1
|
Mari R, Ramamurthy J, Rudhra K, Krishnaswamy N. Efficacy of Polydeoxyribonucleic Acid (PDRN) in periodontal regeneration: A systematic review of clinical outcomes. J Oral Biol Craniofac Res 2025; 15:624-630. [PMID: 40256760 PMCID: PMC12008149 DOI: 10.1016/j.jobcr.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
Background Periodontal disease is a major dental health concern due to its impact on the supporting structures of teeth, including the alveolar bone and periodontal ligament. Polydeoxyribonucleic Acid (PDRN) has shown promise in promoting tissue regeneration through anti-inflammatory effects and angiogenesis, crucial for periodontal healing. Objective To evaluate the clinical effectiveness of Polydeoxyribonucleic Acid (PDRN) in periodontal regeneration through a systematic analysis of available studies. Methods This review followed PRISMA guidelines and included randomized controlled trials (RCTs), cohort, and case-control studies assessing PDRN's effects on periodontal regeneration. A comprehensive search in PubMed, Scopus, Web of Science, and Embase was conducted using keywords related to PDRN and periodontal regeneration. Primary outcomes included clinical attachment level (CAL) gain, probing depth reduction, and bone fill. Two reviewers independently assessed study eligibility and extracted data on PDRN application methods, dosages, and observed outcomes. Results Among the four studies that met the inclusion criteria, significant improvements in CAL, bone fill, and probing depth reduction were consistently observed in PDRN-treated sites compared to controls. Animal studies also demonstrated enhanced bone quality, reduced inflammation, and a conducive environment for cell proliferation. Clinical trials indicated that PDRN, as an adjunct to conventional therapy, produced more favorable outcomes in periodontal healing. PDRN's activation of adenosine A2A receptors and VEGF expression promoted angiogenesis and modulated inflammatory responses, aiding regeneration. Conclusion PDRN appears to offer substantial benefits in periodontal regeneration by enhancing bone and tissue healing and reducing inflammatory responses. While promising, further clinical trials are necessary to determine optimal dosing and long-term effectiveness. This systematic review provides evidence supporting PDRN as a potential adjunctive treatment for periodontitis, with implications for enhancing clinical outcomes in periodontal therapy.
Collapse
Affiliation(s)
- Ranjith Mari
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), India
| | - Jaiganesh Ramamurthy
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), India
| | - K. Rudhra
- Sree Balaji Dental College and Hospital, Pallikarani, Chennai, India
| | - Nitya Krishnaswamy
- Department of Oral Biology, Saveetha Dental College and Hospitals, India
| |
Collapse
|
2
|
Jin Y, Wang J, Wang Y. Unraveling the complexity of radiotherapy- and chemotherapy-induced oral mucositis: insights into pathogenesis and intervention strategies. Support Care Cancer 2025; 33:195. [PMID: 39954082 DOI: 10.1007/s00520-025-09239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Radiotherapy- or chemotherapy-induced oral mucositis (RIOM/CIOM) presents significant challenges in cancer treatment, severely impacting patients' quality of life (QoL) and therapeutic outcomes. Despite advancements, existing prevention and treatment measures have notable limitations. RIOM/CIOM involves a multifaceted interplay of inflammatory cascades orchestrated by the innate immune response. Furthermore, dysbiosis of oral and intestinal microbiota, triggered by anticancer therapy, exacerbates mucosal damage through intricate interactions with the innate immune system. This review provides an update on pivotal signaling pathways governing the initiation and progression of RIOM/CIOM. It also elucidates the intricate relationship between microbiota dysbiosis and dysregulation of oral mucosal immune homeostasis. Moreover, potential interventions targeting these pathogenic mechanisms are summarized, offering valuable insights for further exploration of RIOM/CIOM's complex pathophysiology and the development of more effective interventions.
Collapse
Affiliation(s)
- Yixin Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiantao Wang
- Department of Radiation Oncology, Cancer Center; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Baek A, Baek D, Kim SH, Kim J, Notario GR, Lee DW, Kim HJ, Cho SR. Polydeoxyribonucleotide ameliorates IL-1β-induced impairment of chondrogenic differentiation in human bone marrow-derived mesenchymal stem cells. Sci Rep 2024; 14:26076. [PMID: 39478005 PMCID: PMC11525668 DOI: 10.1038/s41598-024-77264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints, prevalent worldwide. Polydeoxyribonucleotide (PDRN) is used for treating knee OA. However, the role of PDRN in IL-1β-induced inflammatory responses in human bone marrow-derived mesenchymal stem cells (hBMSCs) remains unknown. Here, we investigated the role of PDRN in IL-1β-induced impairment of chondrogenic differentiation in hBMSCs. hBMSCs treated with PDRN showed a large micromass, enhanced safranin O and alcian blue staining intensity, and increased expression of chondrogenic genes in IL-1β-induced inflammatory responses, in addition to regulation of catabolic and anabolic genes. In addition, PDRN treatment suppressed the expression of inflammatory cytokines and mitigated IL-1β-induced apoptosis in hBMSCs. Mechanistically, PDRN treatment increased the formation of cyclic adenosine monophosphate (cAMP) and upregulated the phosphorylation of cAMP-dependent protein kinase A (PKA)/cAMP response element binding protein (CREB) through the adenosine A2A receptor in hBMSCs and thus blocked the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway. Thus, IL-1β-induced expression of inflammatory cytokines in hBMSCs was directly reduced by adenosine A2A receptor activation. Based on our results, we suggest that PDRN may be a promising MSC-based therapeutic agent for OA.
Collapse
Affiliation(s)
- Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dawoon Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Forensic DNA Division, National Forensic Service, Daegu, Republic of Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jinyoung Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Geneva Rose Notario
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do-Won Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kim E, Choi S, Kim SY, Jang SJ, Lee S, Kim H, Jang JH, Seo HH, Lee JH, Choi SS, Moh SH. Wound healing effect of polydeoxyribonucleotide derived from Hibiscus sabdariffa callus via Nrf2 signaling in human keratinocytes. Biochem Biophys Res Commun 2024; 728:150335. [PMID: 38996695 DOI: 10.1016/j.bbrc.2024.150335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 μg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sunmee Choi
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Soo-Yun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Joo Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sak Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyein Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Ji Hyeon Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul, 04513, Republic of Korea.
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
5
|
Lee H, Hwa S, Cho S, Kim JH, Song HJ, Ko Y, Park JB. Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1610. [PMID: 39459397 PMCID: PMC11509416 DOI: 10.3390/medicina60101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations.
Collapse
Affiliation(s)
- Heera Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Somyeong Hwa
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sunga Cho
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (S.H.); (S.C.); (J.-H.K.); (Y.K.)
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Ha YJ, Tak KH, Jung JM, Lee JL, Kim CW, Ah YC, Kim SS, Moon IJ, Yoon YS. The Effect of Polynucleotide-Hyaluronic Acid Hydrogel in the Recovery After Mechanical Skin Barrier Disruption. Skin Res Technol 2024; 30:e70068. [PMID: 39300806 DOI: 10.1111/srt.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The epidermal barrier acts as a defense against external agents as well as helps to maintain body homeostasis. Polynucleotides (PN), exogenous DNA fragments, promote wound repair through their stimulatory and anti-inflammatory effects. Recent findings indicate a synergistic effect of PN and hyaluronic acid (HA) combinations in regulating inflammation and promoting cell proliferation. This study aims to elucidate the effects of PN and HA on repairing the epidermal barrier following its disruption by tape stripping (TS) in a mouse model. MATERIALS AND METHODS After disrupting the epidermal barrier using TS, a formulation containing PN (14 mg/mL) and HA (6 mg/mL) was applied. Trans-epidermal water loss (TEWL) was measured at 0, 3, 6, 24, 48, and 72 h. Mice were euthanized after the final application at 72 h, and tissue samples were analyzed for epidermal/dermal thickness, neutrophil infiltration, and filaggrin expression. RESULTS We observed a significant reduction in TEWL in the PN+HA group compared to that in the control group (20.8 ± 0.5 vs. 43.7 ± 0.5 g/m2h at 72 h, p < 0.05), indicating an improvement in barrier function. Histological evaluation showed decreased epidermal and dermal thickening in the PN+HA group compared to that in the control group (epidermal: 29.4 ± 2.2 vs. 57.9 ± 3.5 μm; dermal: 464.8 ± 25.9 vs. 825.9 ± 44.8 μm, both p < 0.05). Additionally, neutrophil infiltration in the dermis was significantly reduced, and filaggrin protein levels were significantly higher in the PN+HA group compared to those in the control group (4.8 ± 0.4 vs. 21.1 ± 3.3 for neutrophils; 0.84 ± 0.04 vs. 0.42 ± 0.03 for filaggrin, both p < 0.05). CONCLUSION These results suggest that PN+HA may be an effective therapeutic strategy for repairing skin barrier damage.
Collapse
Affiliation(s)
- Ye Jin Ha
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ka Hee Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin-Min Jung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jong Lyul Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chan Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | - Ik Jun Moon
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Sik Yoon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Mannino F, Urzì Brancati V, Lauro R, Pirrotta I, Rottura M, Irrera N, Cavallini GM, Pallio G, Gitto E, Manti S. Levosimendan and Dobutamin Attenuate LPS-Induced Inflammation in Microglia by Inhibiting the NF-κB Pathway and NLRP3 Inflammasome Activation via Nrf2/HO-1 Signalling. Biomedicines 2024; 12:1009. [PMID: 38790971 PMCID: PMC11117907 DOI: 10.3390/biomedicines12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Hypovolemic shock is a circulatory failure, due to a loss in the effective circulating blood volume, that causes tissue hypoperfusion and hypoxia. This condition stimulates reactive oxygen species (ROS) and pro-inflammatory cytokine production in different organs and also in the central nervous system (CNS). Levosimendan, a cardioprotective inodilator, and dobutamine, a β1-adrenergic agonist, are commonly used for the treatment of hypovolemic shock, thanks to their anti-inflammatory and antioxidant effects. For this reason, we aimed at investigating levosimendan and dobutamine's neuroprotective effects in an "in vitro" model of lipopolysaccharide (LPS)-induced neuroinflammation. Human microglial cells (HMC3) were challenged with LPS (0.1 µg/mL) to induce an inflammatory phenotype and then treated with levosimendan (10 µM) or dobutamine (50 µM) for 24 h. Levosimendan and dobutamine significantly reduced the ROS levels and markedly increased Nrf2 and HO-1 protein expression in LPS-challenged cells. Levosimendan and dobutamine also decreased p-NF-κB expression and turned off the NLRP3 inflammasome together with its downstream signals, caspase-1 and IL-1β. Moreover, a reduction in TNF-α and IL-6 expression and an increase in IL-10 levels in LPS-stimulated HMC3 cells was observed following treatment. In conclusion, levosimendan and dobutamine attenuated LPS-induced neuroinflammation through NF-κB pathway inhibition and NLRP3 inflammasome activation via Nrf2/HO-1 signalling, suggesting that these drugs could represent a promising therapeutic approach for the treatment of neuroinflammation consequent to hypovolemic shock.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Gian Maria Cavallini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Eloisa Gitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Sara Manti
- Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
8
|
Chen X, Wu Y, Li J, Jiang S, Sun Q, Xiao L, Jiang X, Xiao X, Li X, Mu Y. Lycium barbarum Ameliorates Oral Mucositis via HIF and TNF Pathways: A Network Pharmacology Approach. Curr Pharm Des 2024; 30:2718-2735. [PMID: 39076092 DOI: 10.2174/0113816128312694240712072959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Oral mucositis is the most common and troublesome complication for cancer patients receiving radiotherapy or chemotherapy. Recent research has shown that Lycium barbarum, an important economic crop widely grown in China, has epithelial protective effects in several other organs. However, it is unknown whether or not Lycium barbarum can exert a beneficial effect on oral mucositis. Network pharmacology has been suggested to be applied in "multi-component-multi-target" functional food studies. The purpose of this study is to evaluate the effect of Lycium barbarum on oral mucositis through network pharmacology, molecular docking and experimental validation. AIMS To explore the biological effects and molecular mechanisms of Lycium barbarum in the treatment of oral mucositis through network pharmacology and molecular docking combined with experimental validation. METHODS Based on network pharmacology methods, we collected the active components and related targets of Lycium barbarum from public databases, as well as the targets related to oral mucositis. We mapped protein- protein interaction (PPI) networks, performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, and constructed a 'components-disease-targets' network and 'components-pathways-targets' network using Cytoscape to further analyse the intrinsic molecular mechanisms of Lycium barbarum against oral mucositis. The affinity and stability predictions were performed using molecular docking strategies, and experiments were conducted to demonstrate the biological effects and possible mechanisms of Lycium barbarum against oral mucositis. RESULTS A network was established between 49 components and 61 OM targets. The main active compounds were quercetin, beta-carotene, palmatine, and cyanin. The predicted core targets were IL-6, RELA, TP53, TNF, IL10, CTNNB1, AKT1, CDKN1A, HIF1A and MYC. The enrichment analysis predicted that the therapeutic effect was mainly through the regulation of inflammation, apoptosis, and hypoxia response with the involvement of TNF and HIF pathways. Molecular docking results showed that key components bind well to the core targets. In both chemically and radiation-induced OM models, Lycium barbarum significantly promoted healing and reduced inflammation. The experimental verification showed Lycium barbarum targeted the key genes (IL-6, RELA, TP53, TNF, IL10, CTNNB1, AKT1, CDKN1A, HIF1A, and MYC) through regulating the HIF and TNF signaling pathways, which were validated using the RT-qPCR, immunofluorescence staining and western blotting assays. CONCLUSION In conclusion, the present study systematically demonstrated the possible therapeutic effects and mechanisms of Lycium barbarum on oral mucositis through network pharmacology analysis and experimental validation. The results showed that Lycium barbarum could promote healing and reduce the inflammatory response through TNF and HIF signaling pathways.
Collapse
Affiliation(s)
- Xun Chen
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
| | - Yanhui Wu
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Sijing Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiliang Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xianxian Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yandong Mu
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
9
|
Mannino F, Pallio G, Imbesi C, Scarfone A, Puzzolo D, Micali A, Freni J, Squadrito F, Bitto A, Minutoli L, Irrera N. Beta-Caryophyllene, a Plant-Derived CB2 Receptor Agonist, Protects SH-SY5Y Cells from Cadmium-Induced Toxicity. Int J Mol Sci 2023; 24:15487. [PMID: 37895166 PMCID: PMC10607613 DOI: 10.3390/ijms242015487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a transition heavy metal that is able to accumulate in the central nervous system and may induce cell death through reactive oxygen species (ROS)-mediated mechanisms and inactivating the antioxidant processes, becoming an important risk factor for neurodegenerative diseases. The antioxidant effects of cannabinoid receptor modulation have been extensively described, and, in particular, β-Caryophyllene (BCP), a plant-derived cannabinoid 2 receptor (CB2R) agonist, not only showed significant antioxidant properties but also anti-inflammatory, analgesic, and neuroprotective effects. Therefore, the aim of the present study was to evaluate BCP effects in a model of Cd-induced toxicity in the neuroblastoma SH-SY5Y cell line used to reproduce Cd intoxication in humans. SH-SY5Y cells were pre-treated with BCP (25, 50, and 100 μM) for 24 h. The day after, cells were challenged with cadmium chloride (CdCl2; 10 μM) for 24 h to induce neuronal toxicity. CdCl2 increased ROS accumulation, and BCP treatment significantly reduced ROS production at concentrations of 50 and 100 μM. In addition, CdCl2 significantly decreased the protein level of nuclear factor erythroid 2-related factor 2 (Nrf2) compared to unstimulated cells; the treatment with BCP at a concentration of 50 μM markedly increased Nrf2 expression, thus confirming the BCP anti-oxidant effect. Moreover, BCP treatment preserved cells from death, regulated the apoptosis pathway, and showed a significant anti-inflammatory effect, thus reducing the pro-inflammatory cytokines increased by the CdCl2 challenge. The results indicated that BCP preserved neuronal damage induced by Cd and might represent a future candidate for protection in neurotoxic conditions.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Antonio Micali
- Department of Adult and Childhood Pathology “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| |
Collapse
|
10
|
Mohammed AI, Sangha S, Nguyen H, Shin DH, Pan M, Park H, McCullough MJ, Celentano A, Cirillo N. Assessment of Oxidative Stress-Induced Oral Epithelial Toxicity. Biomolecules 2023; 13:1239. [PMID: 37627304 PMCID: PMC10452318 DOI: 10.3390/biom13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive molecules generated in living organisms and an excessive production of ROS culminates in oxidative stress and cellular damage. Notably, oxidative stress plays a critical role in the pathogenesis of a number of oral mucosal diseases, including oral mucositis, which remains one of cancer treatments' most common side effects. We have shown previously that oral keratinocytes are remarkably sensitive to oxidative stress, and this may hinder the development and reproducibility of epithelial cell-based models of oral disease. Here, we examined the oxidative stress signatures that parallel oral toxicity by reproducing the initial events taking place during cancer treatment-induced oral mucositis. We used three oral epithelial cell lines (an immortalized normal human oral keratinocyte cell line, OKF6, and malignant oral keratinocytes, H357 and H400), as well as a mouse model of mucositis. The cells were subjected to increasing oxidative stress by incubation with hydrogen peroxide (H2O2) at concentrations of 100 μM up to 1200 μM, for up to 24 h, and ROS production and real-time kinetics of oxidative stress were investigated using fluorescent dye-based probes. Cell viability was assessed using a trypan blue exclusion assay, a fluorescence-based live-dead assay, and a fluorometric cytotoxicity assay (FCA), while morphological changes were analyzed by means of a phase-contrast inverted microscope. Static and dynamic real-time detection of the redox changes in keratinocytes showed a time-dependent increase of ROS production during oxidative stress-induced epithelial injury. The survival rates of oral epithelial cells were significantly affected after exposure to oxidative stress in a dose- and cell line-dependent manner. Values of TC50 of 800 μM, 800 μM, and 400 μM were reported for H400 cells (54.21 ± 9.04, p < 0.01), H357 cells (53.48 ± 4.01, p < 0.01), and OKF6 cells (48.64 ± 3.09, p < 0.01), respectively. Oxidative stress markers (MPO and MDA) were also significantly increased in oral tissues in our dual mouse model of chemotherapy-induced mucositis. In summary, we characterized and validated an oxidative stress model in human oral keratinocytes and identified optimal experimental conditions for the study of oxidative stress-induced oral epithelial toxicity.
Collapse
Affiliation(s)
- Ali I. Mohammed
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
- College of Dentistry, The University of Tikrit, Tikrit 34001, Iraq
| | - Simran Sangha
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Huynh Nguyen
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Dong Ha Shin
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Michelle Pan
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Hayoung Park
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Michael J. McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
- College of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Yang HY, Sankaranarayanan J, Seon JK. Polynucleotides Suppress Inflammation and Stimulate Matrix Synthesis in an In Vitro Cell-Based Osteoarthritis Model. Int J Mol Sci 2023; 24:12282. [PMID: 37569659 PMCID: PMC10418450 DOI: 10.3390/ijms241512282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is characterized by degeneration of the joint cartilage, inflammation, and a change in the chondrocyte phenotype. Inflammation also promotes cell hypertrophy in human articular chondrocytes (HC-a) by activating the NF-κB pathway. Chondrocyte hypertrophy and inflammation promote extracellular matrix degradation (ECM). Chondrocytes depend on Smad signaling to control and regulate cell hypertrophy as well as to maintain the ECM. The involvement of these two pathways is crucial for preserving the homeostasis of articular cartilage. In recent years, Polynucleotides Highly Purified Technology (PN-HPT) has emerged as a promising area of research for the treatment of OA. PN-HPT involves the use of polynucleotide-based agents with controlled natural origins and high purification levels. In this study, we focused on evaluating the efficacy of a specific polynucleotide sodium agent, known as CONJURAN, which is derived from fish sperm. Polynucleotides (PN), which are physiologically present in the matrix and function as water-soluble nucleic acids with a gel-like property, have been used to treat patients with OA. However, the specific mechanisms underlying the effect remain unclear. Therefore, we investigated the effect of PN in an OA cell model in which HC-a cells were stimulated with interleukin-1β (IL-1β) with or without PN treatment. The CCK-8 assay was used to assess the cytotoxic effects of PN. Furthermore, the enzyme-linked immunosorbent assay was utilized to detect MMP13 levels, and the nitric oxide assay was utilized to determine the effect of PN on inflammation. The anti-inflammatory effects of PN and related mechanisms were investigated using quantitative PCR, Western blot analysis, and immunofluorescence to examine and analyze relative markers. PN inhibited IL-1β induced destruction of genes and proteins by downregulating the expression of MMP3, MMP13, iNOS, and COX-2 while increasing the expression of aggrecan (ACAN) and collagen II (COL2A1). This study demonstrates, for the first time, that PN exerted anti-inflammatory effects by partially inhibiting the NF-κB pathway and increasing the Smad2/3 pathway. Based on our findings, PN can potentially serve as a treatment for OA.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hyung-Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Ju-Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Seok-Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hong-Yeol Yang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jong-Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| |
Collapse
|
12
|
Imbesi C, Ettari R, Irrera N, Zappalà M, Pallio G, Bitto A, Mannino F. Blunting Neuroinflammation by Targeting the Immunoproteasome with Novel Amide Derivatives. Int J Mol Sci 2023; 24:10732. [PMID: 37445907 DOI: 10.3390/ijms241310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Neuroinflammation is an inflammatory response of the nervous tissue mediated by the production of cytokines, chemokines, and reactive oxygen species. Recent studies have shown that an upregulation of immunoproteasome is highly associated with various diseases and its inhibition attenuates neuroinflammation. In this context, the development of non-covalent immunoproteasome-selective inhibitors could represent a promising strategy for treating inflammatory diseases. Novel amide derivatives, KJ3 and KJ9, inhibit the β5 subunit of immunoproteasome and were used to evaluate their possible anti-inflammatory effects in an in vitro model of TNF-α induced neuroinflammation. Differentiated SH-SY5Y and microglial cells were challenged with 10 ng/mL TNF-α for 24 h and treated with KJ3 (1 µM) and KJ9 (1 µM) for 24 h. The amide derivatives showed a significant reduction of oxidative stress and the inflammatory cascade triggered by TNF-α reducing p-ERK expression in treated cells. Moreover, the key action of these compounds on the immunoproteasome was further confirmed by halting the IkB-α phosphorylation and the consequent inhibition of NF-kB. As downstream targets, IL-1β and IL-6 expression resulted also blunted by either KJ3 and KJ9. These preliminary results suggest that the effects of these two compounds during neuroinflammatory response relies on the reduced expression of pro-inflammatory targets.
Collapse
Affiliation(s)
- Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
13
|
Jo S, Baek A, Cho Y, Kim SH, Baek D, Hwang J, Cho SR, Kim HJ. Therapeutic effects of polydeoxyribonucleotide in an in vitro neuronal model of ischemia/reperfusion injury. Sci Rep 2023; 13:6004. [PMID: 37045900 PMCID: PMC10097812 DOI: 10.1038/s41598-023-32744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Polydeoxyribonucleotide (PDRN) is an agonist that selectively stimulates adenosine A2A receptor (ADORA2A), which suppresses inflammatory responses. Ischemia/reperfusion (I/R) injury plays a major role in the pathogenesis of ischemic stroke by inducing neuroinflammation. Therefore, this study aimed to investigate the therapeutic effects of PDRN in an in vitro I/R injury model. The in vitro model was established with differentiated Neuro-2a cells under oxygen and glucose deprivation condition. The cells were treated with PDRN for 24 h under reoxygenation condition. As the results of RNA-seq transcriptome analysis, CSF1, IL-6, PTPN6, RAC2, and STAT1 were identified of its relation to the effect of PDRN on inflammatory responses in the model. To further investigate therapeutic effects of PDRN, RT-qPCR, western blotting, LDH assay, and TUNEL assay were performed. PDRN significantly reversed the expression of genes and proteins related to inflammatory responses. The elevated ADORA2A expression by PDRN treatment downregulated JAK/STAT pathway in the model. Furthermore, PDRN inhibited neuronal cell death in the model. Consequently, our results suggested that PDRN alleviated inflammatory responses through inhibition of JAK/STAT pathway by mediating ADORA2A expression and inhibited neuronal cell death in the model. These results provide significant insights into potential therapeutic approaches involving PDRN treatment for I/R injury.
Collapse
Affiliation(s)
- Seongmoon Jo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Yoonhee Cho
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Dawoon Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jihye Hwang
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea.
| | - Hyun Jung Kim
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2023; 300:120298. [PMID: 36372498 DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Nucleic acid-based agents have advantages in therapeutic efficacy and biological safety. However, due to its facile degradability, it lacks an effective route of administration in wound treatment. Designing smart hydrogels for the spatiotemporally controllable delivery of nucleic acids is of great significance for clinical applications. Here, a near-infrared (NIR)-responsive nanocomposite hydrogel was prepared using methyl methacrylate (GMA)-modified chitosan as the macromolecular cross-linker, N-isopropylacrylamide (NIPAAm) as the backbone, and molybdenum disulfide nanosheets (MoS2 NSs) as the nanocomponents. The polydeoxyribonucleotide (PDRN), a nucleic acid-based agent that promotes tissue regeneration, was loaded and delivered. The photothermal conversion capability of MoS2 NSs enables customized care of PDRNs and antibacterial enhancement. In a full-thickness skin defect model, high-quality wound healing effects were demonstrated under the action of nanocomposite hydrogels. The proposed nanocomposite hydrogel provides a new reference for local delivery of nucleic acid-based agents.
Collapse
Affiliation(s)
- Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Di Bartolomeo L, Vaccaro F, Irrera N, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int J Mol Sci 2023; 24:ijms24021575. [PMID: 36675086 PMCID: PMC9867176 DOI: 10.3390/ijms24021575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Canonical and non-canonical Wnt signaling pathways are involved in cell differentiation and homeostasis, but also in tumorigenesis. In fact, an exaggerated activation of Wnt signaling may promote tumor growth and invasion. We summarize the most intriguing evidence about the role of Wnt signaling in cutaneous carcinogenesis, in particular in the pathogenesis of non-melanoma skin cancer (NMSC). Wnt signaling is involved in several ways in the development of skin tumors: it may modulate the inflammatory tumor microenvironment, synergize with Sonic Hedgehog pathway in the onset of basal cell carcinoma, and contribute to the progression from precancerous to malignant lesions and promote the epithelial-mesenchymal transition in squamous cell carcinoma. Targeting Wnt pathways may represent an additional efficient approach in the management of patients with NMSC.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
16
|
Khan A, Wang G, Zhou F, Gong L, Zhang J, Qi L, Cui H. Polydeoxyribonucleotide: A promising skin anti-aging agent. CHINESE JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY 2022; 4:187-193. [DOI: 10.1016/j.cjprs.2022.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15040447. [PMID: 35455444 PMCID: PMC9025871 DOI: 10.3390/ph15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Polydeoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 μM) alone or in combination with PDRN (100 μg/mL), PDRN plus ZM241385 (1 μM) as an A2Ar antagonist, and CGS21680 (1 μM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy.
Collapse
|
18
|
Picciolo G, Mannino F, Irrera N, Minutoli L, Altavilla D, Vaccaro M, Oteri G, Squadrito F, Pallio G. Reduction of oxidative stress blunts the NLRP3 inflammatory cascade in LPS stimulated human gingival fibroblasts and oral mucosal epithelial cells. Biomed Pharmacother 2021; 146:112525. [PMID: 34906776 DOI: 10.1016/j.biopha.2021.112525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic armamentarium for the treatment of oral mucositis is very poor. Catechin and baicalin are two natural flavonoids that have been individually reported to have a curative potential. Flavocoxid is a mixed extract containing baicalin and catechin showing antioxidant effects and anti-inflammatory activity mainly due to a dual inhibition of inducible cyclooxygenase (COX-2), 5-lipoxygenase (5-LOX) and NLRP3 pathway. The aim of this study was to evaluate the anti-inflammatory and anti-oxidant effects of flavocoxid in an "in vitro" model of oral mucositis induced by triggering an inflammatory phenotype in human gingival fibroblasts (GF) and human oral mucosal epithelial cells (EC). GF and EC were challenged with lipopolysaccharide (LPS 2 μg/ml) alone or in combination with flavocoxid (32 μg/ml). Flavocoxid increased Nrf2, prompted a marked reduction in malondialdehyde levels and reduced the expression of COX-2 and 5-LOX together with PGE2, and LTB4 levels. Flavocoxid caused also a great decrease in the expression of NF-κB and turned off NLRP3 inflammasome and its downstream effectors signal, as caspase-1, IL-1β and IL-18 in both GF and EC cells stimulated with LPS. These results suggest a correlation between oxidative stress and NLRP3 activation and indicate that flavocoxid suppresses the inflammatory storm that accompanies oral mucositis. This preclinical evidence deserves to be confirmed in a clinical setting.
Collapse
Affiliation(s)
- Giacomo Picciolo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
19
|
Mannino F, Pallio G, Bitto A, Altavilla D, Minutoli L, Squadrito V, Arcoraci V, Giorgi DA, Pirrotta I, Squadrito F, Irrera N. Targeting Adenosine Receptor by Polydeoxyribonucleotide: An Effective Therapeutic Strategy to Induce White-to-Brown Adipose Differentiation and to Curb Obesity. Pharmaceuticals (Basel) 2021; 14:ph14080728. [PMID: 34451825 PMCID: PMC8402160 DOI: 10.3390/ph14080728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity is a worldwide chronic metabolic disease characterized by an abnormal fat accumulation and represents one of the main risk factors for several diseases. White adipose tissue is the primary site for energy storage in the form of triglycerides, whereas brown adipose tissue does not store energy-providing lipids but rather dissipates it by producing heat. White-to-brown adipocyte trans-differentiation could represent a new target of anti-obesity strategies and result in fat reduction. Previous studies indicated that adenosine receptor activation induces trans-differentiation of white adipocytes to brown adipocytes. The aim of this study was to evaluate the effects of polydeoxyribonucleotide (PDRN), an A2Ar receptor agonist, in an in vitro model of browning. Mouse 3T3-L1 pre-adipocytes were differentiated in mature adipocytes with specific culture media and then treated with PDRN (10 µg/mL), PDRN + ZM241385 (1 µM), CGS21680 (1 µM) and CGS + ZM241385 for 24 h. Cell viability was studied by MTT assay, and browning induction was evaluated by Oil Red O staining and by RT-qPCR to study gene expression of browning markers. PDRN, as well as CGS21680, reduced the accumulation of lipids, cell volume and lipid droplet size; increased the expression of UCP1, PRDM16 and DIO2, considered as browning markers; and reduced the expression of FASn and FABP4, considered as whitening markers. In addition, PDRN decreased leptin expression and enhanced adiponectin mRNA levels. All these effects were abrogated when PDRN was co-incubated with the A2Ar antagonist ZM241385. In conclusion, these results suggest that PDRN is able to induce the white-to-brown adipose differentiation through A2Ar stimulation. Since PDRN is a safe drug already available in the market for other therapeutic indications, its “anti-obesity” potential warrants investigation in a clinical scenario.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Violetta Squadrito
- Department of Human Pathology and Evolutive Age “Gaetano Barresi”, University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Domenico Antonio Giorgi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
- Correspondence:
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (F.M.); (G.P.); (A.B.); (L.M.); (V.A.); (D.A.G.); (I.P.); (N.I.)
| |
Collapse
|