1
|
Tang J, Li X, Yu X, Wang D, Huang K, Pu H, Yu J, Li S, Wang W, Liu B, Guo S. Downregulation of cardiac inflammation via the CaMKII δ/NF-κB pathway in heart failure by Lonicerae Japonicae Flos and Angelicae Sinensis Radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156326. [PMID: 39706063 DOI: 10.1016/j.phymed.2024.156326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Inflammation serves an essential function in the occurrence and progression of heart failure (HF), especially in the early stage. Lonicerae japonicae Flos (LJF), Angelicae sinensis Radix (ASR), and their compatibility (LJF+ASR) can inhibit excessive inflammation and have significant cardioprotective effects. However, the primary active ingredients and mechanism of LJF and ASR in anti-inflammatory and anti-HF effect remain to be elucidated. PURPOSE This study aimed to evaluate the influence of LJF, ASR, and LJF+ASR on early inflammation and subsequent cardiac function in HF mice and to identify the primary pharmacologically active components of these compounds. METHODS LJF, ASR, and LJF+ASR components entering the plasma and heart were identified via UPLC-LTQ-Orbitlaps-MSn. The cardioprotective effects of LJF, ASR, and LJF+ASR after 8 weeks of treatment were validated in transverse aortic constriction (TAC)-induced HF mice via echocardiography, HE staining, and cardiac indices. The anti-inflammatory effects of these treatments after 1 week of TAC induction, as well as the cardioprotective and anti-inflammatory effects of the primary component chlorogenic acid (CGA), were confirmed in H9c2 cardiomyocytes through flow cytometry, Western blot, and siRNA transfection. RESULTS LJF, ASR and LJF+ASR enhanced cardiac contractile function and ameliorated cardiac pathological remodeling induced by TAC. Moreover, these compounds inhibited platelet-granulocyte aggregation, platelet-monocyte aggregation, the calmodulin-dependent protein kinase II delta (CaMKII δ)/nuclear factor-kappaB (NF-κB) signaling pathway and proinflammatory factor levels in early-stage HF to different extents. Moreover, 9 potentially effective components were identified in the aqueous extract and blood-absorbed components of LJF+ASR, and CGA inhibited the CaMKII δ/NF-κB signaling pathway and decreased proinflammatory factor levels in vitro. CONCLUSION LJF, ASR, LJF+ASR and CGA inhibit the CaMKII δ/NF-κB signaling pathway and are potentially novel therapeutics for mitigating early inflammation and improving late cardiac function of HF.
Collapse
Affiliation(s)
- Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiyin Pu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiang Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuai Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Medicine Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Medicine Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Wang Z, Chen G, Li H, Liu J, Yang Y, Zhao C, Li Y, Shi J, Chen H, Chen G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int Immunopharmacol 2024; 142:113176. [PMID: 39303539 DOI: 10.1016/j.intimp.2024.113176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Postoperative scar formation is the primary cause of uncontrolled intraocular pressure following trabeculectomy failure. This study aimed to evaluate the efficacy of zotarolimus as an adjuvant anti-scarring agent in the experimental trabeculectomy. METHODS We performed differential gene and Gene Ontology enrichment analysis on rabbit follicular transcriptome sequencing data (GSE156781). New Zealand white Rabbits were randomly assigned into three groups: Surgery only, Surgery with mitomycin-C treatment, Surgery with zotarolimus treatment. Rabbits were euthanized 3 days or 28 days post-trabeculectomy. Pathological sections were analyzed using immunohistochemistry, immunofluorescence, and Masson staining. In vitro, primary human tenon's capsule fibroblasts (HTFs) were stimulated by transforming growth factor-β1 (TGF-β1) and treated with either mitomycin-C or zotarolimus. Cell proliferation and migration were evaluated using cell counting kit-8, cell cycle, and scratch assays. Mitochondrial membrane potential was detected with the JC-1 probe, and reactive oxygen species were detected using the DCFH-DA probe. RNA and protein expressions were quantified using RT-qPCR and immunofluorescence. RESULTS Transcriptome sequencing analysis revealed the involvement of complex immune factors and metabolic disorders in trabeculectomy outcomes. Zotarolimus effectively inhibited fibrosis, reduced proinflammatory factor release and immune cell infiltration, and improved the surgical outcomes of trabeculectomy. In TGF-β1-induced HTFs, zotarolimus reduced fibrosis, proliferation, and migration without cytotoxicity via the dual regulation of the TGF-β1/Smad2/3 and AMPK/AKT/mTOR pathways. CONCLUSION Our study demonstrates that zotarolimus mitigates fibrosis by reducing immune infiltration and correcting metabolic imbalances, offering a potential treatment for improving trabeculectomy surgical outcomes.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Zhao
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Beikzadeh B, Khani M, Zarinehzadeh Y, Abedini Bakhshmand E, Sadeghizadeh M, Rabbani S, Soltani BM. Preventive and treatment efficiency of dendrosomal nano-curcumin against ISO-induced cardiac fibrosis in mouse model. PLoS One 2024; 19:e0311817. [PMID: 39388499 PMCID: PMC11469592 DOI: 10.1371/journal.pone.0311817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Cardiac fibrosis (c-fibrosis) is a critical factor in cardiovascular diseases, leading to impaired cardiac function and heart failure. This study aims to optimize the isoproterenol (ISO)-induced c-fibrosis model and evaluate the therapeutic efficacy of dendrosomal nano-curcumin (DNC) in both in-vitro and in-vivo conditions. Also, we were looking for the differentially expressed genes following the c-fibrosis induction. At the in-vitro condition, primary cardiac fibroblasts were exclusively cultured on collagen-coated or polystyrene plates and, were treated with ISO for fibrosis induction and post-treated or co-treated with DNC. RT-qPCR and flow cytometry analysis indicated that DNC treatment attenuated the fibrotic effect of ISO treatment in these cells. At the in-vivo condition, our findings demonstrated that ISO treatment effectively induces cardiac (and pulmonary) fibrosis, characterized by pro-fibrotic and pro-inflammatory gene expression and IHC (α-SMA, COL1A1, and TGFβ). Interestingly, fibrosis symptoms were reduced following the pretreatment, co-treatment, or post-treatment of DNC with ISO. Additionally, the intensive RNAseq analysis suggested the COMP gene is differentially expressed following the c-fibrosis and our RT-qPCR analysis suggested it as a novel potential marker. Overall, our results promise the application of DNC as a potential preventive or therapy agent before and after heart challenges that lead to c-fibrosis.
Collapse
Affiliation(s)
- Behnaz Beikzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Khani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yasamin Zarinehzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram M. Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Chu C, Sun S, Zhang Z, Wu Q, Li H, Liang G, Miao X, Jiang H, Gao Y, Zhang Y, Wang B, Li X. Si-Miao-Yong-An Decoction alleviates thromboangiitis obliterans by regulating miR-548j-5p/IL-17A signaling pathway. Chin J Nat Med 2024; 22:541-553. [PMID: 38906601 DOI: 10.1016/s1875-5364(24)60626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 06/23/2024]
Abstract
Thromboangiitis obliterans (TAO) is a rare, chronic, progressive, and segmental inflammatory disease characterized by a high rate of amputation, significantly compromising the quality of life of patients. Si-Miao-Yong-An decoction (SMYA), a traditional prescription, exhibits anti-inflammatory, anti-thrombotic, and various other pharmacological properties. Clinically, it was fully proved to be effective for TAO therapy, but the specific therapeutic effect of SMYA on TAO has been unknown. Thus, deep unveiling the mechanism of SMYA in TAO for identifying clinical therapeutic targets is extremely important. In this study, we observed elevated levels of IL-17A in the peripheral blood mononuclear cells (PBMCs) of TAO patients, whereas the expression of miR-548j-5p was significantly decreased. A negative correlation between the levels of miR-548j-5p and IL-17A was also demonstrated. In vitro experiments showed that overexpression of miR-548j-5p led to a decrease in IL-17A levels, whereas downregulation of miR-548j-5p showed the opposite effect. Using a dual luciferase assay, we confirmed that miR-548j-5p directly targets IL-17A. Furthermore, serum containing SMYA effectively decreased IL-17A levels by increasing the expression of miR-548j-5p. More importantly, the results of in vivo tests indicated that SMYA mitigated the development of TAO by inhibiting IL-17A through the upregulation of miR-548j-5p in vascular tissues. In conclusion, SMYA significantly enhances the expression of miR-548j-5p, thereby reducing the levels of the target gene IL-17A and alleviating TAO. Our research not only identifies novel targets and pathways for the clinical diagnosis and treatment of TAO but also advances the innovation in traditional Chinese medicine through the elucidation of the SMYA/miR-548j-5p/IL-17A regulatory axis in the pathogenesis of TAO.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangwen Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271016, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haoyang Li
- International Business School, Tianjin Foreign Studies University, Tianjin 300204, China
| | - Gang Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiuming Miao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z, Zou L, Chen S, Zhu L, Zhao Q, Zhan G, Ouyang L, Peng C, Han B, Zhang J, Fu L. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther 2024; 9:133. [PMID: 38744811 PMCID: PMC11094072 DOI: 10.1038/s41392-024-01816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Liu
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhichao Fan
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Zou
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Ouyang
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
6
|
Li K, Zhang Y, Zhao W, Wang R, Li Y, Wei L, Wang L, Chen X, Chen Z, Liu P, Nie N, Tian X, Fu R. DPP8/9 inhibition attenuates the TGF-β1-induced excessive deposition of extracellular matrix (ECM) in human mesangial cells via Smad and Akt signaling pathways. Toxicol Lett 2024; 395:1-10. [PMID: 38458339 DOI: 10.1016/j.toxlet.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pathogenesis of glomerular diseases is strongly influenced by abnormal extracellular matrix (ECM) deposition in mesangial cells. Dipeptidyl peptidase IV (DPPIV) enzyme family contains DPP8 and DPP9, which are involved in multiple diseases. However, the pathogenic roles of DPP8 and DPP9 in mesangial cells ECM deposition remain unclear. In this study, we observed that DPP8 and DPP9 were significantly increased in glomerular mesangial cells and podocytes in CKD patients compared with healthy individuals, and DPP9 levels were higher in the urine of IgA nephropathy (IgAN) patients than in control urine. Therefore, we further explored the mechanism of DPP8 and DPP9 in mesangial cells and revealed a significant increase in the expression of DPP8 and DPP9 in human mesangial cells (HMCs) following TGF-β1 stimulation. Silencing DPP8 and DPP9 by siRNAs alleviated the expression of ECM-related proteins including collagen Ⅲ, collagen Ⅳ, fibronectin, MMP2, in TGF-β1-treated HMCs. Furthermore, DPP8 siRNA and DPP9 siRNA inhibited TGF-β1-induced phosphorylation of Smad2 and Smad3, as well as the phosphorylation of Akt in HMCs. The findings suggested the inhibition of DPP8/9 may alleviate HMCs ECM deposition induced by TGF-β1 via suppressing TGF-β1/Smad and AKT signaling pathways.
Collapse
Affiliation(s)
- Ke Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Rongrong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Yan Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Linting Wei
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Li Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Zhao Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Na Nie
- Department of Nephrology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medcine, New Haven, CT 06520, USA.
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
7
|
Ma YL, Xu M, Cen XF, Qiu HL, Guo YY, Tang QZ. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway. Biomed Pharmacother 2024; 174:116589. [PMID: 38636400 DOI: 10.1016/j.biopha.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFβ/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
8
|
Qi Z, Yan Z, Zhu K, Wang Y, Fan Y, Li T, Zhang J. Novel treatment from a botanical formulation Si-Miao-Yong-an decoction inhibits vasa vasorum angiogenesis and stabilizes atherosclerosis plaques via the Wnt1/β-catenin signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1364-1373. [PMID: 37651108 PMCID: PMC10472848 DOI: 10.1080/13880209.2023.2249061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
CONTEXT Si-Miao-Yong-An (SMYA) has been widely used for the clinical treatment of atherosclerosis (AS). Yet, its complete mechanism of action is not fully understood. OBJECTIVE To investigate the mechanism by which SMYA stabilizes AS plaques from the perspective of inhibiting vasa vasorum (VV) angiogenesis. MATERIALS AND METHODS We used male ApoE-/- mice to establish an AS model. The mice were divided into model, SMYA (11.7 mg/kg/d), and simvastatin (SVTT) (2.6 mg/kg/d) groups. Mice were given SMYA or SVTT by daily gavage for 8 weeks. HE staining, immunofluorescence double-labelling staining, and immunohistochemical staining were used to observe the pathological changes in the plaques. Finally, the protein and mRNA expression levels of the Wnt1/β-catenin signalling pathway were detected by Western blot and qRT-PCR, respectively. RESULTS SMYA significantly attenuated cholesterol crystallization, and lipid accumulation in AS plaques, resulting in smaller plaque size (0.25 mm2 vs. 0.46 mm2), and lowering ratio of plaque to lumen area (20.04% vs. 38.33%) and VV density (50.64/mm2 vs. 98.02/mm2). Meanwhile, SMYA suppressed both the positive area percentage of Wnt1 (2.53 vs. 3.56), β-catenin (3.33 vs. 5.65) and Cyclin D1 (2.10 vs. 3.27) proteins in the aortic root plaques, and mRNA expression of Wnt1 (1.38 vs. 2.09), β-catenin (2.05 vs. 3.25) and Cyclin D1 (1.39 vs. 2.57). DISCUSSION AND CONCLUSIONS SMYA has a protective effect against AS, which may be related to its anti-VV angiogenesis in plaques, suggesting that SMYA has the potential as a novel botanical formulation in the treatment of AS.
Collapse
Affiliation(s)
- Zhongwen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
- Institute of Gerontology, China Academy of Chinese Medical Sciences, Beijing, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Zhipeng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Ke Zhu
- Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, P.R. China
| | - Yueyao Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yajie Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
9
|
Liang P, Bi T, Zhou Y, Ma Y, Liu X, Ren W, Yang S, Luo P. Insights into the Mechanism of Supramolecular Self-Assembly in the Astragalus membranaceus- Angelica sinensis Codecoction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47939-47954. [PMID: 37791782 PMCID: PMC10591233 DOI: 10.1021/acsami.3c09494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Astragalus membranaceus (Fisch.) Bge. (AM) and Angelica sinensis (Oliv.) Diels (AS) constitute a classic herb pair in prescriptions to treat myocardial fibrosis. To date, research on the AM-AS herb pair has mainly focused on the chemical compositions associated with therapeutic efficacy. However, supermolecules actually exist in herb codecoctions, and their self-assembly mechanism remains unclear. In this study, supermolecules originating from AM-AS codoping reactions (AA-NPs) were first reported. The chemical compositions of AA-NPs showed a dynamic self-assembly process. AA-NPs with different decoction times had similar surface groups and amorphous states; however, the size distributions of these nanoparticles might be different. Taking the interaction between Z-ligustilide and astragaloside IV as an example to understand the self-assembly mechanism of AA-NPs, it was found that the complex could be formed with a molar ratio of 2:1. Later, AA-NPs were proven to be effective in the treatment of myocardial fibrosis both in vivo and in vitro, the in-depth mechanisms of which were related to the recovery of cardiac function, reduced collagen deposition, and inhibition of the endothelial-to-mesenchymal transition that occurred in the process of myocardial fibrosis. Thus, AA-NPs may be the chemical material basis of the molecular mechanism of the AM-AS decoction in treating isoproterenol-induced myocardial fibrosis. Taken together, this work provides a supramolecular strategy for revealing the interaction between effective chemical components in herb-pair decoctions.
Collapse
Affiliation(s)
- Pan Liang
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Tao Bi
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yanan Zhou
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Xinyue Liu
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
10
|
Cai Z, He J, Jiang J, Zhao Z, Shu Y. Systematic investigation of the material basis, multiple mechanisms and quality control of Simiao Yong'an decoction combined with antibiotic in the treatment of sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154910. [PMID: 37267690 DOI: 10.1016/j.phymed.2023.154910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sepsis is one of the major threats to human health with high mortality. Simiao Yong'an decoction (SMYAD) has the efficacy of anti-inflammation, improving coagulation and microcirculation, which is applicable for the clinical assistance treatment of sepsis. Yet, its material basis and relevant mechanisms are still vague. PURPOSE Explore the quality markers (Q-markers), biomarkers and potential mechanisms of SMYAD combined with imipenem/cilastatin sodium for anti-sepsis. METHODS Linear-Trap-LC/MSn was employed to profile the compounds in the extract and medicated serum of SMYAD. Then, the components and targets obtained from databases were applied to network pharmacology. Q-markers' range was narrowed via the affinity of three times docking and determined as per its screening criteria. Also, the content of them was detected by HPLC. Next, cecal ligation and puncture (CLP) model was reproduced to observe the effect of SMYAD united antibiotic by survival rate, histopathology score, ELISA, western blot and qPCR. Finally, metabolomics based upon GC-MS was exerted to discover the differential endogenous metabolites, metabolic pathway and joint pathway of SMYAD combined with antibiotic for sepsis. RESULTS The 25 serum migrant ingredients derived from 113 chemical compounds of SMYAD were identified for the first time, and 6 components were determined as the Q-markers of SMYAD. The enrichment analysis indicated that the potential mechanism was mainly associated with the IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway. Then, SMYAD united antibiotic declined the mortality of septic rats, restored cytokine levels, ameliorated histopathological lesions and decreased the mRNA and protein expression of target proteins in a dose-dependent way. Furthermore, 8 differential metabolites were regarded as latent biomarkers related to the antiseptic effect of SMYAD united antibiotic, which were mainly involved in the Citrate cycle (TCA cycle) metabolic pathway. CONCLUSIONS Different skeletons of compounds, including iridoids, phenylpropanoids, organic acids, triterpenes and others, were the main compositions of SMYAD. Among them, 6 components were determined as the Q-markers, which provided a basis for the construction of quality standards for this ancient classic formula. The combination therapy of SMYAD and antibiotic obviously ameliorated inflammatory reaction, coagulation dysfunction and microcirculation abnormalities for sepsis by inhibiting IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway.
Collapse
Affiliation(s)
- Zhihui Cai
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ye Shu
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
11
|
Cheng J, Xue F, Cheng C, Sui W, Zhang M, Qiao L, Ma J, Ji X, Chen W, Yu X, Xi B, Xu F, Su G, Zhao Y, Hao P, Zhang Y, Zhang C. ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis and dysfunction via regulating ACE2 shedding and myofibroblast transformation. Front Pharmacol 2022; 13:997916. [PMID: 36313337 PMCID: PMC9613967 DOI: 10.3389/fphar.2022.997916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
A disintegrin and metalloprotease domain family protein 17 (ADAM17) is a new member of renin-angiotensin system (RAS) but its role in the pathogenesis of diabetic cardiomyopathy (DCM) is obscure. To test the hypothesis that ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation in diabetic mice, ADAM17 gene was knocked down and overexpressed by means of adenovirus-mediated short-hairpin RNA (shRNA) and adenovirus vector carrying ADAM17 cDNA, respectively, in a mouse model of DCM. Two-dimensional and Doppler echocardiography, histopathology and immunohistochemistry were performed in all mice and in vitro experiments conducted in primary cardiofibroblasts. The results showed that ADAM17 knockdown ameliorated while ADAM17 overexpression worsened cardiac dysfunction and cardiac fibrosis in diabetic mice. In addition, ADAM17 knockdown increased ACE2 while reduced AT1R expression in diabetic hearts. Mechanistically, ADAM17 knockdown decreased while ADAM17 overexpression increased cardiac fibroblast-to-myofibroblast transformation through regulation of TGF-β1/Smad3 signaling pathway. In conclusion, ADAM17 knockdown attenuates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation through TGF-β1/Smad3 signaling pathway in diabetic mice. Targeting ADAM17 may provide a promising approach to the prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Guohai Su
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| |
Collapse
|
12
|
Shenxian-Shengmai Oral Liquid Evoke Autophagy of Fibroblast to Attenuate Sinoatrial Node Fibrosis in Sick Sinus Syndrome Mice via the AKT/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5219277. [PMID: 36212944 PMCID: PMC9534627 DOI: 10.1155/2022/5219277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023]
Abstract
Sick sinus syndrome (SSS) is closely associated with cardiac syncope and sudden death, wherein sinoatrial node (SAN) fibrosis is one of the main pathological changes that occur. Shenxian-Shengmai oral liquid (SXSM) has been clinically proven to significantly improve the heart rate of SSS patients. In this study, we aimed to explore the mechanism of SXSM in reducing the SAN fibrosis by combining in vitro and in vivo experiments. Accordingly, the SSS model was constructed by slowly pumping angiotensin II (AngII) with a micro-osmotic pump. The degree of fibrosis was evaluated by Masson's trichrome staining and immunofluorescence staining of the fibrosis marker protein. In addition, NIH-3T3 mouse fibroblasts were used to simulate SAN fibroblasts to further explore the mechanism, with AngII used as the cellular fibrosis inducer. Monodansylcadaverine (MDC) staining and transmission electron microscopy were employed to assay the autophagy content, whereas immunofluorescence staining and Western blotting were employed to elucidate the related protein expression. Finally, fibroblasts were given the AKT phosphorylation agonist SC79 to reversely verify the effects of SXSM. The results showed that SXSM could significantly increase the heart rate of SSS mice by reducing the deposition of extracellular matrix (ECM) in SAN induced by AngII. According to in vivo experiments, when compared with the model group, SSS mice treated with SXSM developed less fibrosis in the SAN area. In vitro experiments revealed that AngII could restrain autophagy by activating the phosphorylation of the AKT/mTOR pathway, thereby increasing the deposition of ECM. Moreover, SXSM pretreatment prevented this upregulation. After the intervention of SC79, the protective effect of SXSM was weakened. In conclusion, SXSM activated autophagy through the AKT/mTOR pathway, which in turn reduced the deposition of the ECM in SAN induced by AngII, attenuated the fibrosis of SAN, and improved the decreased heart rate in the SSS mice.
Collapse
|
13
|
Therapeutic Effects of Modified Si-Miao-Yong-An Decoction in the Treatment of Rat Myocardial Ischemia/Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1442405. [PMID: 35707475 PMCID: PMC9192308 DOI: 10.1155/2022/1442405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Objective Modified Si-Miao-Yong-An decoction (MSMYA) was empirically originated from Si-Miao-Yong-An Decoction, which has been utilized for centuries to treat vasculopathy as well as heart diseases through clearing heat and detoxifying. This study aimed at confirming MSMYA's therapeutic effects for treating myocardial ischemia/reperfusion (I/R) injury and its underlying mechanisms. Methods Rats were intragastrically administered with MSMYA for 4 weeks after ischemia/reperfusion (I/R) operation. Superoxide dismutase (SOD) and malondialdehyde (MDA) concentration were determined by calorimetry. Coagulation function was determined using an automated coagulation analyzer. Levels of cysteinyl aspartate specific proteinase (caspase)-1, interleukin (IL)-1β, interleukin (IL)-18, and lactate dehydrogenase (LDH) were measured by an enzyme-linked immunosorbent assay (ELISA). Infarct size was determined by triphenyltetrazolium chloride (TTC) staining. Myocardial histopathological and ultrastructure changes were examined by H&E staining and electron microscopy, respectively. Relative mRNA expression of NLRP3, an apoptosis-associated speck-like proteins containing the caspase activation and recruitment domain (ASC), caspase-1, IL-1β, and IL-18 were analyzed using quantitative real-time polymerase chain reaction (PCR). Meanwhile, their relative protein expressions were measured using western blotting. Results The results showed MSMYA can inhibit oxidative stress by increasing SOD and reducing MDA, suppress inflammatory reaction by decreasing NLRP3 inflammasome-related cytokines' level, improve coagulation function by increasing prothrombin time (PT) and activating partial thromboplastin time (APTT), and ameliorate myocardial histopathological and ultrastructural changes. In addition, MSMYA's cardioprotective effects probably related to suppressing NLRP3 inflammasome pathway activation by reducing NLRP3 inflammasome molecular mRNA and protein relative expression. Conclusion The results indicated that MSMYA played an important role in protecting the myocardium from I/R injury. The likely mechanism is the inhibition of oxidative stress, improvement of cardiac injury, and the reduction of NLRP3-related inflammatory cytokines release. This provides a basis for further research on the mechanism and clinical application of MSMYA to improve myocardial I/R injury.
Collapse
|
14
|
Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cell Signal 2022; 94:110323. [DOI: 10.1016/j.cellsig.2022.110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
|
15
|
Chen XN, Ge QH, Zhao YX, Guo XC, Zhang JP. Effect of Si-Miao-Yong-An decoction on the differentiation of monocytes, macrophages, and regulatory T cells in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114178. [PMID: 33945857 DOI: 10.1016/j.jep.2021.114178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1β (IL-1β), IL-18, transforming growth factor-β (TGF-β), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1β and IL-18 decreased. CONCLUSIONS SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/genetics
- CD36 Antigens/metabolism
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cytokines/blood
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Forkhead Transcription Factors/metabolism
- Lipoproteins, LDL/blood
- Macrophages/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, G-Protein-Coupled/metabolism
- Scavenger Receptors, Class E/metabolism
- Spleen/drug effects
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- Triglycerides/blood
- Mice
Collapse
Affiliation(s)
- Xin-Nong Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi-Hui Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Chen Guo
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Ping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
16
|
Si-Miao-Yong-An Decoction Maintains the Cardiac Function and Protects Cardiomyocytes from Myocardial Ischemia and Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8968464. [PMID: 34367308 PMCID: PMC8337144 DOI: 10.1155/2021/8968464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022]
Abstract
Objective The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could protect cardiomyocytes from ischemia/reperfusion (I/R) injury and its underlying mechanisms. Methods C57BL/6 mice were used to establish a model of myocardial infarction by I/R injury and treated by SMYAD for 4 weeks. Then, the cardiac functions of mice were evaluated by cardiac magnetic resonance (CMR). Histopathological analysis for the heart remodeling was detected by H&E and Masson staining. The protein expression of collagen I, MMP9, and TNFα was detected by western blot in the heart tissues. H9C2 cells were used to establish the hypoxia/reoxygenation (H/R) model and SMYAD intervention. MTT assays detected the cell viability of myocardial cells. The expression level of IL-1β was evaluated by ELISA. The expression levels of LC3B-II/LC3B-I, p-mTOR, mTOR, NLRP3, procaspase 1, and cleaved-caspase 1 in H9C2 cells were evaluated by Western blot. Results SMYAD improved cardiac functions such as ventricular volume and ejection fraction of the rats with ischemia/reperfusion injury. Morphological assay indicated that SMYAD reduced the scar size and inhibited fibrosis formation. It was found that SMYAD could regulate collagen I, MMP9, and TNFα protein expression levels in the heart tissues. SMYAD improved the survival rate of H9C2 cardiomyocytes in the H/R injury model. SMYAD elevated the rate of LC3B-II/LC3B-I protein expression, decreased the rate of p-mTOR/mTOR protein expression, and reduced expressions of caspase 1, NLRP3, and IL-1β in H/R cardiomyocytes. Conclusion SMYAD exerted protective effects on ischemia/reperfusion injury in myocardial cells by activating autophagy and inhibiting pyroptosis. This might be the reason why SMYAD protected myocardial tissue and improved cardiac function in mice with ischemia/reperfusion.
Collapse
|
17
|
Tang X, Liu Z, Li X, Wang J, Li L. Cannabinoid Receptors in Myocardial Injury: A Brother Born to Rival. Int J Mol Sci 2021; 22:6886. [PMID: 34206926 PMCID: PMC8268439 DOI: 10.3390/ijms22136886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabinoid receptors typically include type 1 (CB1) and type 2 (CB2), and they have attracted extensive attention in the central nervous system (CNS) and immune system. Due to more in-depth studies in recent years, it has been found that the typical CB1 and CB2 receptors confer functional importance far beyond the CNS and immune system. In particular, many works have reported the critical involvement of the CB1 and CB2 receptors in myocardial injuries. Both pharmacological and genetic approaches have been used for studying CB1 and CB2 functions in these studies, revealing that the brother receptors have many basic differences and sometimes antagonistic functions in a variety of myocardial injuries, despite some sequence or location identity they share. Herein, we introduce the general differences of CB1 and CB2 cannabinoid receptors, and summarize the functional rivalries between the two brother receptors in the setting of myocardial injuries. We point out the importance of individual receptor-based modulation, instead of dual receptor modulators, when treating myocardial injuries.
Collapse
Affiliation(s)
| | | | | | | | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.T.); (Z.L.); (X.L.); (J.W.)
| |
Collapse
|
18
|
Guo Y, Xiao Y, Zhu H, Guo H, Zhou Y, Shentu Y, Zheng C, Chen C, Bai Y. Inhibition of proliferation-linked signaling cascades with atractylenolide I reduces myofibroblastic phenotype and renal fibrosis. Biochem Pharmacol 2020; 183:114344. [PMID: 33221275 DOI: 10.1016/j.bcp.2020.114344] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Renal fibrosis is a frequent axis contributing to the occurrence of end-stage nephropathy. Previously, it has been reported that atractylenolide Ⅰ (ATL-1), a natural compound extracted from Atractylodes macrocephala, has anti-cancer and antioxidant effects. However, the renal anti-fibrotic effects of action remain unclear. In this study, the anti-fibrotic effects of ATL-1 were examined in fibroblasts, tubular epithelial cells (TECs) triggered by TGF-β1 in vitro, and using a unilateral ureteral obstruction (UUO) mouse model in vivo. We found that ATL-1 represses the myofibroblastic phenotype and fibrosis development in UUO kidneys by targeting the fibroblast-myofibroblast differentiation (FMD), as well as epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of ATL-1 were associated with reduced cell growth in the interstitium and tubules, leading to suppression of the proliferation-linked cascades activity consisting of JAK2/STAT3, PI3K/Akt, p38 MAPK, and Wnt/β-catenin pathways. Besides, ATL-1 treatment repressed TGF-β1-triggered FMD and the myofibroblastic phenotype in fibroblasts by antagonizing the activation of proliferation-linked cascades. Likewise, TGF-β1-triggered excessive activation of the proliferation-linked signaling in TECs triggered EMT. The myofibroblastic phenotype was repressed by ATL-1. The anti-fibrotic and anti-proliferative effects of ATL-1 were linked to the inactivation of Smad2/3 signaling, partially reversing FMD, as well as EMT and the repression of the myofibroblastic phenotype. Thus, the inhibition of myofibroblastic phenotype and fibrosis development in vivo and in vitro through proliferation-linked cascades of ATL-1 makes it a prospective therapeutic bio-agent to prevent renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China; Center for Health Assessment, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|