1
|
Cheng X, Hao W, Yu S, Gao X, Qu L, Liu C, Wang Y, Sun Y, Huang J, Yang L, Wang J. Nephroprotective effects of Amomum kravanh essential oil by inhibition of ferroptosis regulated by Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156762. [PMID: 40305973 DOI: 10.1016/j.phymed.2025.156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Amomum kravanh Pierre ex Gagnep. (BDK) is a Zingiberaceae plant traditionally widely used as a sweet fragrance, and commonly also utilized in minority medicine for various kidney diseases, especially chronic kidney disease (CKD) in Tibetan and Mongolian medicine. However, the underlying mechanisms by which it confers renal protection remain to be fully clarified. PURPOSE To investigate the renal protective mechanism of which BDK's essential oil exerts in rats with CKD induced by adenine and 5/6 nephrectomy. METHODS Rat models of adenine and 5/6 nephrectomy chronic nephropathy were established, and the therapeutic effects were evaluated by detecting the blood biochemical levels and H&E-/Masson staining and fiber-related factors. Then, the chemical composition of BDK's essential oil and blood components were analyzed using GC-MS. The efficacy of eucalyptol was evaluated by adenine and 5/6 nephrectomy CKD model, with mechanistic studies conducted using RNA-seq, western blot, and metabolomic approaches. RESULTS The blood biochemical levels and histopathological analyses (H&E-/Masson's staining) revealed that the BDK's essential oil significantly enhanced renal function and ameliorated kidney tissue fibrosis. Furthermore, GC-MS analysis identified 33 components in the essential oil of BDK, with eucalyptol being the predominant chemical component at 74.07 %. Eucalyptol is capable of entering the bloodstream in its prototypical form. Then, the efficacy and mechanism of eucalyptol were confirmed by adenine/5/6 nephrectomy CKD models, and based on RNA-seq analysis, we found that eucalyptol could significantly improve kidney function and fibrosis of kidney tissues by blocking TGF-β/smad and NF-κB pathways and inhibit ferroptosis through the Nrf2/HO-1 signaling pathway. CONCLUSION Both BDK's essential oil and its main constituent, eucalyptol, exhibited protective effects against CKD. They both ameliorated oxidative stress, inflammation, and fibrosis in adenine/5/6 nephrectomy rats. Eucalyptol is implicated in ferroptosis and regulation of renal fibrosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xiaoling Cheng
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wenli Hao
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Silin Yu
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi, Xingjiang 830052, China
| | - Xvjie Gao
- School of Pharmacy, Shihezi University/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Liyuan Qu
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chang Liu
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yanli Wang
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yifan Sun
- Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China
| | - Jian Huang
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Lu Yang
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi, Xingjiang 830052, China.
| | - Jinhui Wang
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
2
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
3
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
4
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Zheng X, Lu X, Li Q, Gong S, Chen B, Xie Q, Yan F, Li J, Su Z, Liu Y, Guo Z, Chen J, Li Y. Discovery of 2,8-dihydroxyadenine in HUA patients with uroliths and biomarkers for its associated nephropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167051. [PMID: 38336103 DOI: 10.1016/j.bbadis.2024.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1β genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1β genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1β genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Qiuxian Li
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingfeng Xie
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Fang Yan
- The Second Clinical College Guangdong University of Chinese Medicine, Guangzhou 510120, China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhonghui Guo
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
6
|
Du P, He HY, Wu NY, Cao T, Cui BK. Medicinal Value, Genetic Diversity, and Genetic Relationship Analysis of Auricularia cornea (Agaricomycetes) Based on ITS, ISSR, and SRAP Markers. Int J Med Mushrooms 2024; 26:43-57. [PMID: 38780422 DOI: 10.1615/intjmedmushrooms.2024053182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Wild resources of Auricularia cornea (A. polytricha) are abundant in China, and genetic diversity and genetic relationships analysis of A. cornea can provide basis for germplasm resource utilization and innovation and molecular marker-assisted breeding. In this study, 22 Auricularia strains collected were identified as A. cornea based on ITS sequence analysis, and its genetic diversity was examined by ISSR and SRAP markers. The results showed that a total of 415 bands were amplified by 11 selected ISSR primers, with an average amplification of 37.73 bands per primer, and the mean values of Ne, I, and H were 1.302, 0.368, and 0.219, respectively. A total of 450 bands were amplified by 10 SRAP primers, with an average of 45 bands per primer, and the average of Ne, I, and H were 1.263, 0.302, and 0.183, respectively. The unweighted pair-group method with arithmetic means analysis based on ISSR-SRAP marker data revealed that the genetic similarity coefficient between the tested strains was 0.73-0.97, and the strains could be divided into five groups at 0.742, which had a certain correlation with regional distribution. The results of PCOA and population structure analysis based on ISSR-SRAP data also produced similar results. These results demonstrate the genetic diversity and distinctness among wild A. cornea and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of A. cornea resources.
Collapse
Affiliation(s)
- Ping Du
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P.R. China
| | - Hong-Yan He
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P.R. China
| | - Ni-Ya Wu
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P.R. China
| | - Tianxu Cao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P.R. China
| | - Bao-Kai Cui
- Institute of Microbiology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Cui M, Ma Q, Zhang Z, Li W, Chen W, Liu P, Wu D, Yang Y. Semi-solid enzymolysis enhanced the protective effects of fruiting body powders and polysaccharides of Herinaceus erinaceus on gastric mucosal injury. Int J Biol Macromol 2023; 251:126388. [PMID: 37595717 DOI: 10.1016/j.ijbiomac.2023.126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/03/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
This study demonstrated the effects of semi-solid enzymolysis on physicochemical properties of fruiting body powders and polysaccharides from Hericium erinaceus and protective effects on gastric mucosal injury. Semi-solid enzymolysis could reduce the particle size, change the microstructure of fruiting body powders, increase the contents of soluble polysaccharide (26.26-67.04 %) and uronic acid (16.97-31.12 %) and reduce the molecular weight of polysaccharides. The digestibility of fruiting body powder of H. erinaceus after semi-solid enzymolysis was increased by 31.4 %, compared with that of the fruiting body powder of H. erinaceus without enzymolysis. Semi-solid enzymolysis could enhance the protective effects of the fruiting body powders and polysaccharides on ethanol-induced human gastric mucosal epithelial cells (GES-1) cells, increase the production of superoxide dismutase (SOD, 0-37.33 %) and catalase (CAT, 2.47-18.46 %), and inhibit the production of malonaldehyde (MDA, 2.45-19.62 %), myeloperoxidase (MPO, 0-13.54 %), interleukin (IL-6, 4.39-24.62 %) and tumor necrosis factor-α (TNF-α, 5.97-12.25 %). Semi-solid enzymolysis could improve the inhibition rate of the fruiting body powder on gastric ulcer (32.70-46.26 %), inhibit oxidative stress and inflammation, and protect rats with acute gastric mucosal injury against the stimulation of ethanol on gastric mucosa. In conclusion, semi-solid enzymolysis may enhance the protective effects of the fruiting body powders and polysaccharides on gastric mucosal injury.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Qiang Ma
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
8
|
Zhao S, Gao Y, Wang H, Fan Y, Wang P, Zhao W, Wong JH, Wang D, Zhao X, Ng TB. A novel mushroom ( Auricularia polytricha) glycoprotein protects against lead-induced hepatoxicity, promotes lead adsorption, inhibits organ accumulation of lead, upregulates detoxifying proteins, and enhances immunoregulation in rats. Front Nutr 2023; 10:1144346. [PMID: 37090774 PMCID: PMC10116064 DOI: 10.3389/fnut.2023.1144346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Lead is a ubiquitous environmental and industrial pollutant. Its nonbiodegradable toxicity induces a plethora of human diseases. A novel bioactive glycoprotein containing 1.15% carbohydrate, with the ability of adsorbing lead and effecting detoxification, has been purified from Auricularia polytricha and designated as APL. Besides, its mechanisms related to regulation of hepatic metabolic derangements at the proteome level were analyzed in this study. Methods Chromatographic techniques were utilized to purify APL in the current study. For investigating the protective effects of APL, Sprague-Dawley rats were given daily intraperitoneal injections of lead acetate for establishment of an animal model, and different dosages of APL were gastrically irrigated for study of protection from lead detoxification. Liver samples were prepared for proteomic analyses to explore the detoxification mechanisms. Results and discussion The detoxifying glycoprotein APL displayed unique molecular properties with molecular weight of 252-kDa, was isolated from fruiting bodies of the edible fungus A. polytricha. The serum concentrations of lead and the liver function biomarkers aspartate and alanine aminotransferases were significantly (p<0.05) improved after APL treatment, as well as following treatment with the positive control EDTA (300 mg/kg body weight). Likewise, results on lead residue showed that the clearance ratios of the liver and kidneys were respectively 44.5% and 18.1% at the dosage of APL 160 mg/kg, which was even better than the corresponding data for EDTA. Proteomics disclosed that 351 proteins were differentially expressed following lead exposure and the expression levels of 41 proteins enriched in pathways mainly involved in cell detoxification and immune regulation were normalized after treatment with APL-H. The results signify that APL ameliorates lead-induced hepatic injury by positive regulation of immune processing, and suggest that APL can be applied as a therapeutic intervention of lead poisoning in clinical practice. This report represents the first demonstration of the protective action of a novel mushroom protein on lead-elicited hepatic toxicity.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Yi Gao
- Department of Stomatology, Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Yangyang Fan
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Pan Wang
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Wenting Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
10
|
Elmowafy E, O El-Derany M, Casettari L, Soliman ME, El-Gogary RI. Gamma oryzanol loaded into micelle-core/chitosan-shell: from translational nephroprotective potential to emphasis on sirtuin-1 associated machineries. Int J Pharm 2023; 631:122482. [PMID: 36513255 DOI: 10.1016/j.ijpharm.2022.122482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Gamma oryzanol (ORZ) is a nutraceutical that is poorly water soluble with poor intestinal absorption. In the current work, ORZ was nanoformulated into uncoated and chitosan coated micelles based on methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) and poly(ε-caprolactone)-b-methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (PCL-PEG-PCL) copolymers for augmenting ORZ oral delivery. The physicochemical properties, morphological study, in-vitro release and safety of the nanoplaforms were determined. Importantly, the nephroprotective competence of the nanoplaforms was analyzed against acute kidney injury (AKI) rat model and the sirtuin-1 associated machineries were assessed. The results revealed that the micelles exerted particle size (PS) from 97.9 to 117.8 nm that was markedly increased after chitosan coating. The reversal of zeta potential from negative to highly positive further confirmed efficient coating. In vitro release profiles demonstrated prolonged release pattern. The nanoforms conferred higher cell viability values than free ORZ on Vero cell line. The designed micelles displayed augmented nephroprotection compared to free ORZ with the supremacy of CS coated micelles over uncoated ones in restoring kidney parameters to normal levels. The attenuated AKI was fulfilled via the modulation of sirtuin-1 signaling pathways translated by restoring the histological features, increasing renal antioxidant states, renal autophagy and decreasing renal inflammation and renal apoptosis. These outcomes confirmed that surface modification with chitosan had a considerable leverage on micelles safety, release behavior and in vivo performance.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, AinShams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza delRinascimento, 6, 61029 Urbino, PU, Italy
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt; Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt.
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| |
Collapse
|
11
|
Zhao H, Deng B, Li D, Jia L, Yang F. Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|