1
|
Marhoon IA, Alwan MS, Al-Ibrahimi LA. Promising Anthelminthic Effects of Camphene Against Protoscoleces and Hydatid Cysts of Echinococcus granulosus. Acta Parasitol 2025; 70:113. [PMID: 40397315 DOI: 10.1007/s11686-025-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND The current research aims to investigate the anthelmintic effects and cellular mechanisms induced by camphene (CP), a natural monoterpene found in certain herbs, against hydatid cysts and protoscoleces (PSCs) of Echinococcus granulosus. METHODS The anthelmintic properties of CP were examined using the eosin exclusion assay on PSCs. The effects of CP on the expression levels of apoptotic and DNA damage-related genes in PSCs were evaluated, along with its impact on the plasma membrane (PM) and its ability to induce the generation of reactive oxygen species (ROS). The in vivo efficacy of CP, administered at doses of 20, 40, and 80 mg/kg/day for 28 days, was assessed in mice infected with hydatid cysts by measuring the quantity, dimensions, and weight of the cysts, as well as analyzing serum levels of inflammatory cytokines. RESULTS Results indicated that CP significantly decreased the viability of PSCs both in vitro and ex vivo (p < 0.001) compared to the control group. A notable upregulation of apoptotic genes (caspase-3 and caspase-9) and genes associated with DNA damage was observed (p < 0.001). CP treatment also enhanced plasma membrane permeability and ROS generation (p < 0.001). Furthermore, CP resulted in a dose-dependent reduction in the number, size, and weight of hydatid cysts, as well as in the serum concentrations of TNF-α and IL-1β, with no significant changes in the serum levels of biomarkers related to liver and kidney function. CONCLUSION Recent research has demonstrated the promising in vitro and ex vivo effects of CP on hydatid cyst PSCs. Additionally, the study highlighted the in vivo potential of CP in controlling hydatid cysts within a murine model, attributing this efficacy to its anti-inflammatory properties. However, further research is necessary to elucidate the specific mechanisms of action and to evaluate its effectiveness in clinical trials, which may facilitate the application of these nanoparticles in the treatment and management of cystic echinococcosis.
Collapse
Affiliation(s)
- Ikhlas Abbas Marhoon
- Biology Department, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq.
| | - Marwa Sami Alwan
- Biology Department, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Lubna A Al-Ibrahimi
- Biology Department, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
2
|
Amirafshari H, Khazaal RM, Marzban A, Cheraghipour K, Masoori L, Sepahvand A, Mahmoudvand H. Therapeutic effects of zinc oxide nanoparticles encapsulated within chitosan-camphor against hydatid cysts through suppressing oxidative stress, inflammation, and DNA damage. Biomed Pharmacother 2025; 188:118128. [PMID: 40381503 DOI: 10.1016/j.biopha.2025.118128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Nanoencapsulation refers to the process of enclosing bioactive compounds within nanoparticles to facilitate their targeted delivery to specific sites within the body. The objective of the current study was to synthesize zinc nanoparticles encapsulated within chitosan-camphor (ZNP-CC) and to assess the in vitro, ex vivo, and in vivo effects of ZNP-CC on protoscoleces (PTX) and hydatid cysts of Echinococcus granulosus. ZNP-CC at various concentrations, particularly at 10 and 15 mg/mL, significantly reduced the viability of PTX in vitro and ex vivo by 100 % (p < 0.001). Treatment with ZNP-CC at 1/2 IC50 and IC50 notably stimulated caspase-3 (p < 0.01) and upregulated the expression levels of the DNA damage genes in PTX by > 2-fold change. Treatment with ZNP-CC led to significant reduction in the number, size, and weight of hydatid cysts in mice; whereas, caused a substantial reduction in oxidative stress and a notable increase in the activities of GPx and SOD was observed. ZNP-CC mainly in combination with AZ at 100 mg/kg, resulted in a significant decrease in the expression of TNF-α, NF-κB p65, TLR4, and IL-1β genes. The serum levels of liver function parameters following treatment with ZNP-CC at the specified doses did not show a significant difference (p > 0.05). This investigation demonstrated that ZNP-CC, especially in combination with AZ, markedly mitigated hydatid cyst infection in murine models by reducing oxidative stress and inflammation while normalizing serum levels of liver function factors. Furthermore, we observed promising scolicidal effects of ZNP-CC through the induction of apoptosis and DNA damage.
Collapse
Affiliation(s)
- Hossein Amirafshari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ruaa Majid Khazaal
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Masoori
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Alanazi AD, Alghabban AJ. Therapeutic effects of zinc nanoparticles green synthesized by Ferula macercolea extract against chronic toxoplasmosis in mice. J Glob Antimicrob Resist 2025; 42:195-203. [PMID: 40058411 DOI: 10.1016/j.jgar.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 04/08/2025] Open
Abstract
OBJECTIVES The present study aimed to green synthesize and characterize the zinc nanoparticles (ZNP) and evaluate its potency to control Toxoplasma gondii infection in mice by stimulating the immune system, antioxidant activity, and anti-inflammatory effects. METHODS By in vivo, T. gondii infected mice were orally treated by ZNP (5-20 mg/kg) for 14 d. The number and size of tissue cysts, oxidant-antioxidant enzymes, the expression of inflammatory cytokines, apoptotic, and pathogenicity-related factors were evaluated by real-time polymerase chain reaction. RESULTS ZNP ranged in size from 10 to 70 nm with an average size of 45.7 ± 19.4 nm. ZNP treatment resulted in a significant reduction in the number and size of tissue cysts (P < 0.05). The oral administration of infected mice with ZNP caused a considerable decrease in malondialdehyde levels and a marked increase (P < 0.001) in the activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase. ZNP administration triggered a significant reduction in the expression levels of the genes of interleukin-1β, tumour necrosis factor-α, nuclear factor kappa B, bradyzoite antigen-1, and B-cell lymphoma-2. Conversely, there was an increase in the expression levels of the genes of IL-10, Serpin A3k, caspase-3, and Bcl-2-associated X protein (P < 0.001). CONCLUSIONS In summary, the recent investigation illustrated that ZNP demonstrates promising in vivo effects against T. gondii infection in mice. These effects are ascribed to its antioxidant properties, anti-inflammatory characteristics through the inhibition the specific inflammatory cytokines, and its ability to inhibit pathogenicity in mice without any observable signs of toxicity.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia.
| | | |
Collapse
|
4
|
Alshehri ZS, Alanazi AD, Baghdadi HBA. Therapeutic Effects of Green Synthesized Copper Nanoparticles Against Hydatid Disease Through Inhibiting Inflammation, Oxidative Stress, and Apoptosis. Acta Parasitol 2025; 70:73. [PMID: 40113606 DOI: 10.1007/s11686-025-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE This study aimed to green synthesized copper nanoparticles (CNP) using Lupinus arcticus extract and assess the protoscolicidal effects and the effectiveness of these nanoparticles in experimental animal settings to combat hydatid cysts. METHODS The protoscolicidal properties of CNP were examined in vitro on hydatid cyst PS via the eosin exclusion assay. The in vivo effectiveness of CNP at doses of 20, 40, and 80 mg/kg/day for 28 days on hydatid cyst-infected mice was determined by assessing the number, size, weight of hydatid cysts the gene expression levels of caspase-3, antioxidant (glutathione peroxidase (GPx) and superoxide dismutase (SOD)) and inflammatory cytokines (Interleukin-4 (IL-4), IL-10, and inducible nitric oxide synthase (iNOS)) in the infected mice were also assessed by Real-time PCE. RESULTS Analyses revealed that the CNP had a spherical shape, ranging in size from 10 to 85 nm. The half-maximal inhibitory concentration (IC50) values for CNP against protoscoleces ranged from 39.9 to 341.3 µg/mL. Caspase-3 gene expression in the PS treated with CNP at 1/3 IC50, ½ IC50, and IC50 was 1.79-, 3.11-, and 5.39-fold change (p < 0.001). Upon administration of CNP, particularly at doses of 80 mg/kg, a significant decrease (p < 0.001) in hydatid cysts' quantity, size, and weight was evident. CNP treatment caused a notable reduction in oxidative stress markers and inflammatory cytokines and increased the gene expression of antioxidant enzymes (p < 0.001), whereas it modulated the serum levels of liver function parameters. CONCLUSION The study indicated the potential of green-synthesized CNP for eliminating the protoscoleces and in managing hydatid cysts through leveraging its antioxidant and anti-inflammatory characteristics. Nevertheless, additional investigations are necessary to elucidate the precise mechanisms of action and evaluate its effectiveness in clinical trials. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Zafer Saad Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Al Dawadmi, Shaqra, 1678, Kingdom of Saudi Arabia.
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, 1040, Saudi Arabia
| | - Hanadi B A Baghdadi
- Biology Department, College of Science, Imam Abdurrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Sahebi K, Takallu S, Foroozand H, Amirsoleymani M, Sadjjadi SM, Sharifi Y, Alimi R, Zareshahrabadi Z, Mirzaei E, Teimouri A. Piperine-loaded mesoporous silica nanoparticles as a promising strategy for targeting Echinococcus granulosus protoscoleces. Sci Rep 2025; 15:520. [PMID: 39747961 PMCID: PMC11696618 DOI: 10.1038/s41598-024-84131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Medical and surgical treatments for cystic echinococcosis (CE) are challenged by various complications. This study evaluates in vitro protoscolicidal activity of piperine-loaded mesoporous silica nanoparticles (PIP-MSNs) against protoscoleces of Echinococcus granulosus. MSNs were prepared by adding tetraethyl orthosilicate to cetyltrimethylammonium bromide and NaOH, and then loaded with PIP. The mean particle size and hydrodynamic diameter of MSNs were determined at 68 ± 4.5 and 101.4 ± 50.4 nm using transmission electron microscopy and dynamic light scattering, respectively. X-ray diffraction, Fourier-transform infrared analysis, and UV-spectrophotometry confirmed drug loading. Drug loading efficiency and drug loading capacity were calculated at 60% and 18%, respectively. The drug release profile confirmed a 75% PIP release plateau after about 24 h. The cytotoxicity assay showed cell viability > 90% in all concentrations used (≤ 512 µg/mL). E. granulosus protoscoleces were exposed to PIP-MSNs and their viability was assessed using the eosin exclusion test. In a dose-dependent manner (p < 0.001), exposure to 375 and 500 µg/mL of PIP-MSNs for 180 min killed 89.67 and 94.67% of protoscoleces, respectively. This study introduces PIP-MSNs as a potential protoscolicidal agent in the treatment of CE. Further studies are necessary to uncover safety aspects, biodistribution patterns, and potential combination therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Soleymani N, Sadr S, Santucciu C, Rahdar A, Masala G, Borji H. Evaluation of the In-Vitro Effects of Albendazole, Mebendazole, and Praziquantel Nanocapsules against Protoscolices of Hydatid Cyst. Pathogens 2024; 13:790. [PMID: 39338980 PMCID: PMC11435210 DOI: 10.3390/pathogens13090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic echinococcosis still remains a serious health and economic problem worldwide. The etiologic agent is Echinococcus granulosus sensu lato, giving origin to a fluid-filled cystic lesion. Therapy faces several challenges. Nanodrugs have shown promise as chemotherapeutics against hydatid cysts. The present study evaluated a highly safe lipid nano-polymeric capsule for its superior efficacy and ability to overcome drug resistance. Nanocapsule drugs were formulated into six groups: Albendazole, mebendazole, praziquantel, albendazole + mebendazole, albendazole + praziquantel, and praziquantel + mebendazole. The protoscolicidal effects of these six groups were assessed at 10, 60, and 120 min in three concentrations (1, 0.5, and 0.25 mg/mL). Drug formulations were evaluated via zeta potential, droplet size, solubility, particle size analyzer (PSA), and scanning electron microscopy. According to the PSA results, the mean size of the albendazole nanocapsules was 193.01 nm, mebendazole was 170.40 nm, and praziquantel was 180.44 nm. Albendazole + mebendazole showed the greatest protoscolicidal activity at a concentration of 1 mg/mL after 120 min. In contrast, each drug's 0.25 mg/mL single-dose times showed the least protoscolicidal activity after 120 min. With the right application of nanotechnology, it is possible to produce safe and effective drugs, such as the polymeric combination of albendazole and mebendazole, which has promising implications.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran; (N.S.); (S.S.)
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran; (N.S.); (S.S.)
| | - Cinzia Santucciu
- WOAH and NRL for Echinococcosis, Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol P.O. Box 538-98615, Iran
| | - Giovanna Masala
- WOAH and NRL for Echinococcosis, Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran; (N.S.); (S.S.)
| |
Collapse
|
7
|
Baghdadi HBA. Potential use of silver nanoparticles green synthesized using Astragalus spinosus extract for treating cystic echinococcosis. Acta Trop 2024; 257:107296. [PMID: 38909723 DOI: 10.1016/j.actatropica.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The present investigation aims to develop and evaluate silver nanoparticles (AgNP) synthesized through environmentally friendly methods and to assess their effectiveness against hydatid cysts through in vitro, ex vivo, and in vivo experiments. The green synthesis of ANP was accomplished using the precipitation technique with Astragalus spinosus extract. The in vitro protoscolicidal effects of ANP were evaluated on hydatid cyst protoscoleces (PTS) through eosin exclusion test. The study also investigated the effect of ANP on the gene expression levels of caspase-3 and 9, as well as the external morphology of PTS. The in vivo efficacy was assessed by analyzing the quantity, dimensions, and weight of hydatid cysts in infected mice. Real-time PCR was used to analyze the gene expression levels of antioxidant and inflammatory cytokines. ANP exhibited significant (p < 0.001) in vitro protoscolicidal activity in a dose- and time-dependent manner. Treatment with ANP resulted in creases and protrusions on the plasma membrane, indicating bleb formation and an increase in the expression of caspase-3 and caspase-9 genes. Notably, there was a significant (p < 0.001) reduction in the number, size, and weight of hydatid cysts following ANP treatment. Administration of ANP resulted in a significant increase in the expression of antioxidant genes (glutathione peroxidase and superoxide dismutase) and a notable decrease in oxidative stress markers, as well as in the expression levels of Interleukin-4 (IL-4) and IL-10. Due to its antioxidant and anti-inflammatory properties, ANP shows potential as a scolicidal agent and holds promise in managing hydatid cysts in a mouse model. Nevertheless, further clinical trials are imperative to validate the efficacy of ANP in treating hydatidosis.
Collapse
Affiliation(s)
- Hanadi B A Baghdadi
- Biology Department, College of Science, Imam Abdurrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
8
|
Gong Y, Zhou T, Ma R, Yang J, Zhao Y, Pan M, Huang Z, Wen H, Jiang H, Wang J. Efficacy and mechanism of energy metabolism dual-regulated nanoparticles (atovaquone-albendazole nanoparticles) against cystic echinococcosis. BMC Infect Dis 2024; 24:778. [PMID: 39097707 PMCID: PMC11297608 DOI: 10.1186/s12879-024-09662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Albendazole (ABZ) and atovaquone (ATO) achieve killing efficacy on Echinococcus granulosus (Egs) by inhibiting energy metabolism, but their utilization rate is low. This study aims to analyze the killing efficacy of ABZ-ATO loading nanoparticles (ABZ-ATO NPs) on Egs. METHODS Physicochemical properties of NPs were evaluated by ultraviolet spectroscopy and nanoparticle size potentiometer. In vitro experiments exmianed the efficacy of ATO, ABZ, or ATO-ABZ NPs on protoscolex activity, drug toxicity on liver cell LO2, ROS production, and energy metabolism indexes (lactic dehydrogenase, lactic acid, pyruvic acid, and ATP). In vivo of Egs-infected mouse model exmianed the efficacy of ATO, ABZ, or ATO-ABZ NPs on vesicle growth and organ toxicity. RESULTS Drug NPs are characterized by uniform particle size, stability, high drug loading, and - 21.6mV of zeta potential. ABZ or ATO NPs are more potent than free drugs in inhibiting protoscolex activity. The protoscolex-killing effect of ATO-ABZ NPs was stronger than that of free drugs. In vivo Egs-infected mice experiment showed that ATO-ABZ NPs reduced vesicle size and could protect various organs. The results of energy metabolism showed that ATO-ABZ NPs significantly increased the ROS level and pyruvic acid content, and decreased lactate dehydrogenase, lactic acid content, and ATP production in the larvae. In addition, ATO-ABZ NPs promoted a decrease in DHODH protein expression in protoscolexes. CONCLUSION ATO-ABZ NPs exhibits anti-CE in vitro and in vivo, possibly by inhibiting energy production and promoting pyruvic acid aggregation.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang, 830011, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Tianjiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Ruijia Ma
- Pharmacy Department, Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Jianhua Yang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang, 830011, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Yicong Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Meichi Pan
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Zhangjian Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| | - Hulin Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang, 830011, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
9
|
Baghdadi HBA, Albalawi AE, Shater AF, Almohammed H, Alanazi AD. Linalool-zinc oxide nanocomposite controls Toxoplasma gondii infection through inhibiting inflammation, oxidative stress, and pathogenicity. J Basic Microbiol 2024; 64:e2400039. [PMID: 38690754 DOI: 10.1002/jobm.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
The present in vitro and in vivo study aimed to fabricate and characterize linalool-zinc oxide nanoparticles (Lin-ZNP) and evaluate their effectiveness against Toxoplasma gondii infection in terms of inflammation, oxidative stress, and pathogenicity. Lin-ZNP was synthesized using an ethanolic solution of polyvinyl alcohol. The anti-Toxoplasma and cytotoxicity activities of Lin-ZNP were investigated, along with its effects on nitric oxide (NO) production, caspase-3 activity, and pro-inflammatory genes. After treating T. gondii-infected mice with Lin-ZNP for 14 days, the number and size of tissue cysts, antioxidant potential, pro-inflammatory cytokines, and T. gondii pathogenicity-related genes were evaluated by real-time polymerase chain reaction and Western blot analysis. The Lin-ZNP composite showed a reduced tendency with an average size of 105 nm. Lin-ZNP significantly reduced the viability of tachyzoites. The obtained selectivity index higher than 10, indicating high specificity for parasites with low cytotoxicity to normal cells. The Lin-ZNP significantly (p < 0.05) increased the production of NO, caspase-3 activity, and the expression levels of pro-inflammatory genes. Lin-ZNP significantly (p < 0.001) decreased the size and number of tissue cysts and caused a significant reduction in the level of malondialdehyde and a considerable increase (p < 0.001) in antioxidant enzymes and their expression genes. Lin-ZNP significantly downregulated both mRNA and protein expression of the inflammation-related markers associated with the TLRs/NF-κB pathway. The expression levels of the T. gondii pathogenicity-related genes were significantly downregulated (p < 0.05). The recent survey indicated that Lin-ZNP manages T. gondii infection by its antioxidant activity and inhibiting the TLRs/NF-κB pathway without toxicity in mice.
Collapse
Affiliation(s)
- Hanadi B A Baghdadi
- Biology Department, College of Science, Imam Abdurrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Dammam, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hamdan Almohammed
- General Science Department, Deanship of Supportive Studies, Alasala University, Dammam, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| |
Collapse
|
10
|
Albalawi AE, Shater AF, Alanazi AD, Alsulami MN, Almohammed HI. High potency of linalool-zinc oxide nanocomposite as a new agent for cystic echinococcosis treatment. Antimicrob Agents Chemother 2024; 68:e0173423. [PMID: 38752808 PMCID: PMC11620505 DOI: 10.1128/aac.01734-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 12/07/2024] Open
Abstract
This current in vitro, ex vivo, and in vivo research aims to evaluate and analyze the linalool-zinc oxide nanocomposite (Lin-ZNP) for treating cystic echinococcosis. Lin-ZNP was synthesized using an ethanolic solution of polyvinyl alcohol. The protoscolicidal effects of Lin-ZNP were tested on hydatid cyst protoscoleces (PTS) in both in vitro and ex vivo by eosin exclusion test. The study also examined the impact on caspase-3 gene expression and the external structure of PTS. The in vivo effect was measured by examining hydatid cysts' quantity, dimensions, and weight in mice intraperitoneally infected with 0.5 mL of PTS solution containing 1,000 PTS. The antioxidant and inflammatory cytokine gene expression levels were examined using real-time PCR. Lin-ZNP significantly (P < 0.001) killed the PTS in both in vitro and ex vivo in a dose- and time-dependent manner. The treated PTS exhibited creases and protrusions as a result of bleb formation and upregulation in the gene expression of caspase-3. Upon treatment with Lin-ZNP, there was a significant (P < 0.001) reduction in the number, diameter, and weight of the hydatid cysts. Treatment with Lin-ZNP nanocomposite led to a significant increase in the expression of antioxidant genes and a notable decrease in oxidative stress markers, and the expression levels of IL-4 and IL-10. Lin-ZNP has the potential to act as a scolicidal agent and demonstrates promise in controlling hydatid cysts in a mouse model, attributed to its antioxidant and anti-inflammatory properties. However, additional studies in clinical trials are needed to confirm the use of Lin-ZNP for treating hydatidosis.
Collapse
Affiliation(s)
- Aishah E. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hamdan I. Almohammed
- Department of General Science, Deanship of Supportive Studies, Alasala University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Majeed QAH, Alnomasy SF, Shater AF, Alanazi AD. High Efficacy of Green Synthesized Silver Nanoparticles for Treatment of Toxoplasma Gondii Infection Through Their Immunomodulatory, Anti-Inflammatory, and Antioxidant Potency. Acta Parasitol 2024; 69:1201-1211. [PMID: 38634986 DOI: 10.1007/s11686-024-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The present experimental survey designed to green synthesis, characterization, as well as in vitro and in vivo anti-Toxplasma gondii activity of silver nanoparticles (SLN) green synthesized by Lupinus arcticus extract. SLN were green synthesized based on the reducing by L. arcticus extract through the precipitation technique. In vitro lethal effects of SLN on T. gondii tachyzoites, infectivity rate, parasites inside of the human macrophage cells (THP-1 cells), nitric oxide (NO) triggering, and iNOS and interferon gamma (IFN-γ) expression genes were evaluated. In vivo, after establishment of toxoplasmosis in BALB/c mice via T. gondii ME49 strain, mice received SLN at 10 and 20 mg/kg/day alone and combined to pyrimethamine at 5 mg/kg for 14 days. SLN exhibited a spherical form with a size ranging from 25 to 90 nm. The 50% inhibitory concentration (IC50) value of SLN and pyrimethamine against tachyzoites was 29.1 and 25.7 µg/mL, respectively. While, the 50% cytotoxic concentration (CC50) value of SLN and pyrimethamine against THP-1 cells was 412.3 µg/mL and 269.5 µg/mL, respectively. SLN in combined with pyrimethamine obviously (p < 0.05) decreased the number and size of the T. gondii cysts in the infected mice. The level of NO, iNOS and IFN-γ genes was obviously (p < 0.001) upregulated. SLN obviously (p < 0.05) decreased the liver level of oxidative stress and increased the level of antioxidant factors. The findings displayed the promising beneficial effects of SLN mainly in combination with current synthetic drugs against latent T. gondii infection in mice. But we need more experiments to approve these findings, clarifying all possible mechanisms, and its efficiency in clinical phases.
Collapse
Affiliation(s)
- Qais A H Majeed
- Department of Science, College of Basic Education, PAAET, Aridiya, Kuwait
| | - Sultan F Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, 19257, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah D Alanazi
- Departmentof Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi, 11911, Saudi Arabia.
| |
Collapse
|
12
|
Aboelsoued D, Toaleb NI, Ibrahim S, Ibrahim S. In vitro and ex vivo protoscolicidal effect of poly(amidoamine) nanoemulsion against Echinococcus granulosus. Sci Rep 2024; 14:11957. [PMID: 38796499 PMCID: PMC11127951 DOI: 10.1038/s41598-024-62015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Nagwa I Toaleb
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, El Buhouth Street, Dokki, Giza, Egypt
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Dokki, Giza, 12622, Egypt
- Nanomaterials Investigation Lab., Central Laboratory Network, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
13
|
Albalawi AE, Shater AF, Alanazi AD, Almohammed HI. Unveiling of the antileishmanial activities of Linalool loaded zinc oxide nanocomposite through its potent antioxidant and immunomodulatory effects. Acta Trop 2024; 252:107155. [PMID: 38373527 DOI: 10.1016/j.actatropica.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Hamdan I Almohammed
- General Science Department, Deanship of Supportive Studies, Alasala University, P. O. Box 12666, Dammam 31483, Saudi Arabia.
| |
Collapse
|
14
|
Bagherivand A, Jafarirad S, Norouzi R, Karimi A. Biomedical behaviors of CuO/γ-alumina/chitosan nanocomposites: Scolicidal and apoptotic effects on hydatid cysts protoscolices. Int J Biol Macromol 2024; 263:130515. [PMID: 38423424 DOI: 10.1016/j.ijbiomac.2024.130515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hydatid cysts caused by Echinococcus granulosus are a serious health problem that requires effective treatment. This study aimed to evaluate the scolicidal and apoptotic effects of copper oxide (CuO) and gamma alumina (γ-Al2O3) with or without chitosan (Chit), using Rosmarinus officinalis extract and chemical methods on protoscolices (PSCs) in vitro. The nanomaterials (NMs) were characterized by FTIR, EDS, DLS, XRD, FESEM, PDI, and zeta potential (ZP). Scolicidal and apoptotic effects of NMs were tested against PSCs at different concentrations and exposure times. The CuO NPs showed the highest scolicidal effect (33.26 %) among all NMs at 1.6 mg/mL and 60 min, followed by phytosynthesized CuO/γ-Al2O3 NC (23.41 %). The chitosan-modified CuO/γ-Al2O3 NC and the chemically synthesized CuO/γ-Al2O3 NC had less effect. The CuO NPs and the phytosynthesized CuO/γ-Al2O3 NC also significantly increased the expression of the caspase-3 gene in the PSCs at 0.4 mg/mL, indicating the induction of apoptosis. In conclusion, this study suggests that the phytosynthesized CuO/γ-Al2O3 NC and the CuO NPs could be potential candidates for treating echinococcosis by killing the PSCs through apoptosis. Further studies are needed to verify the in vivo efficacy and toxicity of these NMs and to optimize their delivery and targeting systems.
Collapse
Affiliation(s)
- Azra Bagherivand
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Saeed Jafarirad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Karimi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Selles SMA, Belhamiti BT, Kouidri M, Ait Amrane A, Kadari Y, Kaddour Z, Kabrit S. Chemical compounds, antioxidant and scolicidal potencies of Thymus fontanesii essential oil. Exp Parasitol 2024; 257:108699. [PMID: 38199324 DOI: 10.1016/j.exppara.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Medicinal plants have become a source of new drugs to treat various diseases due to their low cost, few side effects, and wide accessibility. Among these, essential oils are promising natural compounds for use in scolicidal activity. The targets of our current work were to assess the chemical composition, antioxidant and protoscolicidal activities of Thymus fontanesii essential oil. The essential oil was extracted by hydrodistillation, and chemical compounds were quantified by GC-MS/GC-FID. The in vitro antioxidant activity was determined by DPPH radical scavenging assay and ferric reducing power. Three concentrations of essential oil (4.625, 9.25, and 13.875 mg/ml) were tested for 5, 10, and 15 min against E. granulosus protoscoleces and their viability was assessed by eosin staining essay. The yield of the essential oil was 2.06 ± 0.41 % (w/w). Carvacrol (59.68 %) was the main compound of Thymus fontanesii essential oils. Moreover, Thymus fontanesii essential oil has an antioxidant activity IC50 of 346.08 μg/ml and EC50 of 869.82 μg/ml. Furthermore, 100 % mortality of protoscoleces was observed at the doses of 9.25 mg/ml and 13.875 mg/ml after 5 min of exposure. Our findings show a potency of antioxidant and protoscolicidal activities against protoscoleces of E. granulosus.
Collapse
Affiliation(s)
- Sidi Mohammed Ammar Selles
- Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria; Laboratory of Research on Local Animal Products, Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria.
| | - Belkacem Tahar Belhamiti
- Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria; Laboratory of Research on Local Animal Products, Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria
| | - Mokhtaria Kouidri
- Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria; Laboratory of Farm Animal Products, Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria
| | - Amar Ait Amrane
- Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria; Laboratory of Research on Local Animal Products, Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria
| | - Yamina Kadari
- Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria; Laboratory of Farm Animal Products, Veterinary Sciences Institute, University of Tiaret, 14000, Tiaret, Algeria
| | - Zohra Kaddour
- Faculty of Life and Nature Sciences, Department of Biology, University of Tiaret, Tiaret, 14000, Algeria
| | - Souad Kabrit
- Faculty of Life and Nature Sciences, Department of Biology, University of Tiaret, Tiaret, 14000, Algeria
| |
Collapse
|
16
|
Bagherivand A, Jafarirad S, Norouzi R, Karimi A. Scolicidal and apoptotic effects of phyto- and chemically synthesized silver/boehmite nanocomposites on Echinococcus granulosus protoscoleces. BIOMATERIALS ADVANCES 2024; 157:213723. [PMID: 38160631 DOI: 10.1016/j.bioadv.2023.213723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
Cystic hydatid disease (CHD) is a zoonotic disease caused by the larval stage of Echinococcus granulosus (E. granulosus). This study aimed to synthesize silver nanoparticles (Ag NPs), silver boehmite nanocomposite (Ag/Bhm NC), and silver boehmite nanocomposite modified with chitosan (Ag/Bhm/Chit NC) using Rosmarinus officinalis (R. officinalis) extract and chemical method, and to evaluate their scolicidal and apoptotic effects on protoscoleces (PSCs) in vitro. The nanomaterials (NMs) were characterized by XRD, FTIR, FESEM, EDS, DLS, PDI, and zeta potential (ZP). The NMs were tested against PSCs at different concentrations (0.2-1.6 mg/mL) and exposure times (10-60 min). The size of Ag NPs, phytosynthesized Ag/Bhm NC, Ag/Bhm/Chit NC, and chemically synthesized Ag/Bhm NC were 25.55, 43, 72.3, and 60.8 nm, respectively. Ag NPs and phytosynthesized Ag/Bhm NC showed the highest scolicidal effect, with 65.34 % and 51.60 % mortality rate at 1.6 mg/mL and 60 min, respectively. Caspase-3 mRNA expression was higher in PSCs treated with Ag NPs and Ag/Bhm NC than in control groups (P < 0.05). Phytosynthesized Ag/Bhm NC had stronger scolicidal and apoptotic effect than chemically synthesized Ag/Bhm NC. Ag/Bhm/Chit NC had a weaker scolicidal effect but higher gene expression than Ag/Bhm NC. In conclusion, this study demonstrates the potential of phytosynthesized Ag NPs and Ag/Bhm NC as effective scolicidal and apoptotic agents against PSCs of hydatid cysts, which may be useful for the treatment of this disease.
Collapse
Affiliation(s)
- Azra Bagherivand
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Saeed Jafarirad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Karimi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
18
|
Alanazi AD, Alnomasy SF. Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection. Pharmaceuticals (Basel) 2023; 16:1574. [PMID: 38004439 PMCID: PMC10675508 DOI: 10.3390/ph16111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Nowadays, interest in the use of nanotechnology for medical purposes is increasing. The current experimental investigation is planned for the green synthesis, characterization, and efficacy of copper nanoparticles (CLN) against chronic Toxoplasma gondii infection. METHODS Green synthesis of CNP was performed using the Lupinus arcticus extract via the precipitation method. The effects of CNP on tachyzoites, infectivity rate, parasites inside THP-1 cells, nitric oxide (NO) triggering, iNOS, and IFN-γ expression genes were evaluated. Following toxoplasmosis in BALB/c mice via the T. gondii ME49 strain, mice received CNP at 5 and 10 mg/kg/day alone and combined with pyrimethamine (PYM) at 5 mg/kg for two weeks. CNP's in vivo effects were evaluated by analyzing the load and size of cysts, oxidant/antioxidant enzymes, and bradyzoite surface antigen 1 (BAG1) expression gene levels. RESULTS CNP displayed a circular shape ranging from 10 to 85 nm. The IC50 value of CNP and PYM against tachyzoites was 37.2 and 25.7 µg/mL, respectively, whereas the CC50 value of CNP and pyrimethamine against THP-1 cells was 491.4 μg/mL and 269.5 μg/mL, respectively. The rate of infectivity and parasite load among THP-1 cells exposed to CNP was obviously reduced (p < 0.05). CNP at the doses of 5 and 10 mg/kg predominantly along with PYM evidently (p < 0.05) reduced the number and size of the T. gondii cysts in the infected mice. The levels of NO, iNOS, and IFN-γ genes were remarkably (p < 0.001) boosted compared with the cells without treatment. CNP at the doses of 10 and 20 mg/kg drastically (p < 0.05) reduced the oxidative stress markers in the infected mice, whereas CNP significantly elevated the level of antioxidant factors. CNP also revealed no toxicity in the liver and kidney at the tested doses in healthy mice. CONCLUSIONS Our experimental study reported the beneficial effects of CNP principally along with existing chemical drugs against latent toxoplasmosis in mice, whereas the possible action mechanisms of CNP are controlling oxidative stress, refining antioxidant enzymes, and increasing the production of immunomodulatory cytokines with no toxicity to the function of vital organs. But, additional trials are required to confirm these results, as well as to clarify the accurate mechanisms and their toxicity.
Collapse
Affiliation(s)
- Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia;
| |
Collapse
|
19
|
Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, Borji H. Challenges and Prospective of Enhancing Hydatid Cyst Chemotherapy by Nanotechnology and the Future of Nanobiosensors for Diagnosis. Trop Med Infect Dis 2023; 8:494. [PMID: 37999613 PMCID: PMC10674171 DOI: 10.3390/tropicalmed8110494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Hydatid cysts have been widely recognized for decades as a common medical problem that affects millions of people. A revolution in medical treatment may be on the prospect of nanotechnology enhancing chemotherapy against hydatid cysts. An overview of nanotechnology's impact on chemotherapeutics is presented in the current review. It discusses some of the challenges as well as some of the opportunities. The application of nanotechnology to enhance chemotherapy against hydatid cysts is what this review will explore. Nanotechnology is a critical component of delivering therapeutic agents with greater precision and efficiency and targeting hydatid cysts with better efficacy, and minimizing interference with surrounding tissue. However, there are biodistribution challenges, toxicity, and resistance problems associated with nanotherapeutics. Additionally, nanobiosensors are being investigated to enable the early diagnosis of hydatid cysts. A nanobiosensor can detect hydatid cysts by catching them early, non-invasively, rapidly, and accurately. The sensitivity and specificity of diagnostic tests can be enhanced with nanobiosensors because they take advantage of the unique properties of nanomaterials. By providing more precise and customized treatment options for hydatid cysts, nanotechnology may improve therapeutic options and strategies for diagnosing the disease. In conclusion, treatment with nanotechnology to treat hydatid cysts is potentially effective but presents many obstacles. Furthermore, nanobiosensors are being integrated into diagnostic techniques, as well as helping to diagnose patients earlier and more accurately.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Amir Mohammad Abbasi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | | | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| |
Collapse
|
20
|
Shakib P, Zivdari M, Khalaf AK, Marzban A, Ganjalikhani-Hakemi M, Parvaneh J, Mahmoudvand H, Cheraghipour K. Nanoparticles as Potent Agents for Treatment of Schistosoma Infections: A Systematic Review. CURRENT THERAPEUTIC RESEARCH 2023; 99:100715. [PMID: 37743882 PMCID: PMC10511339 DOI: 10.1016/j.curtheres.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
Background Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes of the genus Schistosoma. The current drugs for treating schistosomiasis are associated with some side effects. Objective The aim of this systematic study was an overview of the treatment of diseases caused by Schistosoma based on nanoparticles. Methods In the present systematic research with keywords "Schistosoma", "parasitism", "anti-Schistosoma activity", "nanoparticles", "metal nanoparticles", "silver nanoparticles", "gold nanoparticles", "polymer nanoparticles", "PLGA nanoparticles", "nanoemulsions", "in vitro", and "in vivo" from five English-language databases, including ScienceDirect, europePMC, PubMed, Scopus, Ovid, and Cochrane were searched from 2000 to 2022 by 2 researchers. Results In the initial search, 250 studies were selected. Based on the inclusion and exclusion criteria, 27 articles were finally selected after removing duplicate, unrelated, and articles containing full text. In present article, the most nanoparticles used against Schistosoma were gold nanoparticles (22%). Conclusions The results indicate the high potential of various nanoparticles, including metal nanoparticles, against Schistosoma. Also, the remarkable anti-schistosomal activity of nanoparticles suggests their use in different fields to eliminate this pathogenic microorganism so that it can be used as an effective candidate in the preparation of anti-schistosomal compounds because these compounds have fewer side effects than chemical drugs. Ther Res Clin Exp. 2023; XX:XXX-XXX).
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Yedıtepe University, Istanbul, Turkey
| | | | - Hossein Mahmoudvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Lorestan Provincial Veterinary Service, Khorramabad, Iran
| |
Collapse
|
21
|
Raziani Y, Shakib P, Rashidipour M, Cheraghipour K, Ghasemian Yadegari J, Mahmoudvand H. Green Synthesis, Characterization, and Antiparasitic Effects of Gold Nanoparticles against Echinococcus granulosus Protoscoleces. Trop Med Infect Dis 2023; 8:313. [PMID: 37368731 DOI: 10.3390/tropicalmed8060313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Echinococcosis, or hydatidosis, is one of the most important zoonotic diseases, which is initiated by the larval stage in the clasts of Echinococcus granulosus. For the treatment of hydatidosis, surgery is still the preferred method and the first line of treatment for symptomatic patients. Unfortunately, most of the scolicidal agents that are injected inside cysts during hydatid cyst surgery have side effects, including leaking out of the cyst and adverse effects on the living tissue of the host, such as necrosis of liver cells, which limits their use. This work was carried out to study the lethal effect of green synthesized gold nanoparticles (Au-NCs) against hydatid cyst protoscoleces. Au-NCs were green synthesized using the Saturja khuzestanica extract. Au-NCs were characterized by UV-visible absorbance assay, electron microscopy analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Scolicidal properties of Au-NCs (1-5 mg/mL) were studied against protoscoleces for 10-60 min. The effect of Au-NCs on the expression level of the caspase-3 gene as well as the ultrastructural examination was studied by real-time PCR and scanning electron microscopy (SEM). The cytotoxicity of Au-NCs on hepatocellular carcinoma (HepG2) and normal embryonic kidney (HEK293) cell lines was also studied by the cell viability assay. The obtained Au-NCs are cubes and have an average size of 20-30 nm. The highest scolicidal efficacy was observed at 5 mg/mL with 100% mortality after 20 min of treatment for hydatid cyst protoscoleces. In ex vivo, Au-NCs required more incubation time, indicating more protoscolicidal effects. Au-NCs markedly upregulated the gene level of caspase-3 in protoscoleces; whereas they changed the ultra-structure of protoscoleces by weakening and disintegrating the cell wall, wrinkles, and protrusions due to the formation of blebs. We showed the effective in vitro and ex vivo scolicidal effects of Au-NCs against hydatid cyst protoscoleces by provoking the apoptosis process of caspase-3 activation and changing the ultrastructure of protoscoleces with no significant cytotoxicity against human normal cells. However, additional studies should be conducted to determine the possible harmful side effects and accurate efficacy.
Collapse
Affiliation(s)
- Yosra Raziani
- Nursing Department, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | | | - Hossein Mahmoudvand
- Molecular and Cellular Laboratory, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| |
Collapse
|
22
|
Teimouri A, Jafarpour Azami S, Hashemi Hafshejani S, Ghanimatdan M, Bahreini MS, Alimi R, Sadjjadi SM. Protoscolicidal effects of curcumin nanoemulsion against protoscoleces of Echinococcus granulosus. BMC Complement Med Ther 2023; 23:124. [PMID: 37072845 PMCID: PMC10111725 DOI: 10.1186/s12906-023-03927-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The aim of the present study was to assess in vitro protoscolicidal effects of curcumin nanoemulsion (CUR-NE) against protoscoleces of cystic echinococcosis (CE)/hydatid cysts. METHODS The CUR-NE was prepared via spontaneous emulsification of soybean as the oil phase, a mixture of Tween 80 and Tween 85 as the surfactant, ethanol as the co-surfactant and distilled water. Various concentrations of CUR-NE (156, 312, 625 and 1250 µg/ml) were exposed to collected protoscoleces of infected sheep liver hydatid cysts for 10, 20, 30, 60 and 120 min. Viability of the protoscoleces were assessed using eosin exclusion test. Morphological changes of the protoscoleces were observed using differential interference contrast (DIC) microscopy. RESULTS The mean particle size and zeta potential of CUR-NE included 60.4 ± 14.8 nm and - 16.1 ± 1.1 mV, respectively. Results showed that the viability of the protoscoleces decreased significantly with increases in CUR-NE concentrations (p < 0.001). The mortality rates of protoscoleces with exposure to concentrations of 1250 and 625 µg/ml of CUR-NE for 60 min were 94 and 73.33%, respectively. Mortality of the protoscoleces was 100% after 120 min of exposure to 1250 and 625 µg/ml concentrations of CUR-NE. Using NIC microscopy, extensively altered tegumental surface protoscoleces was observed after protoscoleces exposure to CUR-NE. CONCLUSION The findings of the present study revealed the in vitro protoscolicidal potential of CUR-NE. Therefore, CUR-NEs are addressed as novel protoscolicidal agents, which can be used as an alternative natural medicine to kill the protoscoleces, owing to their low toxicity and significant inhibition potency. However, further studies are necessary to investigate pharmacologic and pharmacokinetics of CUR-NEs.
Collapse
Affiliation(s)
- Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hashemi Hafshejani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Dastyar Haghighi S, Khudair Khalaf A, Mahmoudvand H, Adineh A, Maleki AM, Ghasemian Yadegari J. Antiparasitic Effects and Cellular Mechanisms of Formononetin (a Natural Isoflavone) Against Hydatid Cyst Protoscoleces. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-129302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background: The chemical agents applied to reduce the complications of hydatid cyst surgery are not free of side effects. Formononetin (FMN), as a natural isoflavone, has been shown to have various therapeutic benefits. Objectives: We studied the in vitro and ex vivo protoscolicidal activity and cellular mechanisms of FMN against hydatid cyst protoscoleces. Methods: Formononetin at 75, 150, and 300 μg/mL was mixed with hydatid cyst protoscoleces (103/mL), and the viability was determined in 5 to 60 min through eosin staining assay. The effect of FMN on caspase-3 activity was tested through a commercial colorimetric protease kit. In addition, the penetrability of the plasma membrane of protoscoleces after exposure to FMN was also determined by the SYTOX assay. Results: Formononetin at 300 μg/mL completely destroyed hydatid cyst protoscoleces after 30 minutes. While at 150 μg/mL, after 60 minutes of contact, 100% of protoscoleces were eliminated. By ex vivo assay, FMN showed its antiparasitic effect for longer periods. Based on these results, FMN at 300 μg/mL concentration completely eliminated hydatid cyst protoscoleces after 60 minutes of exposure. While at a concentration of 150 μg/mL after 60 minutes, 89.6% of protoscoleces were destroyed. Formononetin noticeably increased (P < 0.001) the activity of caspase-3 and the permeability of protoscoleces dose-dependently. Conclusions: Formononetin as a natural product showed promising effects on the protoscoleces of hydatid cysts, indicating that it can be considered a valuable scolicidal agent. However, additional investigations are necessary to evaluate its efficacy in animal models and human subjects.
Collapse
|
24
|
Raziani Y, Cheraghipour K, Shakibaie M, Ghasemian Yadegari J, Mahmoudvand H. High potency of magnetic iron oxide nanoparticles covered by piroctone olamine against cystic echinococcosis. Biomed Pharmacother 2023; 161:114536. [PMID: 36940617 DOI: 10.1016/j.biopha.2023.114536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
This study examined the synthesis of magnetic iron oxide nanoparticles coated with PO (FOMNPsP) and assessed their in vitro, ex vivo, and in vivo effects against cystic echinococcosis. The FOMNPsP was synthesized through the alkalization of iron ions in a deoxygenated form. In vitro and ex vivo protoscolicidal effects of FOMNPsP (100-400 μg/mL) were evaluated on hydatid cyst protoscoleces by the eosin exclusion test for 10-60 min. The effect of FOMNPsP on caspase-3 gene expression and exterior ultra-structural of protoscoleces was assessed by real-time PCR and scanning electron microscopy (SEM), respectively. In vivo effects were assessed by evaluating the number, size, and weight of hydatid cysts among infected mice. The FOMNPsP size was < 55 nm, and the most frequent particles were in the 15-20 nm range. In vitro and ex vivo assays revealed that the highest protoscolicidal effect was observed at 400 µg/mL with 100% lethality. After exposure of protoscoleces with FOMNPsP, the level of gene expression of caspase-3 was dose-dependently increased (p < 0.05). By SEM, the FOMNPsP-treated protoscoleces showed wrinkles and bulges resulting from the formation of blebs. FOMNPsP significantly decreased (p < 0.01) the mean number, size, and weight of the hydatid cyst. FOMNPsP revealed the potent protoscolicidal traits through disrupting the cell wall and apoptosis induction. The results also indicated the promising effect of FOMNPsP in controlling hydatid cysts in the animal model. Although FOMNPsP is safe for human normal cells, more investigations are required to clarify its toxicity and precise mechanisms of action.
Collapse
Affiliation(s)
- Yosra Raziani
- Nursing Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Ghasemian Yadegari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Liu L, Nie J, Li L. Phospholipid Complexation for Bioavailability Improvement of Albendazole: Preparation, Characterization and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:36. [PMID: 36635447 DOI: 10.1208/s12249-022-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The current study aimed to improve the poor solubility of albendazole (ABZ) by means of phospholipid complexation, hence to improve its oral bioavailability. The solvent-evaporation method for ABZ-phospholipid complex (ABZ-PC) preparation was established for the first time. And a systematic optimization of preparation conditions of ABZ-PC was performed. Physicochemical studies of ABZ-PC were performed with FTIR, DSC, and XRD measurements to confirm the formation of the ABZ-PC and reveal the interaction mechanism between ABZ and phospholipid molecules. Solubility determination and morphological characterization were applied to verify the solubility improvement of prepared ABZ-PC. Moreover, the pharmacokinetic performance of ABZ-PC was further evaluated in vivo compared with raw materials of ABZ. Under optimal preparation conditions, the AE of ABZ-PC could be approximately 100%. Physicochemical studies indicated that the P = O group in the phospholipid molecule would interact with the N-H group in the ABZ molecule through hydrogen bonds and ABZ was dispersed in an amorphous state after being prepared into ABZ-PC. The aqueous solubility of ABZ-PC in deionized water (pH7.0) improved by 30-folds than free ABZ, and the AUC0-t of ABZ-PC was significantly increased by 2.32 times in comparison with raw materials of ABZ through oral administration. The current study developed an effective method for the phospholipid complexation of ABZ. With significantly improved solubility in an aqueous environment, the prepared ABZ-PC exhibited improved oral bioavailability and pharmacokinetic characteristics indicating it could be potentially applied in the oral drug delivery of ABZ.
Collapse
Affiliation(s)
- Liyao Liu
- College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Jinju Nie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, People's Republic of China.
| | - Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Kharazmkia A, Al-Abodi HR, Yadegari JG, Vahidi A, Mahmoudvand H. Potential effects of alpha-pinene, a monoterpene commonly found in essential oils against Toxoplasma gondii infection; an in vitro and in vivo study. J Parasit Dis 2022; 46:1055-1061. [PMID: 36457783 PMCID: PMC9606148 DOI: 10.1007/s12639-022-01514-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
This survey designed to assess the in vitro and in vivo activity of α-pinene, a monoterpene commonly originated in essential oils on Toxoplasma gondii. The in vitro effect of various concentration of α-pinene against tachyzoites of T. gondii Rh strain was assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The activity of α-pinene on the stimulation of apoptosis in tachyzoites of T. gondii was also examined using the caspase 3 colorimetric activity assay. In vivo assay, mice were orally received α-pinene at 2 and 4 mg/kg/day for 14 days, then, pre-treated mice were daily tested and the rate of death was recorded. α-pinene meaningfully declined (p < 0.001) the tachyzoites viability with the IC50 value of 23.3 µg/mL. α-pinene induced the apoptosis through increasing the caspase-3 activity by 35.6%. Oral treatment with α-pinene significantly (p < 0.01) improved the survival rate infected mice with by 9th day. α-pinene + atovauone (50 mg/kg) significantly (p < 0.01) improved the survival rate infected mice up to 11 days compared with the control groups. α-pinene especially in combined atovaquone at 50 mg/kg for 2 weeks meaningfully (p < 0.05) declined oxidative stress. We found the promising in vitro anti-Toxoplasma effects of α-pinene on T. gondii RH strain. In addition, we found that α-pinene therapy particularly along with the reference drug declined the mortality rate of infected mice. Although, we just confirmed the stimulation of apoptosis and anti-inflammatory effects as the main anti-Toxoplasma mechanisms of α-pinene; however, more surveys concerning the accurate mechanisms, toxicity, and efficacy on other T. gondii strains are required to confirm these results.
Collapse
Affiliation(s)
- Ali Kharazmkia
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hiba Riyadh Al-Abodi
- Department of Environment, College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Javad Ghasemian Yadegari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashkan Vahidi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Molecular and Cellular Research Laboratory, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
27
|
Mahmoudvand H, Al-Abodi HR, Zolfagharkhani P, Ghasemian Yadegari J. Anti-helminthic effects and cellular mechanisms of Astragalus ecbatanus extract against Echinococcus granulosus protoscoleces. J Parasit Dis 2022; 46:1047-1054. [PMID: 36457771 PMCID: PMC9606165 DOI: 10.1007/s12639-022-01517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 10/15/2022] Open
Abstract
We aimed to investigate the in vitro and ex vivo anti-helminthic effects of Astragalus ecbatanus chloroform extract (AECE) as well as its cellular mechanisms against Echinococcus granulosus protoscoleces. In vitro and ex vivo anti-helminthic effects of AECE on E. granulosus protoscoleces were evaluated through eosin exclusion test. Effects of AECE on induction of the caspase-3 like activity, the permeability of plasma membrane were also determined. The effects of AECE against the human hepatocyte carcinoma (HepG2) and human embryonic kidney (HEK293T) cells were determined by MTT ([3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazolium bromide)]) test. The findings revealed that AECE especially at 45 mg/mL displayed potent in vitro and ex vivo anti-helminthic effects against E. granulosus protoscoleces (p < 0.001). After treatment of protoscoleces with AECE, the caspase-3 enzyme activity and the rate of permeability of plasma membrane was dose dependently (P < 0.001) increased. The 50% cytotoxic concentration (CC50) value of AECE for normal and cancer cells lines 4.62 mg/mL and 1.89 mg/mL, respectively. The findings of the current study revealed the favorable in vitro and ex vivo anti-helminthic effects of AECE against protoscoleces of E. granulosus. However, further surveys in animal model are required to elucidate different aspects of this extract before use in clinical phases.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hiba Riyadh Al-Abodi
- Department of Environment, College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Peyman Zolfagharkhani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Pharmacognosy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
28
|
Ghasemian Yadegari J, Khudair Khalaf A, Saadatmand M, Mahmoudvand H. Antiparasitic activity of Astragalus brachycalyx subsp. brachycalyx extract against hydatid cyst protoscoleces and its effect on induction of apoptosis: an in vitro and ex vivo study. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: This study aims to evaluate in vitro and ex vivo antiparasitic activity of Astragalus brachycalyx subsp. brachycalyx. root chloroformic extract against hydatid cyst protoscoleces and its effect on induction of apoptosis. Methods: Various concentrations of the A. brachycalyx root chloroformic extract (56.25, 112.5, 225, and 450 mg/mL) were treated with hydatid cyst protoscoleces collected from the liver of infected sheep for 5-60minutes in vitro and ex vivo. Eosin exclusion test was also utilized to measure the mortality of protoscoleces. Moreover, the extract effect was assessed on apoptosis induction in hydatid cyst protoscoleces by caspase-3 activity measurement. Results: The mortality rate of protoscoleces in in vitro was 100% after being exposed to 450 and 225 mg/mL of A. brachycalyx extract for 20 and 30 minutes and in ex vivo for 30 and 60 minutes, respectively. Following 48 h treatment of protoscoleces, A. brachycalyx chloroformic extract at the doses of 56.25, 112.5, 225, and 450 mg/mL, dose-dependently motivated the caspase-3 enzyme ranging from 8.8% to 29.6% Conclusion: A. brachycalyx root chloroformic extract had a significant protoscolicidal effect; however, extra surveys are required to assess its efficacy and safety as a promising protoscolicidal agent in clinical settings.
Collapse
Affiliation(s)
- Javad Ghasemian Yadegari
- Department of Pharmacognosy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Massumeh Saadatmand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
29
|
Shakibaie M, Khalaf AK, Rashidipour M, Mahmoudvand H. Effects of green synthesized zinc nanoparticles alone and along with albendazole against hydatid cyst protoscoleces. Ann Med Surg (Lond) 2022; 78:103746. [PMID: 35600184 PMCID: PMC9118496 DOI: 10.1016/j.amsu.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/05/2022] Open
Abstract
Background The current investigation aims to green synthesized the zinc nanoparticles (ZnNPs) using Lavandula angustifolia extract by microwave technique and its protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Methods Different concentrations of the ZnNPs (50, 100, and 200 μg/ml) alone and combined with albendazole (ALZ, 100 μg/ml) were treated with hydatid cyst protoscoleces obtained from liver of infected sheep for 5–60 min in vitro and ex vivo. Eosin exclusion examination was used to assess the viability of protoscoleces. The induction of apoptosis in hydatid cyst protoscoleces was assessed by measurement of the Caspase-3 activity of protoscoleces treated with various concentrations of ZnNPs. Results The size of green synthesized ZnNPs was ranged from 30 to 80 nm, most of these nanoparticles were between 50 and 60 nm in size. In vitro, the highest scolicidal effect of ZnNPs was observed at the concentration of 200 μg/ml, where it killed 81.6% of protoscolices. While the combination of these nanoparticles with ALZ, especially at the concentration of 200 μg/ml, completely killed the protoscolices after 10 min’ exposure. However, compared to in vitro assay, the drugs tested took longer to show their protoscolicidal effect. Conclusion Based on the obtained results, ZnNPs particularly in combination with albendazole displayed the potent protoscolicidal in vitro and ex vivo as an intraperitoneal model of administration of agents to hydatid cyst treatment; nevertheless, additional investigations are mandatory to evaluate the efficacy and safety Zn NPs as a favorable protoscolicidal agent in clinical setting. ZnNPs particularly in combination with albendazole displayed the relevant protoscolicidal in vitro effects. ZnNPs particularly in combination with albendazole displayed the potent protoscolicidal ex vivo effects. ZnNPs induced the apoptosis through the activation of caspase-3 enzyme. Additional investigations are mandatory to evaluate the its efficacy and safety in clinical setting.
Collapse
|
30
|
Almohammed HI, Alkhaibari AM, Alanazi AD. Antiparasitic effects of Elettaria cardamomum L. essential oil and its main compounds, 1-8 Cineole alone and in combination with albendazole against Echinococcus granulosus protoscoleces. Saudi J Biol Sci 2022; 29:2811-2818. [PMID: 35531210 PMCID: PMC9073046 DOI: 10.1016/j.sjbs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background The present investigation aims to determine the chemical structure and protoscolicidal effects of Elettaria cardamomum L. essential oil (ECEO) and its main compounds 1–8 cineole alone and along with albendazole (ALZ) against Echinococcus granulosus protoscoleces in vitro and ex vivo. We also decided to evaluate some cellular mechanisms such as the apoptotic activity and the permeability of plasma membrane of protoscoleces treated with ECEO and 1–8 cineole. Methods Hydatid cyst protoscoleces were divided into seven groups including protoscoleces treated with ECEO 50 µl/mL (T1), protoscoleces treated with ECEO 100 µl/mL (T2), protoscoleces treated with ECEO 200 µl/mL (T3), protoscoleces treated with 1–8 cineole 100 µg/mL (T4), protoscoleces treated with 1–8 cineole 200 µg/mL (T5), protoscoleces treated with 1–8 cineole 100 µg/mL + albendazole 50 µg/mL (T6), and protoscoleces treated with 1–8 cineole 200 µg/mL + albendazole ALZ-50 µg/mL (T7). The viability of protoscoleces were recorded by eosin staining examination. Moreover, the induction of apoptosis and the plasma membrane permeability of the protoscoleces treated with ECEO and 1–8 cineole were evaluated. Results The highest protoscolicidal effect of ECEO was observed at the dose of 200 µl/ml (T3). 1,8-Cineole alone and combined with ALZ, particularly at the dose of 200 µg/ml (T5 and T7), destroyed the 100% protoscolices after 10 min incubation. The ECEO (T1-T3) and 1–8 cineole alone (T4 and T5) and in combination with ALZ (T6 and T7) took longer to display their protoscolicidal effect ex vivo. The obtained results of relative fuorescent items exhibited that the protoscoleces incubated with ECEO and 1,8-Cineole, alter the permeability of plasma membrane by Sytox Green with increasing the concentration. The findings revealed exhibited that ECEO and 1,8-Cineole increasingly and dose-dependently induced activation of caspase-3 enzyme ranging from 6.8 to 23.3%. Conclusion Our obtained results revealed that ECEO and its main compound, 1,8-Cineole exhibited the potent protoscolicidal in vitro and ex vivo; and if more research is done on their efficacy and toxicity in animal models and even clinical setting, it can be suggested as a protoscolicidal agent to use during hydatid cyst surgery.
Collapse
|
31
|
Abbas G, Pandey G, Singh KB, Gautam N. One-Pot Surface Modification of β-Cu 2O NPs for Biocatalytic Performance against A-549 Lung Carcinoma Cell Lines through Docking Analysis. ACS OMEGA 2021; 6:29380-29393. [PMID: 34778611 PMCID: PMC8581973 DOI: 10.1021/acsomega.1c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The physicochemical approaches and biological principles in bio-nanotechnology favor specially functionalized nanosized particles. Cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase with a little tenorite (CuO) may be very effective in the development of novel therapeutic approaches against several fatalities including A-549 lung carcinoma cell lines. Consequently, the synthesis of β-Cu2O NPs for the improvement in the therapeutic index and drug delivery application is becoming an effective strategy in conventional anticarcinoma treatment. Hence, surface-enhanced nanosized spherical cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase were successfully prepared using poly(ethylene glycol) (PEG) as an amphiphilic nonionic surfactant and l-ascorbic acid (K3[Cu(Cl5)]@LAA-PEG) reduced to cuprites β-Cu2O NPs via the sonochemical route. Less improved toxicity and better solubility of β-Cu2O NPs compared with Axitinib were a major reason for producing β-Cu2O NPs from K3[Cu(Cl5)]@LAA-PEG (LAA, l-ascorbic acid, PEG, poly(ethylene glycol) (PEG)). These nanoparticle syntheses have been suggested to influence their cytotoxicity, free-radical scavenging analysis, and reactive oxygen species (ROS) using poly(ethylene glycol) (PEG) and l-ascorbic acid (LAA) as coated and grafted materials due to their dose-dependent nature and IC50 calculations. The surface morphology of the formed β-Cu2O NPs has been examined via UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy diffraction scattering spectroscopy (SEM@EDS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface analysis results confirm the presence of pure cuprite with a very little amount of tenorite (CuO) phase, Dynamic light scattering (DLS) confirms the negative ζ-value with stable nature. Docking was performed using PDB of lung carcinomas and others, as rigid receptors, whereas the β-Cu2O NP cluster was treated as a flexible ligand.
Collapse
|
32
|
Albalawi AE. Antileishmanial Activity of Ziziphus spina-christi Leaves Extract and Its Possible Cellular Mechanisms. Microorganisms 2021; 9:microorganisms9102113. [PMID: 34683434 PMCID: PMC8541012 DOI: 10.3390/microorganisms9102113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
This experimental investigation was designed to assess the in vitro and in vivo antileishmanial effects of Z. spina-christi methanolic extract (ZSCME) and also aims to assess some of the antileishmanial mechanisms such as the NO production, apoptosis, and plasma membrane permeability. We assessed the in vitro leishmanicidal effects of ZSCME (10–200 µg/mL) against intracellular amastigote stage of the Leishmania major (MRHO/IR/75/ER) and, then, in vivo examined male BALB/c mice infected by L. major. In addition, the rate of infectivity, Caspase 3 activity, nitric oxide (NO) production, the plasma membrane permeability, and the cytotoxic effects of ZSCME were studied. The primary phytochemical analysis of ZSCME revealed the existence of high amounts of flavonoids, tannins, glycosides, alkaloids, and saponin in this plant. The findings exhibited that ZSCME meaningfully (p < 0.001) reduced the viability of amastigotes of L. major, whereas it prompted the creation and release of NO, apoptosis, and the plasma membrane permeability (p < 0.05) and indicated no cytotoxicity in macrophage cells. The in vivo results also demonstrated that ZSCME significantly decreased the parasite load and the diameter of the lesions in the infected mice. Our results demonstrate the promising in vitro and in vivo antileishmanial effects of ZSCME against of L. major. Although the findings of the present study showed some possible antileishmanial mechanisms of ZSCME, such as stimulating NO production, apoptosis, and increasing plasma membrane permeability, additional investigations are required to confirm these results.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47913, Saudi Arabia
| |
Collapse
|
33
|
Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime ®) in Cutaneous Leishmaniasis. NANOMATERIALS 2021; 11:nano11040891. [PMID: 33807273 PMCID: PMC8065924 DOI: 10.3390/nano11040891] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Background: In recent years, the focus on nanotechnological methods in medicine, especially in the treatment of microbial infections, has increased rapidly. Aim: The present study aims to evaluate in vitro and in vivo antileishmanial effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit extract alone and combined with meglumine antimoniate (MA). Methods: CuNPs were green synthesized by C. spinosa methanolic extract. The in vitro antileishmanial activity of CuNPs (10–200 µg/mL) or MA alone (10–200 µg/mL), and various concentrations of MA (10–200 μg/mL) along with 20 μg/mL of CuNPs, was assessed against the Leishmania major (MRHO/IR/75/ER) amastigote forms and, then tested on cutaneous leishmaniasis induced in male BALB/c mice by L. major. Moreover, infectivity rate, nitric oxide (NO) production, and cytotoxic effects of CuNPs on J774-A1 cells were evaluated. Results: Scanning electron microscopy showed that the particle size of CuNPs was 17 to 41 nm. The results demonstrated that CuNPs, especially combined with MA, significantly (p < 0.001) inhibited the growth rate of L. major amastigotes and triggered the production of NO (p < 0.05) in a dose-dependent manner. CuNPs also had no significant cytotoxicity in J774 cells. The mean number of parasites was significantly (p < 0.05) reduced in the infected mice treated with CuNPs, especially combined with MA in a dose-dependent response. The mean diameter of the lesions decreased by 43 and 58 mm after the treatment with concentrations of 100 and 200 mg/mL of CuNPs, respectively. Conclusion: The findings of the present study demonstrated the high potency and synergistic effect of CuNPs alone and combined with MA in inhibiting the growth of amastigote forms of L. major, as well as recovery and improving cutaneous leishmaniasis (CL) induced by L. major in BALB/c mice. Additionally, supplementary studies, especially in clinical settings, are required.
Collapse
|