1
|
Ghadirian S, Shariati L, Karbasi S. Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: Physicochemical and biological properties. BIOMATERIALS ADVANCES 2025; 172:214249. [PMID: 40048901 DOI: 10.1016/j.bioadv.2025.214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Cartilage regeneration is still a highly challenging field due to its low self-healing ability. This study used a core-shell electrospinning technique to enhance cartilage tissue engineering by incorporating cartilage extracellular matrix (ECM). The core of fibers included poly(3-hydroxybutyrate)-Chitosan (PHB-Cs) and Halloysite nanotubes. The shell of fibers consisted of Cs and ECM (0, 1, 3, 5 wt%). Subsequently, the scaffolds were named 0E, 1E, 3E, and 5E. The study aimed to assess the impact of ECM on cellular behavior and chondrogenesis. Our findings indicate that ECM reduced fiber diameter from 775 nm for the 0E scaffold to 454 nm for the 1E scaffold. Water contact angle measurements revealed an increasing trend by ECM addition, from 42° for 0E to 67° for 1E. According to mechanical analysis, the 1E scaffold represented the highest strength (5.81 MPa) and strain (3.17%). Based on these analyses, the 1E was considered the optimum scaffold. MTT analysis showed cell viability of over 80% for the 0E and 1E. Also, the gene expression level was assessed for Collagen II, Aggrecan, SOX 9, and Collagen X. The results represented that in the 1E scaffold Collagen II, Aggrecan, and SOX 9 were more upregulated at the end of the 21st day. However, in the 1E scaffold collagen X, as a hypertrophy marker, was downregulated at the end of the experiment. Overall, these results confirmed the potential of the 1E scaffold to be introduced as a promising cartilage tissue engineering scaffold for further studies.
Collapse
Affiliation(s)
- Sepideh Ghadirian
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Jiang Z, Yao X, Yang Y, Tang F, Ma W, Yao X, Lan W. The causal impact of bioavailable testosterone levels on osteoarthritis: a bidirectional Mendelian randomized study. BMC Musculoskelet Disord 2025; 26:387. [PMID: 40259278 PMCID: PMC12010663 DOI: 10.1186/s12891-025-08626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND It has been shown that low testosterone levels are associated with the development of osteoarthritis (OA). In our study, we aimed to investigate a bidirectional causal relationship between bioavailable testosterone levels and OA using Mendelian randomization (MR) analysis. METHODS In our study, the datasets from publicly available genome-wide association study (GWAS) were adopted, including the OA-related dataset (ukb-b-14486) and the bioavailable testosterone levels-related dataset (ebi-a-GCST90012104). The UKB-B-14,486 dataset contains 462,933 samples in total, including 38,472 OA samples, 424,461 control samples, and 9,851,867 SNPs, all collected from the European population in 2018. Additionally, the EBI-A-GCST90012104 dataset includes 382,988 samples and 16,137,327 SNPs, which reflect data from the European population in 2020. In total, five methods were utilized, namely MR Egger, Weighted median, Inverse variance weighted (IVW), Simple mode, and Weighted mode. Among them, IVW was the main analytical method. Additionally, the sensitivity analysis was carried out through the heterogeneity test, the horizontal pleiotropy test, and the Leave-One-Out (LOO) method. RESULTS The result of forward MR analysis demonstrated that bioavailable testosterone levels were considerably relevant to OA, and were a risk factor for OA (OR = 1.01, 95% CI: [1.00, 1.02], P = 0.02). However, through reverse MR analysis, we did not find a causal relationship between OA and bioavailable testosterone levels. Moreover, the results of the sensitivity analysis suggested that our results were reliable. CONCLUSION The results of our study supported a causal relationship between bioavailable testosterone levels and OA.
Collapse
Affiliation(s)
- Zong Jiang
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, guiyang, 550001, China
| | - Xiaoling Yao
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, guiyang, 550001, China.
| | - Yuzheng Yang
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, guiyang, 550001, China
| | - Fang Tang
- Department of Internal Medicine, The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, guiyang, 550002, China.
| | - Wukai Ma
- Department of Internal Medicine, The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, guiyang, 550002, China.
| | - Xueming Yao
- Department of Internal Medicine, The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, guiyang, 550002, China
| | - Weiya Lan
- Department of Internal Medicine, The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, guiyang, 550002, China
| |
Collapse
|
3
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
4
|
Wang H, Wu X, Chen L, Tong H, Hu X, He A, Li C, Guo X, Fu Y, Zhang T. Dynamic Col-HZ Hydrogel with efficient delivery of bioactivator promotes ECM deposition and cartilage formation. Mater Today Bio 2025; 31:101623. [PMID: 40104649 PMCID: PMC11914768 DOI: 10.1016/j.mtbio.2025.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Efforts in cartilage tissue engineering to repair injuries have seen limited success, primarily due to the inability of scaffold materials to establish a microenvironment conducive to extracellular matrix (ECM) deposition by chondrocytes. Hydrogels, which mimic human tissue, are commonly employed as scaffold materials; however, their constrained network structure and low bioactivity impede chondrocyte ECM deposition, complicating cartilage repair. In this study, we developed dynamic Col-HZ hydrogels featuring adaptive networks by forming hydrazone (HZ) bonds between bioactive natural collagen and synthetic polyethylene glycol (PEG). In contrast to static hydrogels that rely on covalent bonds, Col-HZ dynamic hydrogels facilitate chondrocyte migration and ECM deposition. Additionally, the aldehyde groups on the Col-HZ hydrogel scaffold can engage in dynamic Schiff base bonding with amine groups. Leveraging this non-covalent interaction, we incorporated the bioactivator TD-198946, known to enhance ECM synthesis, into the Col-HZ hydrogel. This significantly boosted ECM deposition and reduced inflammation. Transcriptomic sequencing and bioinformatics analyses indicate that both the dynamic network of the hydrogel and the binding of TD-198946 promote cartilage ECM deposition through modulation of the Wnt/β-catenin signaling pathway. Consequently, the Col-HZ dynamic hydrogel, in combination with TD-198946, creates an improved microenvironment that supports ECM deposition and facilitates cartilage tissue formation.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xu Wu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lili Chen
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Hua Tong
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xuerui Hu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| |
Collapse
|
5
|
Ajeeb B, Kiyotake EA, Keefe PA, Phillips JN, Hatzel JN, Goodrich LR, Detamore MS. Comparison of the chondrogenic potential of eBMSCs and eUCMSCs in response to selected peptides and compounds. BMC Vet Res 2025; 21:70. [PMID: 39956895 PMCID: PMC11831820 DOI: 10.1186/s12917-024-04448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/12/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Cartilage injuries pose significant challenges in horses and often lead to post-traumatic osteoarthritis (PTOA). Despite the advances in surgical and regenerative techniques, the result in most cases is the formation of a fibrocartilage repair tissue. Cell-based cartilage therapies are mainly focused on equine bone marrow-derived mesenchymal stem cells (eBMSCs) as they are easily accessible, and multipotent. Nonetheless, alternative allogeneic sources, for example equine umbilical cord matrix mesenchymal stromal cells (eUCMSCs), hold promise given their non-invasive and readily accessible nature. Considerable research has been dedicated to exploring chondroinductive factors (e.g., peptides and small compounds), aiming to replace growth factors for inducing chondrogenesis. However, these factors have not yet translated to the equine community. Therefore, in the current study, we selected from the literature two promising peptides, CM10 and CK2.1, and two promising compounds, kartogenin and SM04690, and assessed their chondroinductive potential with both eBMSCs and eUCMSCs. In addition, the chondroinductive potential of eBMSCs was evaluated in monolayer and spheroid culture in both hypoxia and normoxia in response to dexamethasone and/or transforming growth factor beta 3 (TGF-β3). RESULTS Following 21 days of culture, none of the evaluated chondrogenic factors resulted in a higher gene expression of chondrogenic markers compared to the positive or negative controls with eBMSCs or eUCMSCs. Interestingly, spheroid culture in hypoxia with dexamethasone treatment (without TGF-β or any compound or peptide) was sufficient to induce the chondrogenic differentiation of eBMSCs. CONCLUSION Based on cell response to the positive control, in the conditions employed in the current study, eBMSCs may be preferred over eUCMSCs for chondrogenesis. The current study supports the use of spheroid culture, and the use of dexamethasone over TGF-β or any of the compounds or peptides tested here from the prior literature to drive chondrogenesis with eBMSCs.
Collapse
Affiliation(s)
- Boushra Ajeeb
- Stephenson School of Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd Norman, Norman, OK, 73019, USA
| | - Emi A Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd Norman, Norman, OK, 73019, USA
| | - Peggy A Keefe
- Stephenson School of Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd Norman, Norman, OK, 73019, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Drive, Fort Collins, CO, 80521, USA
| | - Jennifer Nikki Phillips
- Translational Medicine Institute, Colorado State University, 2350 Gillette Drive, Fort Collins, CO, 80521, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer N Hatzel
- Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO, 80521, USA
| | - Laurie R Goodrich
- Translational Medicine Institute, Colorado State University, 2350 Gillette Drive, Fort Collins, CO, 80521, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd Norman, Norman, OK, 73019, USA.
- Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO, 80521, USA.
| |
Collapse
|
6
|
Zheng Z, Yu D, Wang H, Wu H, Tang Z, Wu Q, Cao P, Chen Z, Huang H, Li X, Liu C, Guo Z. Advancement of 3D biofabrication in repairing and regeneration of cartilage defects. Biofabrication 2025; 17:022003. [PMID: 39793203 DOI: 10.1088/1758-5090/ada8e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injuries, a common orthopedic issue. Current repair methods, for instance microfracture procedure (MF), autologous chondrocyte implantation (ACI), and osteochondral autologous transfer surgery have been applied in clinical practice. However, each procedure has inherent limitation. For instance, MF surgery associates with increased subchondral cyst formation and brittle subchondral bone. ACI procedure involves two surgeries, and associate with potential risks infection and delamination of the regenerated cartilage. In addition, chondrocyte implantation's efficacy depends on the patient's weight, joint pathology, gender-related histological changes of cartilage, and hormonal influences that affect treatment and prognosis. So far, it is a still a grand challenge for achieving a clinical satisfactory in repairing and regeneration of cartilage defects using conditional strategies. 3D biofabrication provide a potential to fabricate biomimetic articular cartilage construct that has shown promise in specific cartilage repair and regeneration of patients. This review reported the techniques of 3D bioprinting applied for cartilage repair, and analyzed their respective merits and demerits, and limitations in clinical application. A summary of commonly used bioinks has been provided, along with an outlook on the challenges and prospects faced by 3D bioprinting in the application of cartilage tissue repair. It provided an overall review of current development and promising application of 3D biofabrication technology in articular cartilage repair.
Collapse
Affiliation(s)
- Zenghui Zheng
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Dongmei Yu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Haoyu Wang
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Hao Wu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Zhen Tang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Qi Wu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Pengfei Cao
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Zhiyuan Chen
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Hai Huang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Zheng Guo
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| |
Collapse
|
7
|
Aref M, Sisakhtnezhad S, Fallahi H. Investigating the effect of Quercetin in the presence of CoCl 2 as an inducing hypoxia agent on the biological characteristics of human telomerase reverse transcription-immortalized adipose tissue-derived MSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117389. [PMID: 39577050 DOI: 10.1016/j.ecoenv.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Studying the effect of small chemical molecules on stem cell characteristics under normoxia and hypoxia conditions is crucial to discovering the best conditions for effective biomedical applications. This study aimed to investigate the effect of Quercetin (QC; a flavonoid) in the presence of CoCl2 as a mimicking hypoxia chemical on the biological features of human telomerase reverse transcription-immortalized mesenchymal stem cell (hTERT-MSC) lines. The effect of CoCl2, QC, and their combination on the viability, proliferation, and migration of hTERT-MSCs were evaluated by MTT, Trypan-blue staining and cell counting by hemocytometer, and in vitro wound healing assays, respectively. Moreover, the effect of treatments on the reactive oxygen species (ROS) production, cell cycle, and HIF1a, c-MET, H19, and CASP3 gene expression was assessed by NBT, PI-staining and flow-cytometry, and real-time PCR assays, respectively. We found that CoCl2 and QC have different effects on the viability, proliferation, and migration of hTERT-MSCs in a dose-dependent manner. In addition, CoCl2 and QC affect ROS levels in cells in a dose- and time-dependent manner. While CoCl2 up-regulated HIF1a, QC and CoCl2 down-regulated CASP3 and c-MET in hTERT-MSCs. Moreover, QC reduced HIF1a and lncRNA-H19 expression in cells. Furthermore, in the presence of CoCl2, QC at low concentrations reduced hTERT-MSC survival, proliferation, and migration at 48 h; however, at high concentrations, it induced cell survival and proliferation. The combination treatment also up-regulated ROS levels and down-regulated the investigated genes in cells. Altogether, we conclude that QC at high concentrations under CoCl2-mediated hypoxia and short exposure time induces hTERT-MSCs survival and proliferation.
Collapse
Affiliation(s)
- Maryam Aref
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Hossein Fallahi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Shen J, Ye D, Jin H, Wu Y, Peng L, Liang Y. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors. J Mater Chem B 2024; 12:5513-5524. [PMID: 38745541 DOI: 10.1039/d3tb03077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS Compared to the TGF-β3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.
Collapse
Affiliation(s)
- Jinpeng Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
- Department of Plastic Surgery, Taizhou Enze Medical Center, Zhejiang, P. R. China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yongxuan Wu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Lihong Peng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Yan Liang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
| |
Collapse
|
9
|
Jansseune SCG, Lammers A, van Baal J, Blanc F, van der Laan MHP, Calenge F, Hendriks WH. Diet composition influences probiotic and postbiotic effects on broiler growth and physiology. Poult Sci 2024; 103:103650. [PMID: 38555756 PMCID: PMC10998222 DOI: 10.1016/j.psj.2024.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Dietary ingredient and nutrient composition may affect the efficacy of additives in broilers. Specific feed ingredients can represent dietary challenging conditions for broilers, resulting in impaired performances and health, which might be alleviated by dietary probiotics and postbiotics. We assessed the effects of a Lactobacilli probiotic (Pro) and postbiotic (Post) when added to a standard (SD) and challenge (CD) diet. A completely randomized block study with 2 diets (SD, CD) and 3 additive conditions (Control, Pro and Post) involving 1,368 one-day-old Ross male broilers, equally distributed among 36 pens, from d1 to d42 was conducted. Both diets were formulated to contain identical levels of nutrients, with CD formulated to be richer than SD in nonstarch polysaccharides using rye and barley as ingredients. Readout parameters included growth performance parameters, footpad lesions score, blood minerals and biochemical parameters, and tibia health, strength, and composition. Compared to SD, CD decreased BW (1,936 vs. 2,033 g; p = 0.001), increased FCR (p < 0.01) and impaired tibia health and strength (p < 0.05) at d35, thereby confirming the challenging effect of CD. Pro and Post increased BW in CD (+4.7 and +3.2%, respectively, at d35; P < 0.05) but not in the SD group, without affecting FCR. Independently of the diet, Pro increased plasma calcium, phosphorus and uric acid at d21 (+6.2, +7.4, and +15.5%, respectively) and d35 (+6.6, +6.2 and +21.0%, respectively) (P < 0.05) while Post increased plasma magnesium only at d21 (+11.3%; P = 0.037). Blood bile acids were affected by additives in an age- and diet-dependent manner, with some opposite effects between dietary conditions. Diet composition modulated Pro and Post effects on broiler growth performance. Additionally, Pro and Post affected animal metabolism and leg health diet-dependently for some but not all investigated parameters. Our findings show that the effects of pro- and postbiotics on the growth performance and physiology of broilers can be dependent on diet composition and thus possibly other factors affecting diet characteristics.
Collapse
Affiliation(s)
- Samuel C G Jansseune
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands; Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands; Idena, Sautron, France.
| | - Aart Lammers
- Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Fany Blanc
- Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Wouter H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
10
|
Zheng K, Ma Y, Chiu C, Xue M, Zhang C, Du D. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment. J Orthop Translat 2024; 45:140-154. [PMID: 38559899 PMCID: PMC10979122 DOI: 10.1016/j.jot.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Jeyaraman M, Nallakumarasamy A, Jeyaraman N, Ramasubramanian S. Tissue engineering in chondral defect. COMPUTATIONAL BIOLOGY FOR STEM CELL RESEARCH 2024:361-378. [DOI: 10.1016/b978-0-443-13222-3.00033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
13
|
Zhou L, Xu J, Schwab A, Tong W, Xu J, Zheng L, Li Y, Li Z, Xu S, Chen Z, Zou L, Zhao X, van Osch GJ, Wen C, Qin L. Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells (ESPCs)-mediated articular cartilage repair. Bioact Mater 2023; 26:490-512. [PMID: 37304336 PMCID: PMC10248882 DOI: 10.1016/j.bioactmat.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 06/13/2023] Open
Abstract
As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jietao Xu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Andrea Schwab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences - CRMH, 999077, Hong Kong SAR, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Zhuo Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), 2600 AA, Delft, the Netherlands
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, 518000, Shenzhen, China
| |
Collapse
|
14
|
Cong B, Sun T, Zhao Y, Chen M. Current and Novel Therapeutics for Articular Cartilage Repair and Regeneration. Ther Clin Risk Manag 2023; 19:485-502. [PMID: 37360195 PMCID: PMC10290456 DOI: 10.2147/tcrm.s410277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Articular cartilage repair is a sophisticated process that has is being recently investigated. There are several different approaches that are currently reported to promote cartilage repair, like cell-based therapies, biologics, and physical therapy. Cell-based therapies involve the using stem cells or chondrocytes, which make up cartilage, to promote the growth of new cartilage. Biologics, like growth factors, are also being applied to enhance cartilage repair. Physical therapy, like exercise and weight-bearing activities, can also be used to promote cartilage repair by inducing new cartilage growth and improving joint function. Additionally, surgical options like osteochondral autograft, autologous chondrocyte implantation, microfracture, and others are also reported for cartilage regeneration. In the current literature review, we aim to provide an up-to-date discussion about these approaches and discuss the current research status.
Collapse
Affiliation(s)
- Bo Cong
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Tao Sun
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Yuchi Zhao
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Mingqi Chen
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
| |
Collapse
|
15
|
Burdis R, Kronemberger GS, Kelly DJ. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells. Tissue Eng Part C Methods 2023; 29:121-133. [PMID: 36719783 DOI: 10.1089/ten.tec.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.
Collapse
Affiliation(s)
- Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
16
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
17
|
Chen L, Wei L, Su X, Qin L, Xu Z, Huang X, Chen H, Hu N. Preparation and Characterization of Biomimetic Functional Scaffold with Gradient Structure for Osteochondral Defect Repair. Bioengineering (Basel) 2023; 10:bioengineering10020213. [PMID: 36829707 PMCID: PMC9952804 DOI: 10.3390/bioengineering10020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Osteochondral (OC) defects cannot adequately repair themselves due to their sophisticated layered structure and lack of blood supply in cartilage. Although therapeutic interventions are reaching an advanced stage, current clinical therapies to repair defects are in their infancy. Among the possible therapies, OC tissue engineering has shown considerable promise, and multiple approaches utilizing scaffolds, cells, and bioactive factors have been pursued. The most recent trend in OC tissue engineering has been to design gradient scaffolds using different materials and construction strategies (such as bi-layered, multi-layered, and continuous gradient structures) to mimic the physiological and mechanical properties of OC tissues while further enabling OC repair. This review focuses specifically on design and construction strategies for gradient scaffolds and their role in the successful engineering of OC tissues. The current dilemmas in the field of OC defect repair and the efforts of tissue engineering to address these challenges were reviewed. In addition, the advantages and limitations of the typical fabrication techniques for gradient scaffolds were discussed, with examples of recent studies summarizing the future prospects for integrated gradient scaffold construction. This updated and enlightening review could provide insights into our current understanding of gradient scaffolds in OC tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Huang
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| | - Hong Chen
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| | - Ning Hu
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| |
Collapse
|
18
|
Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater 2023; 20:574-597. [PMID: 35846846 PMCID: PMC9254262 DOI: 10.1016/j.bioactmat.2022.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The osteochondral defect repair has been most extensively studied due to the rising demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been proposed as a promising strategy to meet the demand of simultaneous regeneration of both cartilage and subchondral bone by constructing integrated gradient tissue-engineered osteochondral scaffold (IGTEOS). This review brought forward the main challenges of establishing a satisfactory IGTEOS from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue, and the limitations of obtaining the desired and required scaffold. Then, we comprehensively discussed and summarized the current tissue-engineered efforts to resolve the above challenges, including architecture strategies, fabrication techniques and in vitro/in vivo evaluation methods of the IGTEOS. Especially, we highlighted the advantages and limitations of various fabrication techniques of IGTEOS, and common cases of IGTEOS application. Finally, based on the above challenges and current research progress, we analyzed in details the future perspectives of tissue-engineered osteochondral construct, so as to achieve the perfect reconstruction of the cartilaginous and osseous layers of osteochondral tissue simultaneously. This comprehensive and instructive review could provide deep insights into our current understanding of IGTEOS.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ning Li
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
19
|
Dehghan-Baniani D, Mehrjou B, Chu PK, Lee WYW, Wu H. Recent Advances in "Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues". Adv Healthc Mater 2022; 12:e2202581. [PMID: 36571465 DOI: 10.1002/adhm.202202581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
21
|
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, Delgado-Gonzalez P, Islas JF, Roacho-Pérez JA, Garza-Treviño EN. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int J Mol Sci 2022; 23:ijms23179879. [PMID: 36077276 PMCID: PMC9456199 DOI: 10.3390/ijms23179879] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a highly organized tissue that provides remarkable load-bearing and low friction properties, allowing for smooth movement of diarthrodial joints; however, due to the avascular, aneural, and non-lymphatic characteristics of cartilage, joint cartilage has self-regeneration and repair limitations. Cartilage tissue engineering is a promising alternative for chondral defect repair. It proposes models that mimic natural tissue structure through the use of cells, scaffolds, and signaling factors to repair, replace, maintain, or improve the specific function of the tissue. In chondral tissue engineering, fibrin is a biocompatible biomaterial suitable for cell growth and differentiation with adequate properties to regenerate damaged cartilage. Additionally, its mechanical, biological, and physical properties can be enhanced by combining it with other materials or biological components. This review addresses the biological, physical, and mechanical properties of fibrin as a biomaterial for cartilage tissue engineering and as an element to enhance the regeneration or repair of chondral lesions.
Collapse
Affiliation(s)
- Juan Antonio Rojas-Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Mario A. Simental-Mendía
- Servicio de Ortopedia y Traumatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Nidia K. Moncada-Saucedo
- Departamento de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Paulina Delgado-Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - José Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Jorge A. Roacho-Pérez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
- Correspondence: ; Tel.: +52-81-83294173
| |
Collapse
|
22
|
Chen T, Peng Y, Hu W, Shi H, Li P, Que Y, Qiu J, Qiu X, Gao B, Zhou H, Chen Y, Zhu Y, Li S, Liang A, Gao W, Huang D. Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis. Stem Cell Res Ther 2022; 13:392. [PMID: 35922833 PMCID: PMC9351134 DOI: 10.1186/s13287-022-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) have been proven to have inherent chondrogenic differentiation potential, which appears to be used in cartilage regeneration. Increasing evidence suggests that irisin enhances osteoblast differentiation of MSCs, but little is known about its potential on chondrogenic differentiation. Methods In the study, we investigated the effects of irisin on chondrogenic differentiation of hMSCs using a high-density pellet culture system. The cartilage pellets were evaluated by morphology, and the metabolism of cartilage matrix was detected by qPCR, western blot and immunohistochemistry. Next, RNA-seq was performed to explore the underlying mechanism. Furthermore, using the transduction of plasmid, miRNAs mimics and inhibitor, the activation of Rap1/PI3K/AKT axis, the expression level of SIPA1L2, and the functional verification of miR-125b-5p were detected on day 7 of chondrogenic differentiation of hMSCs. Results Compared with the controls, we found that irisin treatment could significantly enhance the chondrogenic differentiation of hMSCs, enlarge the induced-cartilage tissue and up-regulate the expression levels of cartilage markers. RNA-seq indicated that irisin activated the Rap1 and PI3K/AKT signaling pathway, and the lower expression level of SIPA1L2 and the higher expression level of miR-125b-5p were found in irisin-treated group. Further, we found that irisin treatment could up-regulate the expression level of miR-125b-5p, targeting SIPA1L2 and consequently activating the Rap1/PI3K/AKT axis on the process of chondrogenic differentiation of hMSCs. Conclusions Collectively, our study reveals that irisin can enhance chondrogenic differentiation of hMSCs via the Rap1/PI3K/AKT pathway, suggesting that irisin possesses prospects in cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03092-8.
Collapse
Affiliation(s)
- Taiqiu Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yichen Que
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Yuan TJ, Xu XH, Zhou N, Yan G, Gu TW, Peng LH. Phytochemicals as new therapeutic candidates simultaneously stimulate proliferation and counteract senescence of stem cells. Biomed Pharmacother 2022; 151:113170. [PMID: 35676782 DOI: 10.1016/j.biopha.2022.113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy. However, the research and clinical application of MSCs are greatly hindered by the limited cells proliferation and replicative senescence. Therapeutic agents that can both enhance the proliferative ability and decrease the replicative senescence of MSCs are greatly needed, however, not been reported yet. Herein, for the first time, we identified 11 natural compounds from medicinal plants with both excellent proliferative and anti-senescence abilities in MSCs. The qPCR analysis indicated underlying mechanisms associated with fibroblast growth factor, transforming growth factor, Wnt/β-catenin and leukemia-induced factor in proliferation; the reactive oxygen species production, mitochondrial dysfunction autophagy and proteostasis are involved in cells senescence-related mechanism. Phytochemicals are demonstrated as novel therapeutic candidates with promising effects in both stimulating proliferation and retarding replicative senescence of stem cells with high safety.
Collapse
Affiliation(s)
- Tie-Jun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xue-Han Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
24
|
Yue Y, Xu P, Lei Z, Li K, Xu J, Wen J, Wang S, Cheng W, Lin S, Huang Z, Xu H. Preparation and characterization of a novel drug-loaded Bi-layer scaffold for cartilage regeneration. RSC Adv 2022; 12:9524-9533. [PMID: 35424939 PMCID: PMC8985181 DOI: 10.1039/d2ra00311b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence of articular cartilage defects is increasing year by year. In order to repair the cartilage tissue at the defect, scaffolds with nanofiber structure and biocompatibility have become a research hotspot. In this study, we designed and fabricated a bi-layer scaffold prepared from an upper layer of drug-dispersed gelatin methacrylate (GELMA) hydrogel and a lower layer of a drug-encapsulated coaxial fiber scaffold prepared from silk fiber (SF) and polylactic acid (PLA). These bi-layer scaffolds have porosity (91.26 ± 3.94%) sufficient to support material exchange and pore size suitable for cell culture and infiltration, as well as mechanical properties (2.65 ± 0.31 MPa) that meet the requirements of cartilage tissue engineering. The coaxial fiber structure exhibited excellent drug release properties, maintaining drug release for 14 days in PBS. In vitro experiments indicated that the scaffolds were not toxic to cells and were amenable to chondrocyte migration. Notably, the growth of cells in a bi-layer scaffold presented two states. In the hydrogel layer, cells grow through interconnected pores and take on a connective tissue-like shape. In the coaxial fiber layer, cells grow on the surface of the coaxial fiber mats and appeared tablet-like. This is similar to the structure of the functional partitions of natural cartilage tissue. Together, the bi-layer scaffold can play a positive role in cartilage regeneration, which could be a potential therapeutic choice to solve the current problems of clinical cartilage repair.
Collapse
Affiliation(s)
- Yunqing Yue
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Peihu Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Zhixin Lei
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Kebi Li
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Jingyi Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Jing Wen
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Sining Wang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Wanting Cheng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Sihui Lin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Zhijun Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| | - Haixing Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 430070 China
| |
Collapse
|
25
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
26
|
Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol 2022; 9:770655. [PMID: 34976967 PMCID: PMC8719005 DOI: 10.3389/fbioe.2021.770655] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is an avascular tissue, with limited ability to repair and self-renew. Defects in articular cartilage can induce debilitating degenerative joint diseases such as osteoarthritis. Currently, clinical treatments have limited ability to repair, for they often result in the formation of mechanically inferior cartilage. In this review, we discuss the factors that affect cartilage homeostasis and function, and describe the emerging regenerative approaches that are informing the future treatment options.
Collapse
Affiliation(s)
- Yanxi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Karan M Shah
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Ajeeb B, Acar H, Detamore MS. Chondroinductive Peptides for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:745-765. [PMID: 34375146 DOI: 10.1089/ten.teb.2021.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inducing and maintaining a hyaline cartilage phenotype is the greatest challenge for cartilage regeneration. Synthetic chondroinductive biomaterials might be the answer to the unmet clinical need for a safe, stable, and cost-effective material capable of inducing true hyaline cartilage formation. The past decade witnessed an emergence of peptides to achieve chondrogenesis, as peptides have the advantages of versatility, high target specificity, minimized toxicity and immunogenicity, and ease of synthesis. Here, we review peptides as the basis for creating promising synthetic chondroinductive biomaterials for in situ scaffold-based cartilage regeneration. We provide a thorough review of peptides evaluated for cartilage regeneration while distinguishing between peptides reported to induce chondrogenesis independently, and peptides reported to act in synergy with other growth factors to induce cartilage regeneration. Additionally, we highlight that most peptide studies have been in vitro, and appropriate controls are not always present. A few rigorously-performed in vitro studies have proceeded to in vivo studies, but the peptides in those in vivo studies were mainly introduced via systemic, subcutaneous, or intraarticular injections, with a paucity of studies employing in situ defects with appropriate controls. Clinical translation of peptides will require the evaluation of these peptides in well-controlled in vivo cartilage defect studies. In the decade ahead, we may be poised to leverage peptides to design devices that are safe, reproducible, cost-efficient, and scalable biomaterials, which are themselves chondroinductive to achieve true hyaline cartilage regeneration without the need for growth factors and other small molecules.
Collapse
Affiliation(s)
- Boushra Ajeeb
- University of Oklahoma, 6187, Biomedical Engineering, Norman, Oklahoma, United States;
| | - Handan Acar
- University of Oklahoma, 6187, Biomedical Engineering, Norman, Oklahoma, United States;
| | | |
Collapse
|
28
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|