
Collapse
Affiliation(s)
- Chang Wen
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tingting Li
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Binqiang Wang
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Saijuan Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yun Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Kan Ding
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Henan Polysaccharide Research Center, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
23
|
Du W, Lv Y, Wu H, Li Y, Tang R, Zhao M, Wei F, Li C, Ge W. Research on the effect of Dipsaci Radix before and after salt-processed on kidney yang deficiency syndrome rats and the preliminary mechanism study through the BMP-Smad signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116480. [PMID: 37061069 DOI: 10.1016/j.jep.2023.116480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dipsaci Radix (DR) is the dry root of Dipsacus asper Wall. ex DC. AIM OF THE STUDY The purpose of this study was to compare the effects of DR on rats before and after salt-processed with kidney yang deficiency syndrome (KYDS), and we selected the BMP-Smad signaling pathway to explore the mechanism of DR. MATERIALS AND METHODS The model of KYDS was established by subcutaneous injection of hydrocortisone, the crude DR (CDR) and salt-processed DR (SDR) were given the corresponding dose (2 g/kg, 4 g/kg, and 6 g/kg). The organ index and the contents of adrenocorticotropic hormone (ACTH), cortistatin (CORT), thyroid hormone (T4), tumor necrosis factor-alpha (TNF-α), testosterone (T), estradiol (E2), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), Na+-K+-ATPase, and growth hormone (GH) in serum were measured to evaluate the intervention effect of DR on KYDS rats. The expression of Smad 1, Smad 4, Smad 5, Smad 8, and BMP 7 protein in kidney was determined by immunohistochemistry, quantitative PCR (qPCR) and Western blot analysis. The effects of DR on 5 expression factors in the BMP-Smad signaling pathway were studied. Constituents absorbed into blood were identified by UPLC-Q-TOF/MS. RESULTS The results showed that compared with the model group, the thymus and kidney index, as well as the contents of ACTH, CORT, cAMP, GH, Na+-K+-ATPase, T, T4, and E2 were significantly increased in the CDR and SDR groups, and the contents of cGMP and TNF-α were significantly decreased. Compared with the CDR high dose group, ACTH, Na+-K+-ATPase, T, and T4 were significantly increased in the SDR high dose group. The results of immunohistochemistry, qPCR, and Western blot analysis showed that compared with the model group, the expression levels of Smad 1, Smad 4, Smad 5, Smad 8 and BMP 7 proteins in the kidney of DR groups were significantly increased. And SDR groups tended to be better than CDR groups. 8 constituents migrating to blood were identified. CONCLUSION This study showed that both CDR and SDR could have a good therapeutic effect on KYDS, and SDR was better than CDR. This study chose the BMP-Smad signaling pathway to study the mechanism of DR in the treatment of KYDS and provided a scientific basis for the processing mechanism of salt-processed.
Collapse
Affiliation(s)
- Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
24
|
Lian Y, Zhu H, Guo X, Fan Y, Xie Z, Xu J, Shao M. Antiosteoporosis effect and possible mechanisms of the ingredients of Radix Achyranthis Bidentatae in animal models of osteoporosis: systematic review and meta-analysis of in vivo studies. J Orthop Surg Res 2023; 18:531. [PMID: 37496077 PMCID: PMC10369767 DOI: 10.1186/s13018-023-04031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The effect and mechanisms of the ingredients (IRAB) of Radix Achyranthis Bidentatae (RAB) on treating osteoporosis (OP) remains debated. We aimed to summary the evidence to evaluate the efficacy of IRAB for animal model OP and elucidate the potential mechanism of IRAB in the treatment of OP. METHODS In this review and meta-analysis, we searched PubMed, EMBASE, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, Chinese Biomedical Literature Database, as well as Chinese VIP databases for targeting articles published from inception to March 2023 in English or Chinese. All randomized controlled animal trials that assessed the efficacy and safety of IRAB for OP were included. We excluded trials according to exclusion criteria. The CAMARADES 10-item quality checklist was utilized to test the risk of potential bias for each including study and modifications were performed accordingly. The primary outcome measures were bone mineral density of the femoral neck (F-BMD), serum calcium (Ca), serum phosphorus (P), serum alkaline phosphatase (ALP), bone gla protein (BGP), bone maximum stress (M-STRESS). The secondary outcome measure was the antiosteoporosis mechanisms of IRAB. RESULTS Data from nine articles were included in the systematic review and meta-analysis, which focused on 196 animals. Egger's test revealed the presence of publication bias in various studies regarding the primary outcome. Administration of IRAB or RAB could significantly increases the F-BMD (SMD = 2.09; 95% CI = 1.29 to 2.89; P < 0.001, I2 = 76%), Ca (SMD = 0.86; 95% CI = 0.39to1.34; P = 0.07, I2 = 49%); P (SMD = 1.01; 95% CI = 0.45-4.57; P = 0.08, I2 = 50%), BGP (SMD = 2.13; 95% CI = 1.48 to 2.78; I2 = 46%, P = 0.10), while the ALP (SMD = - 0.85; 95% CI = - 1.38 to - 0.31; I2 = 46%, P = 0.10) was remarkably decreased in OP model animals. Moreover, the bone biomechanical indicator M-STRESS (SMD = 2.39; 95% CI = 1.74-3.04; I2 = 32%, P = 0.21) was significantly improved. CONCLUSION Collectively, the findings suggest that the RAB or IRAB could be an effective drug or an ingredient in diet for the clinical treatment of OP in future.
Collapse
Affiliation(s)
- Yong Lian
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China.
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, People's Republic of China.
| | - Haoran Zhu
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaxia Guo
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yinuo Fan
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhixing Xie
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China
| | - Jinfan Xu
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China
| | - Min Shao
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO. 261 Longxi Road, Liwan District, Guangzhou, Guangdong Province, People's Republic of China.
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, People's Republic of China.
| |
Collapse
|
25
|
Yang C, Xu H, Yang D, Xie Y, Xiong M, Fan Y, Liu X, Zhang Y, Xiao Y, Chen Y, Zhou Y, Song L, Wang C, Peng A, Petersen RB, Chen H, Huang K, Zheng L. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat Commun 2023; 14:4261. [PMID: 37460623 PMCID: PMC10352345 DOI: 10.1038/s41467-023-40036-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Acute kidney injury (AKI) exhibits high morbidity and mortality. Kidney injury molecule-1 (KIM1) is dramatically upregulated in renal tubules upon injury, and acts as a biomarker for various renal diseases. However, the exact role and underlying mechanism of KIM1 in the progression of AKI remain elusive. Herein, we report that renal tubular specific knockout of Kim1 attenuates cisplatin- or ischemia/reperfusion-induced AKI in male mice. Mechanistically, transcription factor Yin Yang 1 (YY1), which is downregulated upon AKI, binds to the promoter of KIM1 and represses its expression. Injury-induced KIM1 binds to the ECD domain of death receptor 5 (DR5), which activates DR5 and the following caspase cascade by promoting its multimerization, thus induces renal cell apoptosis and exacerbates AKI. Blocking the KIM1-DR5 interaction with rationally designed peptides exhibit reno-protective effects against AKI. Here, we reveal a YY1-KIM1-DR5 axis in the progression of AKI, which warrants future exploration as therapeutic targets.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huidie Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - XiKai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liangliang Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Wang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, 430070, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Zhang J, Peng J, Zhang T, Jiang H, Qin Y, Chen H, Deng X, Ren J, Wang P, Xu H. Identification of the Main Chemical constituents and mechanism of Renshen Guben oral liquid against Renal Fibrosis. Chin Med 2023; 18:56. [PMID: 37198665 DOI: 10.1186/s13020-023-00762-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Renal fibrosis is the late stage of many chronic kidney diseases (CKD). Clinically, there is almost no effective treatment for renal fibrosis except dialysis. Renshen Guben oral liquid (RSGB) is a Chinese patent medicine approved by National Medical Products Administration (NMPA), which is suitable for clinical patients with chronic nephritis. Currently, the chemical constituents of RSGB remains unclear, and its efficacy and mechanism on renal fibrosis have not been reported. METHODS In our research, ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was employed to describe the chemical profile of RSGB, unilateral ureteral obstruction (UUO) model in mice was established to evaluate the beneficial effect of RSGB on renal fibrosis by biochemical indexes, HE and Masson staining. RNA sequencing and "constituents-targets-pathways" multi-dimensional network was established to mine the mechanisms of RSGB. Key targets were verified by quantitative real-time PCR (qRT-PCR) and western bolt (WB). RESULTS A total of 201 constituents were identified or tentatively characterized, 15 of which were confirmed with standards. The number of triterpenes was the highest with 49, followed by phenols with 46. RSGB ameliorated the blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum, normalizing pathological structure of kidney tissue. RNA sequencing revealed that RSGB regulates 226 differential genes, which were involved in kidney development. According to the "constituents-targets-pathways" network, 26 key active constituents may mainly regulate the inflammatory immune system through 88 corresponding targets. qRT-PCR and WB results showed that RSGB inhibited the activation of the Tgfβ1/Smad2/3 pathway, Wnt4/β-Catenin pathway and NGFR/NF-κB pathway. CONCLUSIONS Overall, our study, for the first time, characterized 201 chemical constituents in RSGB, and 26 of them were screened out to alleviates renal fibrosis mainly through Tgfβ1/Smad2/3 pathway, Wnt4/β-catenin pathway and NGFR/NF-κB pathway, which may provide a new research strategy for research on the mechanism of traditional Chinese Medicine.
Collapse
Affiliation(s)
- Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juqin Peng
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuewen Qin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaofang Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
27
|
Tao Y, Pan M, Zhu F, Wang P. Comprehensive metabolic profiles of Achyranthes bidentate in rat serum via ultra-high performance liquid chromatography time-of-flight mass spectrometry and their correlation with osteoinductive activity. J Pharm Biomed Anal 2023; 231:115418. [PMID: 37116317 DOI: 10.1016/j.jpba.2023.115418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
The osteoinductive effect of crude and salt-processed Achyranthes bidentata is associated with the serum metabolites. Grey relationship analysis between the serum metabolites and osteoinductive effect will help to clarify the bioactive serum metabolites. First, an ultra-high performance liquid chromatography time-of-flight mass spectrometry method was used to develop serum metabolic fingerprint of rats after oral administration of crude and salt-processed Achyranthes bidentata. The MS1 and MS2 data of serum metabolites were scanned in the range of m/z 100-1500 and 50-1200, respectively. The chemical structures of the metabolites were thoroughly elucidated. Two prototypes and twelve metabolites have been identified. Second, osteoblasts were cultured with the drug-containing serum at different time points. The osteoinductive effect of crude and salt-processed Achyranthes bidentata was evaluated by detecting the proliferation rate and alkaline phosphatase activity of osteoblasts. Third, grey correlation analysis was utilized to elucidate the spectral-effect relationship between serum metabolic fingerprints and osteoinductive effect. Finally, the correlation coefficients of ten metabolites, i.e., oleanolic acid, poststerone-M1, chikusetsusaponin V-M1, oleanolic acid-M2, oleanolic acid-M4, spinacoside D-M1, chikusetsusaponin I-M1, betavulgaroside IV-M2, chikusetsusaponin IVa and achyranthoside IV-M1 were above 0.7. Collectively, our work will provide helpful knowledge for the future research on Achyranthes bidentata.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
28
|
Meng J, Tian J, Zhao Y, Li C, Yi Y, Zhang Y, Han J, Wang L, Pan C, Liu S, Liu C, Wang F, Tang X, Wang D, Qin S, Liang A. Ameliorative effect of cheqianzi decoction on hyperuricemia and kidney injury and underlying mechanism in rats. Heliyon 2023; 9:e15333. [PMID: 37123969 PMCID: PMC10130219 DOI: 10.1016/j.heliyon.2023.e15333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Cheqianzi Decoction (CQD) is a Traditional Chinese Medicine (TCM) formula comprising four herbs and is recorded in the Ancient Materia Medica "Shengji Zonglu". Individually, these four herbs have been shown to reduce uric acid (UA) levels, to treat hyperuricemia (HUA), and alleviate kidney damage. However, the therapeutic efficacy of the CQD and related mechanism are not yet clear. In this study, high performance liquid chromatography (HPLC) analysis confirmed that the contents of the chemical components of the four herbal medicines were in accordance with the provisions of the Chinese Pharmacopoeia. A total of 99 potential targets were identified in the network pharmacology analysis of CQD, indicating its involvement in the regulation of inflammatory and apoptotic signaling pathways, and potential value for treating HUA and alleviating kidney injury. In vivo pharmacodynamic studies showed that compared with the Model group, significantly decreased levels of serum uric acid (SUA), serum creatinine (SCr), blood urea nitrogen (BUN) (all P < 0.05), and inflammatory factors (P < 0.01) were detected in the CQD group. Quantitative real-time PCR and Western blot analyses showed that compared with the Model group, adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) expression in the CQD group was significantly upregulated (P < 0.01) at both the mRNA and protein levels, while mRNA expression of Caspase3 and NOD-like receptor family member 3 (NLRP3) (P < 0.05) and protein expression of NLRP3 (P < 0.01) were significantly downregulated. In conclusion, CQD promotes UA excretion by activating ABCG2, and induces inflammasome NLRP3-mediated reduction in inflammatory and apoptotic factors to achieve renal protection. Thus, our findings indicate the therapeutic potential of CQD in HUA with kidney injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aihua Liang
- Corresponding author. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China.
| |
Collapse
|
29
|
Yao C, Wang Y, Qu H, Li J, Hou J, Chen X, Zhang J, Wei W, Bi Q, Guo DA. Comparative identification of phytoecdysteroids in Achyranthes bidentata Blume and its three analogous species and application in differentiation between processing products from different species. J Pharm Biomed Anal 2023; 227:115187. [PMID: 36796274 DOI: 10.1016/j.jpba.2022.115187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The differentiation of raw herbal products from similar species have been achieved by plant metabolomics. However, the distinguishment on various processed products with improved activities and wide clinical utilization from similar species is still tricky due to obscure composition variations during processing. In this study, a comprehensive analysis of phytoecdysteroids in Achyranthes bidentata Blume (AB) and its three analogous species, which were all called Niuxi in Chinese, was conducted on UPLC-HRMS by integrating dynamic exclusion acquisition with data post-processing of targeted multilateral mass defect filter. Two most frequently used species, AB and Cyathula officinalis Kuan (CO) were systematically compared with plant metabolomics methods. And the differential components from the raw materials were evaluated on the ability of distinguishing processed products. The substitution of hydroxyl groups on C-21, C-20, C-22 and C-25 were determined by characteristic mass differences, leading to systematical characterization of 281 phytoecdysteroids. In plant metabolomics studies of raw AB and CO, 16 potential markers were filtered by VIP value > 1, and displayed satisfactory differentiation on the processed AB and CO. The results facilitated the quality control of the four species, especially the processed products of AB and CO, also provided a reference method for the quality control of other processed products.
Collapse
Affiliation(s)
- Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingying Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Qu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiayuan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianru Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Xuebing Chen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
30
|
Yang AY, Choi HJ, Kim K, Leem J. Antioxidant, Antiapoptotic, and Anti-Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules 2023; 28:molecules28062759. [PMID: 36985731 PMCID: PMC10057564 DOI: 10.3390/molecules28062759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a severe inflammatory condition that can cause organ dysfunction, including acute kidney injury (AKI). Hesperetin is a flavonoid aglycone that has potent antioxidant and anti-inflammatory properties. However, the effect of hesperetin on septic AKI has not yet been fully investigated. This study examined whether hesperetin has a renoprotective effect on lipopolysaccharide (LPS)-induced septic AKI. Hesperetin treatment ameliorated histological abnormalities and renal dysfunction in LPS-injected mice. Mechanistically, hesperetin attenuated LPS-induced oxidative stress, as evidenced by the suppression of lipid and DNA oxidation. This beneficial effect of hesperetin was accompanied by downregulation of the pro-oxidant NADPH oxidase 4, restoration of glutathione levels, and activation of antioxidant enzymes. This flavonoid compound also inhibited apoptotic cell death via suppression of p53-dependent caspase-3 pathway. Furthermore, hesperetin alleviated Toll-like receptor 4-mediated cytokine production and macrophage infiltration. Our findings suggest that hesperetin ameliorates LPS-induced renal structural and functional injury through suppressing oxidative stress, apoptosis, and inflammation.
Collapse
|
31
|
High Glucose-Induced Kidney Injury via Activation of Necroptosis in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2713864. [PMID: 36756299 PMCID: PMC9902134 DOI: 10.1155/2023/2713864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) and is closely associated to programmed cell death. However, the complex mechanisms of necroptosis, an alternative cell death pathway, in DKD pathogenesis are yet to be elucidated. This study indicates that necroptosis is involved in DKD induced by high glucose (HG) both in vivo and in vitro. HG intervention led to the activation of RIPK1/RIPK3/MLKL signaling, resulting in renal tissue necroptosis and proinflammatory activation in streptozotocin/high-fat diet- (STZ/HFD-) induced diabetic mice and HG-induced normal rat kidney tubular cells (NRK-52E). We further found that in HG-induced NRK-52E cell, necroptosis might, at least partly, depend on the levels of reactive oxygen species (ROS). Meanwhile, ROS participated in necroptosis via a positive feedback loop involving the RIPK1/RIPK3 pathway. In addition, blocking RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS generation, could effectively protect the kidney against HG-induced damage, decrease the release of proinflammatory cytokines, and rescue renal function in STZ/HFD-induced diabetic mice. Inhibition of RIPK1 effectively decreased the activation of RIPK1-kinase-/NF-κB-dependent inflammation. Collectively, we demonstrated that high glucose induced DKD via renal tubular epithelium necroptosis, and Nec-1 or NAC treatment downregulated the RIPK1/RIPK3/MLKL pathway and finally reduced necroptosis, oxidative stress, and inflammation. Thus, RIPK1 may be a therapeutic target for DKD.
Collapse
|
32
|
CXCR4 inhibition suppresses Cd-induced renal oxidative stress, apoptosis, and fibrosis by inhibiting the TGF-β1/Smad pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
33
|
Li Z, Xu T, Peng L, Tang X, Chi Q, Li M, Li S. Polystyrene nanoplastics aggravates lipopolysaccharide-induced apoptosis in mouse kidney cells by regulating IRE1/XBP1 endoplasmic reticulum stress pathway via oxidative stress. J Cell Physiol 2023; 238:151-164. [PMID: 36370432 DOI: 10.1002/jcp.30913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Nanoplastics (NPs) pollution poses a huge threat to the ecosystem and has become one of the environmental pollutants that have attracted much attention. There is increasing evidence that both oxidative stress and endoplasmic reticulum stress (ERS) are associated with polystyrene nanoplastics (PS-NPs) exposure. Lipopolysaccharide (LPS) has been shown to induce apoptotic damage in various tissues, but whether PS-NPs can aggravate LPS-induced apoptosis in mouse kidneys through oxidative stress-regulated inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) ERS pathway remains unclear. In this study, based on the establishment of in vitro and in vivo PS-NPs and LPS exposure models alone and in combination in mice and HEK293 cells, the effects and mechanisms of PS-NPs on LPS-induced renal cell apoptosis were investigated. The results showed that PS-NPs could aggravate LPS-induced apoptosis. PS-NPs/LPS can induce ERS through oxidative stress, activate the IRE1/XBP1 pathway, and promote the expression of apoptosis markers (Caspase-3 and Caspase-12). Kidney oxidative stress, ERS, and apoptosis in PS-NPs + LPS combined exposure group were more severe than those in the single exposure group. Interestingly, 4-phenylbutyric acid-treated HEK293 cells inhibited the expression of the IRE1/XBP1 ERS pathway and apoptotic factors in the PS-NPs + LPS combined exposure group. N-acetyl-L-cysteine effectively blocked the activation of the IRE1/XBP1 ERS pathway, suggesting that PS-NPs-induced oxidative stress is an early event that triggers ERS. Collectively, these results confirmed that PS-NPs aggravated LPS-induced apoptosis through the oxidative stress-induced IRE1/XBP1 ERS pathway. Our study provides new insights into the health threats of PS-NPs exposed to mammals and humans.
Collapse
Affiliation(s)
- Zhe Li
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Tong Xu
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Lin Peng
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyu Tang
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qianru Chi
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Ming Li
- Department of Animal Ecology, College of Life and environmental Science, Wenzhou University, Wenzhou, P.R. China
| | - Shu Li
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
34
|
Cardoso RDR, Chambo SD, Zaninelli TH, Bianchini BHS, da Silva MDV, Bertozzi MM, Saraiva-Santos T, Franciosi A, Martelossi-Cebinelli G, Garcia-Miguel PE, Borghi SM, Casagrande R, Verri WA. Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010121. [PMID: 36615318 PMCID: PMC9821966 DOI: 10.3390/molecules28010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.
Collapse
Affiliation(s)
- Renato D. R. Cardoso
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sandmary D. Chambo
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Beatriz H. S. Bianchini
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Pamela E. Garcia-Miguel
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
35
|
Li J, Jiang Y, Dai Q, Yu Y, Lv X, Zhang Y, Liao X, Ao L, Hu G, Meng J, Peng Z, Tao L, Xie Y. Protective effects of mefunidone on ischemia-reperfusion injury/Folic acid-induced acute kidney injury. Front Pharmacol 2022; 13:1043945. [PMID: 36506525 PMCID: PMC9727196 DOI: 10.3389/fphar.2022.1043945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). It poses a significant threat to public health, and effective therapeutic drugs are lacking. Mefunidone (MFD) is a new pyridinone drug that exerts a significant protective effect on diabetic nephropathy and the unilateral ureteral obstruction (UUO) model in our previous study. However, the effects of mefunidone on ischemia-reperfusion injury-induced acute kidney injury remain unknown. In this study, we investigated the protective effect of mefunidone against ischemia-reperfusion injury-induced acute kidney injury and explored the underlying mechanism. These results revealed that mefunidone exerted a protective effect against ischemia-reperfusion injury-induced acute kidney injury. In an ischemia-reperfusion injury-induced acute kidney injury model, treatment with mefunidone significantly protected the kidney by relieving kidney tubular injury, suppressing oxidative stress, and inhibiting kidney tubular epithelial cell apoptosis. Furthermore, we found that mefunidone reduced mitochondrial damage, regulated mitochondrial-related Bax/bcl2/cleaved-caspase3 apoptotic protein expression, and protected mitochondrial electron transport chain complexes III and V levels both in vivo and in vitro, along with a protective effect on mitochondrial membrane potential in vitro. Given that folic acid (FA)-induced acute kidney injury is a classic model, we used this model to further validate the efficacy of mefunidone in acute kidney injury and obtained the same conclusion. Based on the above results, we conclude that mefunidone has potential protective and therapeutic effects in both ischemia-reperfusion injury- and folic acid-induced acute kidney injury.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Liyun Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Hunan Key Lab of Organ Fibrosis, Changsha, China,Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yanyun Xie,
| |
Collapse
|
36
|
Chen C, Lv L, Huang Y, Gao M, Jiang X, Ge X, Zheng D, Bao L. Optimized ultra-high-performance liquid chromatography tandem mass spectrometry method for detecting compositional changes in Eucommia ulmoides and Achyranthes bidentata paired decoctions in vitro and in vivo. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractRationaleThe bark of Eucommia ulmoides and the roots of Achyranthes bidentata are commonly used in traditional Chinese medicine, and their pairing appears in many traditional Chinese medicine formulas as a recognized compatible unit. However, the changes and interactions of the main components of these two formulas when paired remain unclear, and there is currently no standard or method for their quality control and assessment of pharmacological effects.MethodsAn optimized ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry (UHPLC-MS/MS) method was established for the simultaneous identification of 10 components in E. ulmoides and A. bidentata using in vitro and in vivo models. Tributyltin methacrylate was the internal standard solution, and the blood samples were treated by an organic solvent precipitation method. Gradient elution was conducted on a C18 column at 25 °C with 0.1% formic acid water:acetonitrile as the mobile phase at a flow rate of 0.5 mL min−1. Dynamic multiple response monitoring was performed in negative-ion mode using an Agilent Jet Stream electrospray ionization ion source.ResultsIn negative-ion detection mode, eucommiol exhibited a good response, and the isomers ginsenoside Ro and achyranthoside C could also be well separated. The developed method accurately detected the five components with a low blood content. Compared to controls, the levels of ginsenoside Ro, chikusetsusaponin Ⅳa, and achyranthoside C increased; the contents of geniposidic acid and pinoresinol diglucoside were unchanged; and the levels of eucommiol, geniposide, β-ecdysterone, genipin, and achyranthoside D decreased in vitro. In vivo, the contents of geniposidic acid, geniposide, pinoresinol diglucoside, and β-ecdysterone were reduced; the contents of eucommiol and ginsenoside Ro were unchanged; and those of achyranthoside D, chikusetsusaponin Ⅳa, and achyranthoside C increased compared to the corresponding levels in the internal control.ConclusionsA method for the quality control of the E. ulmoides-A. bidentata drug pair was established for the first time and the main components in 10 drug pairs could be determined simultaneously in vitro and in vivo. These findings show that the E. ulmoides and A. bidentata drug pair cause a compositional change, providing new ideas for the development of this combination to improve clinical efficacy.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Lv
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yueying Huang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingzhu Gao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xue Jiang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoying Ge
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Zheng
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
37
|
Zhu Z, Zhao Z, Chen X, Chu Z, He Y, Tan Y, Zhou J, Tang C. Effects of growth hormone/estrogen/androgen on COVID-19-type proinflammatory responses in normal human lung epithelial BEAS-2B cells. BMC Mol Cell Biol 2022; 23:42. [PMID: 36175845 PMCID: PMC9520119 DOI: 10.1186/s12860-022-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background COVID-19 is a disease caused by SARS-CoV-2, which can cause mild to serious infections in humans. We aimed to explore the effect of growth hormone (GH)/estrogen/androgen in normal human lung epithelial BEAS-2B cells on COVID-19-type proinflammatory responses. Methods A BEAS-2B COVID-19-like proinflammatory cell model was constructed. After that, the cells were treated with GH, 17β-estradiol (E2), and testosterone (Tes) for 24 h. CCK-8 assays were utilized to evaluate cell viability. The mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 were measured by qRT‒PCR and Western blotting, respectively. ELISAs were performed to determine IL-6, MCP-1, MDA and SOD expression. Flow cytometry was used to measure ROS levels. Finally, MAPK/NF-κB pathway-related factor expression was evaluated. Results The COVID-19-type proinflammatory model was successfully constructed, and 1000 ng/mL RBD treatment for 24 h was selected as the condition for the model group for subsequent experiments. After RBD treatment, cell viability decreased, the mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 increased, IL-6, MCP-1, MDA and ROS levels increased, and MDA levels decreased. The mRNA levels of MAPK14 and RELA increased, but the protein levels did not change significantly. In addition, phospho-MAPK14 and phospho-RELA protein levels were also increased. Among the tested molecules, E2 had the most pronounced effect, followed by GH, while Tes showed the opposite effect. Conclusion GH/E2 alleviated inflammation in a COVID-19-type proinflammatory model, but Tes showed the opposite effect.
Collapse
|
38
|
Xie KH, Liu XH, Jia J, Zhong X, Han RY, Tan RZ, Wang L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int Immunopharmacol 2022; 112:109247. [PMID: 36155281 DOI: 10.1016/j.intimp.2022.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-Heng Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
39
|
Yin Y, Zhu F, Pan M, Bao J, Liu Q, Tao Y. A Multi-Omics Analysis Reveals Anti-Osteoporosis Mechanism of Four Components from Crude and Salt-Processed Achyranthes bidentata Blume in Ovariectomized Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155012. [PMID: 35956964 PMCID: PMC9370352 DOI: 10.3390/molecules27155012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023]
Abstract
The root of Achyranthes bidentata Blume (AB) is a well-known traditional Chinese medicine for treating osteoporosis. Plenty of studies focused on the pharmacological mechanism of the whole extract; however, the contribution of different components to the anti-osteoporosis effect remains unknown. The aim of this study is to explore the anti-osteoporosis mechanism of different components of crude and salt-processed AB under the guidance of network pharmacology, metabolomics, and microbiomics. First, network pharmacology analysis was applied to constructing the compound-target-disease network of AB to provide a holistic view. Second, the anti-osteoporosis effects of the four components were evaluated in female Wistar rats. The subjects were divided into a normal group, a model group, a 17α-estradiol (E2)-treated group, a polysaccharide-component-treated groups, and a polysaccharide-knockout-component-treated groups. All the serum, urine, and feces samples of the six groups were collected after 16 weeks of treatment. Biochemical and microcomputed tomography (μCT) parameters were also acquired. Coupled with orthogonal partial least-squares discrimination analysis, one dimensional nuclear magnetic resonance (NMR) was used to monitor serum metabolic alterations. A total of twenty-two biomarkers, including lipids, amino acids, polyunsaturated fatty acids, glucose, and so on were identified for the different components-treated groups. Through pathway analysis, it is indicated that glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, alanine, aspartate, and glutamate metabolism, d-glutamine, and d-glutamate metabolism were the major intervened pathways. Levels of these biomarkers shifted away from the model group and were restored to normal after treatment with the four components. In addition, 16S rDNA sequencing demonstrated that the abundance of Anaerofilum, Rothia, and Turicibacter bacteria was positively correlated with an anti-osteoporosis effect, whereas the abundance of Oscillospira was negatively correlated. The osteoprotective effect of the polysaccharide components of crude and salt-processed AB is related to the regulation of the abundance of these gut microbiota.
Collapse
Affiliation(s)
- Yuwen Yin
- Zhejiang Technical Institute of Economics, Hangzhou 310032, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Bao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
40
|
Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother 2022; 150:112936. [PMID: 35421784 DOI: 10.1016/j.biopha.2022.112936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury (CRI) is a common pathological damage in chronic renal disease, and the therapeutic options for preventing its progression are limited at present. Ginsenoside Rg1 (Rg1) is reported to have a protective effect on renal injury by improving oxidative stress and inflammation. Lipopolysaccharide (LPS) plays important roles in inducing inflammatory and high-dose LPS is often used to perform acute renal injury. However, little is known about the effect of low-dose LPS on CRI, and the protective effect of Rg1 against chronic LPS-induced CRI. Here, we reported the protective effect and mechanism of Rg1 against LPS-induced CRI in mice. In this study, the results demonstrated that low-dose LPS (0.25 mg/kg) exposure for 14 days significantly induced renal function impairment and renal injury and fibrosis. Meanwhile, LPS exposure significantly increased reactive oxygen species (ROS) generation, NADPH oxidase 4 (NOX4) and NLRP3 inflammasome expression in renal cortex. However, treatment with Rg1, tempol (a superoxide dismutase mimetic), and apocynin (a NOX inhibitor) significantly improved renal function impairment and renal fibrosis, and significantly decreased the levels of TGF-β, IL-1β, KIM-1, β-Gal, and collagen IV in the kidneys. And Rg1 treatment also significantly reduced ROS generation and inhibited the activation of NOX4 and NLRP3 inflammasome. Overall, these results suggest that Rg1 treatment can ameliorate LPS-induced chronic kidney injury and renal fibrosis, the mechanisms may be involved in reducing NOX2-mediated oxidative stress and inhibiting NLRP1 inflammasome.
Collapse
Affiliation(s)
- Duoduo Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Pengmin Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huimin Zhou
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liangliang Kong
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
41
|
Guo P, Zeng M, Wang S, Cao B, Liu M, Zhang Y, Jia J, Zhang Q, Zhang B, Wang R, Zheng X, Feng W. Eriodictyol and Homoeriodictyol Improve Memory Impairment in Aβ 25-35-Induced Mice by Inhibiting the NLRP3 Inflammasome. Molecules 2022; 27:2488. [PMID: 35458684 PMCID: PMC9025671 DOI: 10.3390/molecules27082488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Alzheimer's disease (AD) is a neurodegenerative disorder, and it is now widely accepted that neuroinflammation plays a key role in its pathogenesis. Eriodictyol (Eri) and homoeriodictyol (Hom), dihydroflavonoids extracted from a variety of plants, have been confirmed to display a relationship with neuroprotection. (2) Methods: An AD mouse model was constructed by intracerebroventricular (ICV) injection of the Aβ25-35 peptide, and Eri and Hom were administered orally for 4 weeks. UPLC-MS/MS was used to determine whether Eri and Hom cross the blood-brain barrier to exert their therapeutic effects. Histological changes in the brain and levels of Aβ were evaluated, and Y-maze and new object recognition experiments were conducted to assess the effects of Eri and Hom on Aβ25-35-induced memory impairment in mice. The levels of oxidative stress and apoptosis in peripheral immune cells and progenitor cells in the hippocampal region were analyzed by flow cytometry and in vitro assays. Western blotting and enzyme-linked immunosorbent assays (ELISA) were used to measure the expression levels of NLRP3 inflammasome-related proteins and inflammatory factors in the brain. The effect of nigericin (an agonist of the NLRP3 inflammasome) on Eri and Hom intervention in LPS-induced N9 microglia was examined using a High Content Screening System. (3) Results: Eri and Hom reduced neuronal damage in mouse brain tissue, decreased Aβ levels in the brain, downregulated oxidative stress and apoptosis levels, and improved learning and memory capacity by crossing the blood-brain barrier to exert its effects. Moreover, Eri and Hom inhibited NLRP3 inflammasome activation and ameliorated immune cell disorder. Furthermore, the effect of Eri and Hom on LPS-induced N9 microglia disappeared after the addition of nigericin to agonize NLRP3 receptors. (4) Conclusions: Eri and Hom improved Aβ25-35-induced memory impairment in mice by inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
42
|
Li D, Liu G, Wu Y. RORA alleviates LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription. Clin Exp Nephrol 2022; 26:512-521. [PMID: 35195816 PMCID: PMC9114077 DOI: 10.1007/s10157-022-02184-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the effect of RORA on LPS-induced renal epithelial cell apoptosis and the underlying mechanism. METHODS LPS-treated HK-2 cells were established as a cellular model of acute kidney injury. The expression of RORA or/and PGC-1α in LPS-induced HK-2 cells was altered by transfection. qRT-PCR and Western blotting were used to detect the expression changes of RORA and PGC-1α. ELISA was performed to detect the expression of IL-1β and IL-6 and the activity of caspase-3. Western blotting was applied for visualization of cleaved caspase-3. CCK-8 and flow cytometry were used to assess cell proliferation and apoptosis. Dual-luciferase reporter and ChIP-qPCR were utilized to verify the binding of RORA to PGC-1α promoter. RESULTS LPS treatment decreased the expression of RORA and PGC-1α and increased that of cleaved caspase-3 in HK-2 cells. Also, LPS treatment inhibited HK-2 cell proliferation and promoted HK-2 cell apoptosis and secretion of IL-1β and IL-6. Overexpression of RORA or PGC-1α eliminated the adverse effects of LPS treatment in HK-2 cells. RORA drove the transcription of PGC-1α by binding PGC-1α promoter. Knockdown of PGC-1α offset the reduction in HK-2 cell injury caused by overexpression of RORA. CONCLUSION RORA reduces LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription.
Collapse
Affiliation(s)
- Dayong Li
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Guanlan Liu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Yundou Wu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
43
|
Liu Y, Liu Q, Chen D, Matsuura A, Xiang L, Qi J. Inokosterone from Gentiana rigescens Franch Extends the Longevity of Yeast and Mammalian Cells via Antioxidative Stress and Mitophagy Induction. Antioxidants (Basel) 2022; 11:antiox11020214. [PMID: 35204097 PMCID: PMC8868264 DOI: 10.3390/antiox11020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, replicative lifespan and chronological lifespan assays of yeast were used to double-screen antiaging compounds from Gentiana rigescens Franch, a Chinese herb medicine. Inokosterone from G. rigescens Franch extended not only the replicative lifespan of K6001 yeast but also the chronological lifespan of YOM36 yeast. Furthermore, it can enhance the survival ability of mammalian cells. In order to understand the mechanism of action of this compound, this study focused on antioxidative stress and autophagy when performing the analysis. The increased cell survival rate under oxidative stress conditions, antioxidant enzyme activity and gene expression were observed in the inokosterone-treated groups. Meanwhile, the reactive oxygen species (ROS) and lipid peroxidation of yeast were obviously decreased. Additionally, the macroautophagy and mitophagy in YOM38-GFP-ATG8 yeast were increased upon inokosterone treatment, respectively. At the same time, the cleavage-free GFP from GFP-ATG8 in the cytoplasm and the ubiquitin of the mitochondria at the protein level were markedly enhanced after incubation with inokosterone. Furthermore, we investigated the effect of inokosterone on antioxidative stress and autophagy in mammalian cells, and the relationship between ROS and autophagy. The ROS, malondialdehyde (MDA) were significantly decreased, and the autophagosomes in mammalian cells were obviously increased after inokosterone treatment. The autophagosomes in ∆sod1 yeast with a K6001 background had no obvious changes, and the ROS and MDA of ∆sod1 yeast were increased compared with K6001 yeast. The increase of autophagosomes and the reduction of ROS and MDA in ∆sod1 yeast were observed after treatment with inokosterone. Meanwhile, the reduction of the ROS level and the increase of the SOD1 gene expression of K6001 yeast lacking autophagy were observed after treatment with inokosterone. In order to indicate whether the genes related to antioxidant enzymes and autophagy were involved in the antiaging effect of inokosterone, mutants of K6001 yeast were constructed to conduct a lifespan assay. The replicative lifespans of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆gpx, ∆cat, ∆atg2, and ∆atg32 of K6001 yeast were not affected by inokosterone. These results suggest that inokosterone exerted an antiaging activity via antioxidative stress and increased autophagy activation; autophagy affected the ROS levels of yeast via the regulation of SOD1 gene expression.
Collapse
Affiliation(s)
- Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Qian Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Danni Chen
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
- Correspondence: (L.X.); (J.Q.); Tel.: +86-0571-8820-8627 (J.Q.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
- Correspondence: (L.X.); (J.Q.); Tel.: +86-0571-8820-8627 (J.Q.)
| |
Collapse
|
44
|
Abstract
Achyranthes root is a crude drug used as diuretic, tonic and remedy for blood stasis. Characteristic oleanolic acid saponins with a dicarboxylic acid moiety have been isolated as one of the representative constituents of this crude drug. This review focuses on the triterpene saponin constituents, especially those with a characteristic dicarboxylic acid moiety, of A. bidentata and A. fauriei. Several groups isolated the saponins and different names were given to one compound in some cases. The names of the compounds are sorted out and the stereochemistry of the dicarboxylic acid moieties are summarized. HPLC analysis of the composition of the saponin constituents and the effect of processing and extraction conditions on the composition are reviewed. Biological activities of the saponin constituents are also summarized.
Collapse
|
45
|
Cianciosi D, Forbes-Hernandez TY, Alvarez-Suarez JM, Ansary J, Quinzi D, Amici A, Navarro-Hortal MD, Esteban-Muñoz A, Quiles JL, Battino M, Giampieri F. Anti-inflammatory activities of Italian Chestnut and Eucalyptus honeys on murine RAW 264.7 macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
46
|
Jia Q, Han L, Zhang X, Yang W, Gao Y, Shen Y, Li B, Wang S, Qin M, Lowe S, Qin J, Hao G. Tongluo Yishen Decoction Ameliorates Renal Fibrosis via Regulating Mitochondrial Dysfunction Induced by Oxidative Stress in Unilateral Ureteral Obstruction Rats. Front Pharmacol 2021; 12:762756. [PMID: 34712143 PMCID: PMC8545824 DOI: 10.3389/fphar.2021.762756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tongluo Yishen (TLYS) decoction is an herb that is extensively applied for the treatment of chronic kidney disease (CKD) in traditional Chinese medicine. In this study, 37 different dominant chemical constituents of TLYS were identified. Rats with unilateral ureteral obstruction (UUO) were used as animal models, and TLYS decoction was administered orally for 14 days. TLYS decoction reduced the levels of renal function indicators, serum creatinine levels and blood urea nitrogen levels and alleviated renal pathological changes. Gene Ontology (GO) and KEGG pathway analyses of RNA sequencing data showed that TLYS decoction had significant effects on biological processes, cellular components and molecular functions in UUO rats and that the phagosome (a membrane source in the early stages of autophagy), lysosome (an important component of autolysosome), and oxidation pathways (which contribute to mitochondrial function) might be related to the antifibrotic effects of TLYS decoction. Moreover, we found significant mitochondrial function impairment, including a decreased mitochondrial membrane potential (MMP) and an imbalance in mitochondrial dynamics, excessive oxidative stress, and activation of Pink1/Parkin-mediated mitophagy in UUO rats. Treatment with TLYS decoction significantly increased the MMP, normalized mitochondrial dynamics and ameliorated renal injury. Moreover, TLYS alleviated the mitophagy clearance deficiency. In conclusion, our study showed that TLYS decoction can ameliorate mitochondrial dynamics by reducing oxidative stress and regulating mitophagy, thereby relieving renal injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research on TLYS decoction.
Collapse
Affiliation(s)
- Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Shen
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shang Hai, China
| | - Bing Li
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shuyan Wang
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Scott Lowe
- Kansas City University of Medicine and Biosciences, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4025-4042. [PMID: 34594101 PMCID: PMC8476322 DOI: 10.2147/dddt.s330222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aim Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. Methods The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. Results In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. Conclusion TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
48
|
Fu J, Wu H, Wu H, Deng R, Sun M. Deciphering the metabolic profile and pharmacological mechanisms of Achyranthes bidentata blume saponins using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with network pharmacology-based investigation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114067. [PMID: 33771642 DOI: 10.1016/j.jep.2021.114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes bidentata Blume (AB) is a traditional Chinese medicine (TCM) widely used as a dietary supplement and anti-arthritis drug. Pharmacological studies have shown that Achyranthes bidentata Blume saponins (ABS) are the main bioactive ingredient. However, the metabolic profile and mechanisms of action of ABS against rheumatic arthritis (RA) remain to be established. AIM OF THE STUDY Our main objective was to investigate the metabolic profile and pharmacological activities of ABS against RA. MATERIALS AND METHODS In this study, an analytical method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) coupled with a metabolism platform was developed for metabolic profiling of ABS in rat liver microsomes and plasma. Then, the in vivo metabolites of ABS and their targets associated with RA were used to construct the network pharmacological analysis. Gene ontology (GO) enrichment, KEGG signaling pathway analyses and pathway network analyses were performed. The therapeutic effect of ABS on RA was further evaluated using an adjuvant arthritis (AA) model and network pharmacology results validated via Western blot. RESULTS Overall, 26 and 21 metabolites of ABS were tentatively characterized in rat liver microsomes and plasma, respectively. The metabolic pathways of ABS mainly included M+O, M+O-H2, M+O2, and M+O2-H2. Data form network pharmacology analysis suggested that MAPK, apoptosis, PI3K-AKT and p53 signaling pathways contribute significantly to the therapeutic effects of ABS on RA. In pharmacodynamics experiments, ABS ameliorated the symptoms in AA rats in a dose-dependent manner and restored the homeostasis of pro/anti-inflammatory factors. Western blot results further demonstrated a significant ABS-induced decrease in phosphorylation of ERK in the MAPK pathway (P < 0.01). CONCLUSION Application of an analytical method based on UPLC-QTOF/MS, network pharmacology and validation experiments offers novel insights into the components and mechanisms of ABS that contribute to its therapeutic effects against RA, providing useful directions for further research.
Collapse
MESH Headings
- Achyranthes
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/blood
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Chromatography, High Pressure Liquid
- Cytokines/blood
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Foot Joints/drug effects
- Foot Joints/pathology
- Male
- Mass Spectrometry
- Metabolome/drug effects
- Microsomes, Liver/metabolism
- Pharmacology/methods
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Saponins/pharmacology
- Saponins/therapeutic use
- Tumor Suppressor Protein p53/metabolism
- Rats
Collapse
Affiliation(s)
- Jun Fu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Huan Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hong Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Ran Deng
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Minghui Sun
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| |
Collapse
|
49
|
Wang M, Ke Y, Li Y, Shan Z, Mi W, Cao Y, Feng W, Zheng X. The nephroprotective effects and mechanisms of rehmapicrogenin include ROS inhibition via an oestrogen-like pathway both in vivo and in vitro. Biomed Pharmacother 2021; 138:111305. [PMID: 33820633 DOI: 10.1016/j.biopha.2021.111305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The root of Rehmannia glutinosa (R. glutinosa) is commonly used in various traditional Chinese herbal formulae to ameliorate nephropathy; however, little is known about its active component(s) and mechanisms. AIM In the present study, we examined the protective effect and potential mechanism of rehmapicrogenin, a monomeric compound extracted from R. glutinosa, against Adriamycin (ADR)-induced nephropathy (AN) in vivo and in vitro. METHODS In this study, an ADR-induced kidney injury model was employed to investigate the nephroprotective effects of rehmapicrogenin in mice. In vivo, ELISA kits, flow cytometry, haematoxylin-eosin staining, immunofluorescence techniques, and western blotting were used to evaluate the effect of rehmapicrogenin on kidney injury in mice. In vitro, the effects of rehmapicrogenin on NRK-52E cellular damage induced by ADR were determined using the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The mechanism was investigated using ELISA kits, flow cytometry and In-Cell Western™ blotting. RESULTS In vivo, rehmapicrogenin treatment significantly attenuated the pathological changes in the kidney induced by ADR; rescued weight, serum creatinine (Scr), blood urea nitrogen (BUN) and urine albumin (U-ALB) levels; reduced reactive oxygen species (ROS) accumulation; and decreased oxidative stress, the apoptosis rate, and cell survival in ADR-treated mice. Importantly, both in vivo and in vitro experimental results demonstrated that rehmapicrogenin regulates the Nrf2/ARE signalling pathway, the most important pathway for oxidative stress. Rehmapicrogenin attenuated ADR-induced kidney damage by reducing oxidative stress through the oestrogen receptor pathway. Moreover, after treatment with ICI 182780 (the oestrogen receptor-nonspecific antagonist Faslodex), the improvement induced by rehmapicrogenin was significantly reversed. CONCLUSIONS In conclusion, rehmapicrogenin attenuates kidney damage by reducing inflammatory factor release through the oestrogen signalling pathway.
Collapse
Affiliation(s)
- Mengmeng Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yingying Ke
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yage Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zengfu Shan
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wangyang Mi
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yangang Cao
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
50
|
Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors. Mol Biol Rep 2020; 47:6899-6918. [PMID: 32892299 PMCID: PMC7561596 DOI: 10.1007/s11033-020-05746-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of the work was to investigate the effects of acacetin on endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats and explore its mechanism. Seven-week-old male spontaneously hypertensive rats (SHR) were selected to establish a rat model of hypertension with insulin resistance induced by 10% fructose. The nuclear factor kappa B p65 (NF-κB p65) and Collagen I were observed by Immunohistochemistry. Immunofluorescence was used to observe estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and G protein-coupled receptor 30 (GPR30). Western blotting was used to detect interleukin (IL-1β), Arginase 2 (ARG2), Nostrin, endothelial nitric oxide synthase (eNOS), TGF-β, Smad3, ERK pathway proteins such as p-c-Raf, p-MEK1/2, p-ERK, ERK, p-P90RSK and p-MSK1. We found that acacetin did have an improvement on endothelial dysfunction and fibrosis. Meanwhile, it was also found to have a significant effect on the level of estrogen in this model by accident. Then, the experiment of uterine weight gain in mice confirmed that acacetin had a certain estrogen-like effect in vivo and played its role through the estrogen receptors pathway. In vitro experience HUVEC cells were stimulated with 30 mM/L glucose and 100 mM/L NaCl for 24 h to establish the endothelial cell injury model. HUVEC cells were treated with 1 μM/L estrogen receptors antagonist (ICI 182780) for 30 min before administration. Cell experiments showed that acacetin could reduce the apoptosis of HUVEC cells, the levels of inflammatory cytokines and the expression of TGF-β, Collagen I and Smad3 in endothelial cell injury model. After treatment with ICI 182780, the improvement of acacetin was significantly reversed. The results showed that acacetin relieved endothelial dysfunction and reduced the aortic fibrosis in insulin-resistant SHR rats by reducing the release of inflammatory factors and improving vasodilatory function through estrogen signaling pathway.
Collapse
|