1
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 PMCID: PMC11976421 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
2
|
Liu W, Sun M, Zhang H, Wang WT, Song J, Wang MY, Wang CM, Sun HM. Targeting regulation of lipid metabolism with polysaccharide of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease: A review. Int J Biol Macromol 2025; 306:141660. [PMID: 40032085 DOI: 10.1016/j.ijbiomac.2025.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic diseases in the world, and the effective treatment of NAFLD has been listed as a key problem to be solved urgently in contemporary medicine. Polysaccharides in traditional Chinese medicine (TCM) have a wide range of pharmacological activities. A large number of preclinical studies have confirmed that TCM polysaccharides can interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improving lipid metabolism and insulin resistance, regulating oxidative stress, alleviating immune inflammatory response, and regulating intestinal microbiota, thus showing great potential as a new anti-NAFLD drug. This paper summarizes the prevention and treatment effect and mechanism of TCM polysaccharides on NAFLD, which provides a basis for the application of TCM polysaccharides in plant medicine and modern medicines, and provides a reference for promoting the development and utilization of TCM polysaccharide resources and the research and development of new drugs for NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
3
|
Li Z, Wang X, Li X, Chen X, Wang C, Mao Y, Teng G, Zhu X, Zhang J. Polysaccharides from Lanzhou Lily Attenuate Nonalcoholic Fatty Liver Disease Modifying the Gut Microbiota and Metabolite Profile. Chem Biodivers 2025; 22:e202401538. [PMID: 39255384 DOI: 10.1002/cbdv.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is closely related to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for treating NAFLD. However, the therapeutic effects and potential molecular mechanisms of Lanzhou Lily polysaccharides (LLP) on NAFLD remains unclear. Therefore, the alleviating effects of LLP on NAFLD induced by high-fat diet (HFD) were investigated. LLP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFD-induced NAFLD mice, as evidenced by decreased serum levels of TG, TC, HDL-C and LDL-C. Furthermore, LLP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. LLP also inhibited the TNF-α and IL-1β expression, thereby reducing levels of hepatic proinflammatory cytokines. Furthermore, LLP restored gut microbiota dysbiosis (up-regulated Bacteroidota, Proteobacteria, Alistipes and Lachnospiraceae abundances, down-regulated Firmicutes, Verrucomicrobiota, Desulfobacterota and Turicibacter abundances), and regulated microbial metabolic pathways such as primary bile acid biosynthesis and amino acid metabolism. In addition, the resultes of Spearman's correlation analysis found that some key metabolites in these metabolic pathways were associated with intestinal microorganisms such as Desulfobacterota, Prevotellaceae-UCG-001, Colidextribacter and Alistipes. Therefore, our study suggests that LLP may has potential applications in the treatment of NAFLD by regulating gut microbiota and its metabolite profile.
Collapse
Affiliation(s)
- Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Xia Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Cancan Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Guixiang Teng
- Gansu Jingbo Biotechnology Development Co., LTD, Lanzhou, 730070, Gansu Province, China
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
- Institute of Rural Development and Research, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, Gansu Province, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
- Institute of Rural Development and Research, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, Gansu Province, China
- Gansu Provincial Association of Women Science and Technology Workers, Lanzhou, 730070, Gansu Province, China
- Gansu Jingbo Biotechnology Development Co., LTD, Lanzhou, 730070, Gansu Province, China
| |
Collapse
|
4
|
Song S, Qiu R, Huang Y, Zhou Z, Yan J, Ou Q, Wei D, He J, Liang Y, Du X, Yao W, Lu T. Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. Toxicol Res (Camb) 2024; 13:tfae123. [PMID: 39119266 PMCID: PMC11303830 DOI: 10.1093/toxres/tfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR. Methods In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo. Results The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity. Conclusions This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yan Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Donghui Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jingxuan He
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yi Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Xingyue Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
5
|
Ruan X, Zhang X, Liu L, Zhang J. Mechanism of Xiaoyao San in treating non-alcoholic fatty liver disease with liver depression and spleen deficiency: based on bioinformatics, metabolomics and in vivo experiments. J Biomol Struct Dyn 2024; 42:5128-5146. [PMID: 37440274 DOI: 10.1080/07391102.2023.2231544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Xiaoyao san (XYS) plays an important role in treatment of non-alcoholic fatty liver disease (NAFLD) with liver stagnation and spleen deficiency, but its specific mechanism is still unclear. This study aimed to investigate the material basis and mechanism by means of network pharmacology, metabolomics, systems biology and molecular docking methods. On this basis, NAFLD rat model with liver stagnation and spleen deficiency was constructed and XYS was used to intervene, and liver histopathology, biochemical detection, enzyme-linked immunosorbent assay, quantitative PCR assay and western blotting were used to further verify the mechanism. Through the above research methods, network pharmacology study showed that there were 94 targets in total for XYS in the treatment of NAFLD. Metabolomics study showed that NAFLD with liver depression and spleen deficiency had a total of 73 differential metabolites. Systems biology found that PTGS2 and PPARG were the core targets; Quercetin, kaempferol, naringenin, beta-sitosterol and stigmasterol were the core active components; AA, cAMP were the core metabolites. And molecular docking showed that the core active components can act well on the key targets. Animal experiments showed that XYS could improve liver histopathology, increase 5HT and NA, decrease INS and FBG, improve blood lipids and liver function, decrease AA, increase cAMP, down-regulate PTGS2, up-regulate PPARG, and decrease PGE2 and 15d-PGJ2. In conclusion, XYS might treat NAFLD with liver depression and spleen deficiency by down-regulating PTGS2, up-regulating PPARG, reducing AA content, increasing cAMP, improving insulin resistance, affecting glucose and lipid metabolism, inhibiting oxidative stress and inflammatory response.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoming Zhang
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Liming Liu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Huang J, Liang X, Zhao M, Zhang Y, Chen Z. Metabolomics and network pharmacology reveal the mechanism of antithrombotic effect of Asperosaponin VI. Biomed Pharmacother 2024; 173:116355. [PMID: 38493592 DOI: 10.1016/j.biopha.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Dipsaci Radix may possess antithrombotic properties, and one of its primary active ingredients is Asperosaponin VI. However, the antithrombotic effects and pharmacological mechanisms of Asperosaponin VI remain unclear. An in vivo experimental study has demonstrated the antithrombotic activity of Asperosaponin VI. Asperosaponin VI also exhibits anticoagulant properties. Asperosaponin VI significantly hindered collagen adrenergic-induced acute pulmonary thrombosis in mice and enhanced their survival rate. This hinders the formation of acute pulmonary embolisms induced by adenosine diphosphate (ADP) and decreases recovery time. A comprehensive strategy that combines metabolomics, network pharmacology, molecular docking, and experimental validation has the potential to reveal the antithrombotic mechanisms of Asperosaponin VI. Metabolomic evidence suggests that Asperosaponin VI may influence platelet aggregation and the production of anti-inflammatory metabolites through the regulation of pathways such as phenylalanine and arachidonic acid metabolism, thereby inhibiting thrombosis. Network pharmacology identified the pharmacological targets of Asperosaponin VI and indicated that it treats thrombi by partially regulating the signaling pathways related to inflammation and platelet aggregation. Asperosaponin VI showed strong binding affinity for F2, PTPRC, JUN, STAT3, SRC, AKT1. The antiplatelet aggregation activity of Asperosaponin VI was validated based on the metabolomic and network pharmacology results. Asperosaponin VI inhibits platelet aggregation induced by ADP, AA, and collagen. Therefore, Asperosaponin VI exerts antithrombotic effects through antiplatelet aggregation. Therefore, Asperosaponin VI is a promising antithrombotic agent.
Collapse
Affiliation(s)
- Jin Huang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Xuewen Liang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Minrui Zhao
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Yue Zhang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China.
| | - Ziyang Chen
- Huizhou first Maternal and Child Health Care Hospital, Huizhou 516000, China.
| |
Collapse
|
7
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
8
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
9
|
Teixeira FS, Pimentel LL, Pintado ME, Rodríguez-Alcalá LM. Impaired hepatic lipid metabolism and biomarkers in fatty liver disease. Biochimie 2023; 215:69-74. [PMID: 37769937 DOI: 10.1016/j.biochi.2023.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
The liver plays a crucial role in lipid metabolism and metabolic homeostasis. Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease worldwide and currently has no specific treatments. Lifestyle modifications such as weight loss, exercise, and dietary changes are recommended to reduce the risk factors associated with the disease. Oxidized cholesterol products, some phospholipids and diacylglycerols can activate inflammatory pathways and contribute to the progression to Non-Alcoholic Steatohepatitis. Monitoring the whole plasma and liver lipidome may provide insights into the onset, development, and prevention of inflammatory-related diseases. As Lipid Droplets (LDs) represent augmented lipid reservoirs in NAFLD, new developments are being made on different therapies focused on LD associated proteins modulation (seipin, PLIN-2), as well as LD lipophagy mechanisms. The information covered in this publication provides an overview of the available research on lipid biomarkers linked to NAFLD and can be used to guide the development of future pharmacological therapies.
Collapse
Affiliation(s)
- Francisca S Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Luís M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
10
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
11
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Zhang L, Wang S, Li Y, Liu B, Duan Z, Liu F, Ren Q. Tartary buckwheat root polysaccharides ameliorate non-alcoholic fatty liver disease via the IL6-SOCS3-SREBP1c pathway. Food Chem Toxicol 2023; 179:113997. [PMID: 37604299 DOI: 10.1016/j.fct.2023.113997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Our previous study demonstrated that Tartary buckwheat root polysaccharides (TBRP) could reduce insulin resistance in diabetes mellitus by inhibiting SOCS3-stimulated IRS1 protein degradation. However, whether TBRP has the efficiency to treat non-alcoholic fatty liver disease (NAFLD) is still undetermined. This investigation aimed to examine the effects of TBRP on a high-fat diet (HFD)-triggered NAFLD, and elucidate the underlying molecular mechanisms. Briefly, TBRP toxicity in hepatoma (BEL7404) and pancreatic cancer (BxPC3) cells and zebrafish embryos developmental models, were evaluated in-vitro and in-vivo, respectively. TBRP inhibited cellular lipid accumulation by suppressing fat synthesis, furthermore, it improved body weight gain, liver weight, liver-to-body weight ratio, serum lipids triglyceride, total cholesterol, ALT, LDL-C, HDL-C, and AST levels in the NAFLD mice model. Additionally, TBRP treatment also lowered the nitric oxide content. The qPCR assay revealed that mRNA expression of TNF, IL1β, and IL6 was also markedly reduced in TBRP-treated NAFLD mice. The expression of SOCS3, SREBP1c, and STAT3 was elucidated by western blot analysis, which indicated that TBRP markedly decreased the gene expression for de novo fat synthesis by the SOCS3-SREBP1c pathway. These findings reveal that TBRP ameliorates NAFLD via the IL6-SOCS3-SREBP1c signaling pathway and therefore, may represent a promising approach for NAFLD treatment.
Collapse
Affiliation(s)
- Litao Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Shuo Wang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Yimin Li
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Boyu Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Zeyu Duan
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, China.
| |
Collapse
|
13
|
Xue G, Zheng Z, Liang X, Zheng Y, Wu H. Uterine Tissue Metabonomics Combined with 16S rRNA Gene Sequencing To Analyze the Changes of Gut Microbiota in Mice with Endometritis and the Intervention Effect of Tau Interferon. Microbiol Spectr 2023; 11:e0040923. [PMID: 37067455 PMCID: PMC10269590 DOI: 10.1128/spectrum.00409-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Endometritis is a common cow disease characterized by inflammation of endometrium, which leads to infertility or low fertility of cows and brings huge economic losses to the dairy industry. Tau interferon (IFN-τ) has many important biological functions, including an anti-inflammatory effect. The present study aimed to survey the effects of IFN-τ administration on gut microflora and body metabolism in mice with endometritis and to explore the potential relationship. The results indicated that IFN-τ obviously alleviated the damage and ultrastructural changes of mouse endometrium induced by Escherichia coli and enhanced tight junction protein's expression level. Through analysis by 16S rRNA gene sequencing, we found that IFN-τ, especially at 12 h, could regulate the composition of gut microbiota associated with Pediococcus, Staphylococcus, and Enterorhabdus in E. coli-induced mouse endometritis. Through histometabonomics, it was found that endometritis was related to 11 different metabolites and 4 potential metabolic pathways. These metabolites and metabolic pathways were major participants in metabolic pathways, cysteine and methionine metabolism, arachidonic acid metabolism, and pyrimidine metabolism. Correlation analysis of gut microbiota with uterine tissue metabolomics showed that changes in metabolic pathways might be affected by gut microbiota, such as Enterorhabdus in mouse endometritis. The above results indicated that the anti-inflammatory mechanism of IFN-τ might be reduction of the abundance of Enterorhabdus in the gut microbiota, affecting the expression level of important metabolites in uterine tissue and thus playing an anti-inflammatory role. IMPORTANCE The change in intestinal flora has been the focus of many disease studies in recent years, but the pathogenetic effect of interferon on endometritis is still unclear. The results of this study showed that IFN-τ alleviated the damage in mouse endometritis induced by E. coli and improved the endometrial tissue barrier. Its functional mechanism may be reduction of the abundance of Enterorhabdus in the intestinal microbiota, affecting the expression level of important metabolites in uterine tissue and thus playing an anti-inflammatory role.
Collapse
Affiliation(s)
- Guanhong Xue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhijie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoben Liang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghui Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
15
|
Xu X, Wang L, Zhang K, Zhang Y, Fan G. Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomed Pharmacother 2023; 161:114538. [PMID: 36931026 DOI: 10.1016/j.biopha.2023.114538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolic diseases have become a public health problem worldwide. Effective, novel and natural therapies are urgently needed to treat metabolic diseases. As natural bioactive compounds, polysaccharides have many physiological and medicinal properties. Recently, herb-derived polysaccharides have shown beneficial effects in the treatment of metabolic diseases, but the underlying mechanisms remain unclear. This review comprehensively summarizes the pharmacological progress and clinical evidence of herb-derived polysaccharides in the treatment of three metabolic diseases, namely type 2 diabetes mellitus, nonalcoholic fatty liver disease and obesity, and more importantly, discusses the molecular mechanism involved. Existing evidence has proved that herb-derived polysaccharides can maintain glucose homeostasis, promote insulin secretion, improve insulin resistance, reduce weight gain and hepatic steatosis, inhibit lipogenesis, alleviate oxidative stress and inflammation, and improve gut microbiota disorders in rodents with metabolic diseases. Notably, so far, human clinical trials of herb-derived polysaccharides for these three metabolic diseases remain rare. All in all, herb-derived polysaccharides may have good potential as drug candidates for the prevention and management of metabolic diseases. More high-quality clinical trials are needed to further validate its effectiveness and safety in human subjects.
Collapse
Affiliation(s)
- Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Hu YL, Ma Q, Dong X, Kong Y, Cai J, Li J, Dong C. Research progress on the therapeutic effects of polysaccharides on non-alcoholic fatty liver diseases. Front Nutr 2023; 10:1107551. [PMID: 36969821 PMCID: PMC10036344 DOI: 10.3389/fnut.2023.1107551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is a leading cause of cirrhosis and hepatocellular carcinoma. Due to its complex pathophysiology, there is currently no approved therapy. Polysaccharide, a kind of natural product, possesses a wide range of pharmacological activities. Numerous preclinical studies have confirmed that polysaccharides could interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improvement of glucose and lipid metabolism, antioxidation, anti-inflammation, and regulation of gut-liver axis, thus showing great potential as novel anti-NAFLD drugs. In this paper, we reviewed the polysaccharides with anti-NAFLD effect in recent years, and also systematically analyzed their possible pharmacological mechanisms.
Collapse
Affiliation(s)
- Yu-Long Hu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Qiaoli Ma
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Xiaoqiang Dong
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Yuanfang Kong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Juntao Cai
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Jieming Li
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Chunhong Dong
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| |
Collapse
|
17
|
Zhang Y, Liu Y, Ni G, Xu J, Tian Y, Liu X, Gao J, Gao Q, Shen Y, Yan Z. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
18
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Liu W, Shao T, Tian L, Ren Z, Gao L, Tang Z, Fang Z, Yuan P, Liu C, Li J, Wang G, Han J. Structural elucidation and anti-nonalcoholic fatty liver disease activity of Polygonatum cyrtonema Hua polysaccharide. Food Funct 2022; 13:12883-12895. [PMID: 36441628 DOI: 10.1039/d2fo03384d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chemical structure and pharmacological activity of Polygonatum cyrtonema Hua polysaccharides have garnered significant attention in recent years. In this study, a homogeneous polysaccharide, PCP1, was extracted from P. cyrtonema Hua rhizomes and purified. Monosaccharide composition analysis showed that PCP1 is primarily composed of fructose, glucose, and mannose. Chemical structure analysis showed that the main chain of PCP1 is composed mainly of →1)-β-D-Fruf-(2→ and →1,6)-β-D-Fruf-(2→, with small amounts of →6)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, and β-D-Glcp-(1→. The side chain is β-D-Fruf-(2→ linked at C-6 of →1,6)-β-D-Fruf-(2→. In vivo experiments showed that PCP1 mitigates liver pathological damage, improves abnormal lipid metabolism and oxidative stress, promotes the production of short-chain fatty acids, and balances the composition of the intestinal microbiota in non-alcoholic fatty liver disease (NAFLD) mice. Thus, PCP1 can be used as a natural ingredient in functional foods for the treatment of NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Taili Shao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lei Tian
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Zhengrui Ren
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Lan Gao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Zhiyan Tang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Zheng Fang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Pingchuan Yuan
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Chunyan Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Jikun Li
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Guodong Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Jun Han
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
20
|
Role of Oxylipins in the Inflammatory-Related Diseases NAFLD, Obesity, and Type 2 Diabetes. Metabolites 2022; 12:metabo12121238. [PMID: 36557276 PMCID: PMC9788263 DOI: 10.3390/metabo12121238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Oxygenated polyunsaturated fatty acids (oxylipins) are bioactive molecules established as important mediators during inflammation. Different classes of oxylipins have been found to have opposite effects, e.g., pro-inflammatory prostaglandins and anti-inflammatory resolvins. Production of the different classes of oxylipins occurs during distinct stages of development and resolution of inflammation. Chronic inflammation is involved in the progression of many pathophysiological conditions and diseases such as non-alcoholic fatty liver disease, insulin resistance, diabetes, and obesity. Determining oxylipin profiles before, during, and after inflammatory-related diseases could provide clues to the onset, development, and prevention of detrimental conditions. This review focusses on recent developments in our understanding of the role of oxylipins in inflammatory disease, and outlines novel technological advancements and approaches to study their action.
Collapse
|
21
|
Jiang LY, Kan YN, Yu ZP, Jian BY, Yao SJ, Lv LY, Liu JC. Prebiotic Effects of Chinese Herbal Polysaccharides on NAFLD Amelioration: The Preclinical Progress. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by fatty degeneration of liver cells, and there are currently no effective treatments. Numerous investigations have demonstrated that Chinese herbal medicines (CHMs) are effective against NAFLD. Polysaccharides (PS), the major components of most CHM, are primarily taken orally to be degraded and fermented by gut microbiota, which makes them a promising multivalent and multifunctional prebiotic candidate for NAFLD. In this review, the experimental evidence to prevent and treat NAFLD using the unique prebiotic effects of PS isolated from CHM are summarized to discuss additional treatment options for NAFLD.
Collapse
Affiliation(s)
- Li-Yan Jiang
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Yu-Na Kan
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhi-Pu Yu
- Department of Equipment, The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, China
| | - Bai-Yu Jian
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Shu-Juan Yao
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Li-Yan Lv
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Ji-Cheng Liu
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
22
|
Zhou C, Zhang W, Lin H, Zhang L, Wu F, Wang Y, Yu S, Peng X, Cheng W, Li M, Pan X, Huang Z, Zhang W. Effect of theaflavin-3,3′-digallate on leptin-deficient induced nonalcoholic fatty liver disease might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. Front Pharmacol 2022; 13:925264. [PMID: 36105184 PMCID: PMC9464872 DOI: 10.3389/fphar.2022.925264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), one of the risk factors for hepatitis, cirrhosis, and even hepatic carcinoma, has been a global public health problem. The polyphenol compound theaflavin-3,3′-digallate (TF3), mainly extracted from black tea, has been reported to produce an effect on hypoglycemic and antilipid deposition in vitro. In our study, we further investigated the function and novel mechanisms of TF3 in protecting NAFLD in vivo. By using leptin-deficient obese (ob/ob) mice with NAFLD symptoms, TF3 treatment prevented body weight and waistline gain, reduced lipid accumulation, and alleviated liver function injury, as well as decreased serum lipid levels and TG levels in livers in ob/ob mice, observing no side effects. Furthermore, the transcriptome sequencing of liver tissue showed that TF3 treatment corrected the expression profiles of livers in ob/ob mice compared with that of the model group. It is interesting to note that TF3 might regulate lipid metabolism via the Fads1/PPARδ/Fabp4 axis. In addition, 16S rRNA sequencing demonstrated that TF3 increased the abundance of Prevotellaceae_UCG-001, norank_f_Ruminococcaceae, and GCA-900066575 and significantly decreased that of Parvibacter. Taken together, the effect of TF3 on NAFLD might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. TF3 might be a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Luyun Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fan Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Susu Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xinyue Peng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Min Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Zhenrui Huang, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Zhenrui Huang, ; Wenjuan Zhang,
| |
Collapse
|
23
|
Zhang Y, Wang J, Yang J, Li Y, Zhang W, Liu S, Yang G, Yan Z, Liu Y. Microwave-Assisted Enzymatic Extraction, Partial Characterization, and Antioxidant Potential of Polysaccharides from Sagittaria trifolia Tuber. Chem Biodivers 2022; 19:e202200219. [PMID: 35920791 DOI: 10.1002/cbdv.202200219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Sagittaria trifolia tuber is an aquatic vegetable. In this work, microwave-assisted enzymatic extraction (MEE) was used to extract S. trifolia tuber polysaccharides (STTPs). Optimum conditions were complex enzyme of 2 %, liquid-to-solid ratio of 43 : 1 mL g-1 , microwave power of 506 W, and time of 8 min, under which STTPs yield was 36.22±0.69 %, higher than those of other methods. STTPs were sulfated polysaccharides with sulfur valence of S6+ . STTPs comprised mannose, glucose, galactose, and arabinose at a mole ratio of 3.69 : 19.33 : 6.21 : 1.00, molecular weights of 3606 kDa and 149.6 kDa, particle size of 220 nm, and zeta potential of -5.02 mV. The surface of STTPs was full of bumps and holes, and abundant in O1s and non-functionalized C1s. STTPs would scavenge reactive oxygen species with advantage. It would provide an efficient MEE method to obtain antioxidant STTPs, also a clue for extracting polysaccharides from starch-rich crops.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Jiayi Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Yingjie Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Wen Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Shuyue Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Guihong Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| |
Collapse
|
24
|
Zhu YY, Meng XC, Zhou YJ, Zhu JX, Chang YN. Major royal jelly proteins alleviate non-alcoholic fatty liver disease in mice model by regulating disordered metabolic pathways. J Food Biochem 2022; 46:e14214. [PMID: 35510379 DOI: 10.1111/jfbc.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the major cause of global chronic hepatic injury, has obtained increasing attention while the current drug treatment still laid safety hazards. Major royal jelly proteins (MRJPs), the water-soluble proteins enriched in royal jelly (RJ), were applied to study its effects on improving NAFLD in the NAFLD mouse model. Herein, we demonstrated that intaking of 250-500 mg/kg/day MRJPs significantly decreased the rate of obesity, dyslipidemia, hepatic steatosis, and insulin resistance. Next, TOF to MRM ("TM") widely targeted metabolomics (untargeted metabolomics + widely targeted metabolomics) was further used to explore the potential mechanism, and we found that 500 mg/kg MRJPs alleviated lipid metabolism, oxidative stress, and inflammation mainly by regulating the metabolisms of alpha-linolenic acid, linoleic acid, arachidonic acid, and biosynthesis of unsaturated fatty acids. Moreover, by detecting multiple oxidative stress factors and inflammatory cytokines, we found that MRJPs indeed exerted antioxidant and anti-inflammatory effects. Together, we demonstrated that MRJPs could mediate the progress of NAFLD through the "multi-component-multi-target-multi-pathway" mechanism, which could be considered as an ideal functional food in alleviating NAFLD. PRACTICAL APPLICATIONS: Royal jelly (RJ) is a bee product with high nutritional value. Major royal jelly proteins (MRJPs) are water-soluble proteins in RJ. Our research showed that MRJPs significantly ameliorated NAFLD induced by a high-fat diet in mice, suggesting that MRJPs could be used as an active ingredient to help improve NAFLD, which was beneficial for the development of related functional foods and the economic value of RJ. Moreover, the metabolic pathways involved in the ameliorative effect of MRJPs were investigated, which provided new ideas for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Yan Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiang-Chun Meng
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-Xiang Zhu
- Class Eight Grade Two, Caoyang NO.2 High School, Shanghai, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Liu HS, Zhou MY, Zhang X, Li YL, Kong JW, Gao X, Ge DY, Liu JJ, Ma PG, Peng GY, Liao Y. Sagittaria sagittifolia polysaccharide protects against six-heavy-metal-induced hepatic injury associated with the activation of Nrf2 pathway to regulate oxidative stress and apoptosis. J Inorg Biochem 2022; 232:111810. [DOI: 10.1016/j.jinorgbio.2022.111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
26
|
Huang J, Song W, Hua H, Yin X, Huang F, Alolga RN. Antithrombotic and anticoagulant effects of a novel protein isolated from the venom of the Deinagkistrodon acutus snake. Biomed Pharmacother 2021; 138:111527. [PMID: 33773469 DOI: 10.1016/j.biopha.2021.111527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
The venom of the Deinagkistrodon acutus snake is composed of numerous bioactive proteins and peptides. In this study, we report the antithrombotic and anticoagulant activities of one of such proteins, herein known as SLPC. This novel protein was isolated and purified via multi-gel chromatography. Its amino acid sequence, structure and function were then determined. This protein was found to exhibit defibration, anticoagulation and general antithrombotic effects based on the results of both in vitro and in vivo studies. Based on same studies, it was found to cleave the α, β, γ chains of fibrinogen and generally improved antiplatelet aggregation and blood rheology. A metabolomic insight of the antithrombotic effects of SLPC was found to be mainly linked to perturbations in the synthesis of unsaturated fatty acids, glycerophospholipid metabolism, arachidonic acid metabolism and other metabolic pathways. In summary, the novel protein SLPC, elicits its antithrombotic effects via degradation of fibrinogen and regulation of various thrombogenic factors in multiple metabolic pathways.
Collapse
Affiliation(s)
- Jin Huang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Wei Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haibing Hua
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|