1
|
Huang G, Huang Q, Mou C, Duan A, He F, Dai H. S100A4-shRNA mitigates autophagy, reduces inflammation, and improves cardiac functionality in MIRI. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 26:200443. [PMID: 40519234 PMCID: PMC12164005 DOI: 10.1016/j.ijcrp.2025.200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Revised: 05/27/2025] [Accepted: 05/29/2025] [Indexed: 06/18/2025]
Abstract
Background S100A4 plays a crucial role in myocardial ischemia-reperfusion injury (MIRI), where the interplay between autophagy and inflammation shapes the progression of reperfusion injury. However, the specific mechanisms by which S100A4 influences autophagy and inflammation in this context remain unclear. Methods An ischemia-reperfusion (I/R) model was established in mice. The optimal timing for inducing reperfusion injury was determined, and mice were divided into sham and experimental groups. The experimental group underwent 2 h of ischemia/reperfusion injury followed by a 2-day reperfusion period. In the I/R + S100A4-shRNA group, S100A4 silencing was achieved through the injection of short hairpin RNA (shRNA). Myocardial ischemia was induced by occluding the left anterior descending branch (LAD) of the coronary artery. Diagnostic procedures, including electrocardiogram assessments, cardiac function testing, cardiac enzyme analyses, and 2,3,5-triphenyl tetrazolium chloride (TTC) staining, were performed to assess myocardial injury. Immunohistochemistry, immunofluorescence staining, hematoxylin-eosin (HE) staining, and Masson trichrome staining were used to evaluate the expression levels of IL-1, TNF-a, morphological changes in cardiomyocytes, and cardiac fibrosis. Protein blotting was conducted to examine autophagy-related proteins and Bnip3 signaling-related proteins. Results The study showed an increase in S100A4 expression, as well as upregulation of autophagy orchestrating proteins (Beclin-1 and LC3), contributing to myocardial injury and expansion of myocardial infarction (MI). S100A4 played a multifaceted role by regulating autophagy through the BNIP3 pathway in MIRI. Silencing S100A4 resulted in reduced autophagy and inflammation, leading to decreased infarct size and improved cardiac function. Conclusions S100A4 is upregulated during MIRI and orchestrates autophagy through the BNIP3 pathway, influencing the progression of reperfusion injury following myocardial infarction. Inhibition of autophagy and mitigation of inflammatory responses by S100A4-shRNA provide protection against the detrimental effects of IRI on the heart.
Collapse
Affiliation(s)
- Guangwei Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun, 561000, Guizhou, China
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, China
| | - Qing Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun, 561000, Guizhou, China
| | - Chenrui Mou
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650100, Yunnan, China
| | - Anna Duan
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun, 561000, Guizhou, China
| | - Fujiao He
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, China
| | - Hailong Dai
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
3
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Hu C, Gao S, Li X, Yang K, Cheng Y, Guo W, Wu H, Cheng X, Zhao W, Kong Y, Hu H, Wang S. Crosstalk of autophagy and ferroptosis in cardiovascular diseases: from pathophysiology to novel therapy. Redox Biol 2025; 84:103705. [PMID: 40450834 PMCID: PMC12164230 DOI: 10.1016/j.redox.2025.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/19/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) are characterized by high morbidity and mortality rates, imposing substantial epidemiological and economic burdens worldwide. Among the multifaceted mechanisms implicated in CVDs, autophagy and ferroptosis, two intimately linked cellular processes, emerge as pivotal pathophysiological contributors. Autophagy, as an evolutionary conserved process that mediates the degradation and recycling of intracellular components, including proteins and organelles, exerts critical regulatory effects on iron metabolism and lipid homeostasis through various specialized forms, including ferritinophagy and lipophagy. Conversely, ferroptosis, an iron dependent form of cell death, involves oxidative stress and the accumulation of lipid peroxides, often triggered by iron overload and the dysfunction of glutathione peroxidase 4 (GPX4). The intricate crosstalk between these two processes, particularly ferritinophagy-mediated iron regulation influencing ferroptosis, plays a crucial role in diverse CVDs contexts. Key regulatory molecules, such as Beclin-1 and nuclear factor E2-related factor 2 (Nrf2), function as central hubs, orchestrating the intricate interplay between autophagy and ferroptosis. Through a comprehensive examination of these mechanisms across various CVDs pathologies, we summarize the latest findings and outline potential therapeutic strategies targeting the crosstalk between autophagy and ferroptosis. As the inaugural review focusing on autophagy-ferroptosis interactions in CVDs, this work significantly enriches our understanding of the pathophysiology of CVDs and identifies novel therapeutic targets with potential for precision medicine interventions in managing CVDs.
Collapse
Affiliation(s)
- Changhao Hu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Siying Gao
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Xinyi Li
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Kaiqing Yang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Ye Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Wei Guo
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Huijun Wu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Xueqin Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Weiwen Zhao
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Yuxuan Kong
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Haoyuan Hu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China.
| | - Songyun Wang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China.
| |
Collapse
|
5
|
Gong J, Qiu Y, Yu C, Cao C, Li X, Lu J, Zhao W, Zhao Z, Zhang H, Yao F, Sun H, Zhang H, Li J. Injectable Hydrogel for Cardiac Repair via Dual Inhibition of Ferroptosis and Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27906-27922. [PMID: 40326674 DOI: 10.1021/acsami.5c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Ferroptosis plays a significant role in ischemic heart disease by exacerbating myocardial injury through oxidative stress, iron metabolism disorder, and inflammation. Herein, we develop an injectable hydrogel (HSD/DFO@GMs) with antiferroptosis and antioxidant properties for cardiac repair. The hydrogel is composed of dopamine-grafted oxidized hyaluronic acid, adipic acid dihydrazide grafted hyaluronic acid, and deferoxamine loaded gelatin microsphere, connected via a dynamic Schiff base bond. This hydrogel exhibits a favorable injectability and stable mechanical properties. It effectively chelates Fe2+ and scavenges the reactive oxygen species (ROS), creating a conducive microenvironment for cardiac repair. The dynamic Schiff base bond and gelatin matrix respond to the weakly acidic and MMP-2-rich microenvironment postinjury, enabling on-demand release of DFO in the injured myocardium. In vitro experiments indicate that the hydrogel significantly inhibits the ferroptosis and oxidative stress damage in H9C2 cardiomyocytes under a hypoxia/reoxygenation microenvironment. In an in vivo ischemia-reperfusion model, the HSD/DFO@GMs hydrogel reduces oxidative stress, modulates intracellular labile iron pool levels, and promotes revascularization, ultimately improving cardiac function. Overall, the HSD/DFO@GMs hydrogel provides a new strategy to improve cardiac repair by inhibiting ferroptosis and mitigating oxidative stress damage.
Collapse
Affiliation(s)
- Jiazhuo Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Cheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiajun Lu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Weiqing Zhao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Haitao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
- Hebei Key Laboratory for Rehabilitation Engineering and Regenerative Medicine, Tangshan 063210, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300250, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300250, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Hebei Key Laboratory for Rehabilitation Engineering and Regenerative Medicine, Tangshan 063210, China
| |
Collapse
|
6
|
Chen Z, Zheng N, Wang F, Zhou Q, Chen Z, Xie L, Sun Q, Li L, Li B. The role of ferritinophagy and ferroptosis in Alzheimer's disease. Brain Res 2025; 1850:149340. [PMID: 39586368 DOI: 10.1016/j.brainres.2024.149340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Iron is a crucial mineral element within human cells, serving as a pivotal cofactor for diverse biological enzymes. Ferritin plays a crucial role in maintaining iron homeostasis within the body through its ability to sequester and release iron. Ferritinophagy is a selective autophagic process in cells that specifically facilitates the degradation of ferritin and subsequent release of free iron, thereby regulating intracellular iron homeostasis. The nuclear receptor coactivator 4 (NCOA4) serves as a pivotal regulator in the entire process of ferritinophagy, facilitating its binding to ferritin and subsequent delivering to lysosomes for degradation, thereby enabling the release of free iron. The free iron ions within the cell undergo catalysis through the Fenton reaction, resulting in a substantial generation of reactive oxygen species (ROS). This process induces lipid peroxidation, thereby stimulating a cascade leading to cellular tissue damage and subsequent initiation of ferroptosis. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of emotional memory and cognitive function, accompanied by mental and behavioral aberrations. The pathology of the disease is characterized by aberrant deposition of amyloid β-protein (Aβ) and hyperphosphorylated tau protein. It has been observed that evident iron metabolism disorders and accumulation of lipid peroxides occur in AD, indicating a significant impact of ferritinophagy and ferroptosis on the pathogenesis and progression of AD. This article elucidates the process and mechanism of ferritinophagy and ferroptosis, investigating their implications in AD to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
7
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
8
|
Kim JM, Kim Y, Na HJ, Hur HJ, Lee SH, Sung MJ. Magnolia kobus DC. suppresses neointimal hyperplasia by regulating ferroptosis and VSMC phenotypic switching in a carotid artery ligation mouse model. Chin Med 2025; 20:3. [PMID: 39754271 PMCID: PMC11699803 DOI: 10.1186/s13020-024-01051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells. METHODS This study was conducted to estimate the vascular protective effects of MO by systematically measuring histopathological analysis and western blot analysis in CAL animal model. In vitro protective effects of MO were evaluated by estimating cell viability, reactive oxygen species (ROS) content, glutathione (GSH) levels, lipid peroxidation, mitochondrial morphological change, cell proliferation, migration, western blot analysis, and qRT-PCR against erastin (Era)-induced A7r5 cells. RESULTS MO intake significantly improved neointimal formation, inhibited ferroptosis and vascular smooth muscle cell (VSMC) phenotypes, and ameliorated the antioxidant system of carotid artery tissues. In addition, MO treatment effectively ameliorated Era-induced ferroptotic cytotoxicity, including cellular death, ROS production, and cell migration status. MO treatment also suppressed proliferation and migration in Era-induced A7r5 cells. MO considerably regulated Era-induced abnormal mechanisms related to ferroptotic changes, VSMC phenotype switching, and the ROS scavenging system in A7r5 cells. CONCLUSION MO has the potential for use as a functional food supplement, nutraceutical, or medicinal food, with protective effects on vascular health by regulating ferroptosis and VSMC phenotypic switching.
Collapse
Affiliation(s)
- Jong Min Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Yiseul Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Hyun-Jin Na
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Haeng Jeon Hur
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Sang Hee Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Mi Jeong Sung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
| |
Collapse
|
9
|
Yang L, Zhang M, Liu M, Yu Y, Zhang Y, Yang J, Xing L, Shao Z, Wang H. Loss of FTH1 Induces Ferritinophagy-Mediated Ferroptosis in Anaemia of Myelodysplastic Syndromes. J Cell Mol Med 2025; 29:e70350. [PMID: 39804099 PMCID: PMC11726652 DOI: 10.1111/jcmm.70350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA+ nucleated erythrocytes from MDS patients was significantly lower than that in control group. FTH1 was implicated in both ferritinophagy and ferroptosis in MDS patients, processes that are linked to the development of anaemia. To further validate our observations, we employed shRNA to knock down the FTH1 gene in K562 and SKM1 cells. This knockdown confirmed that the elevated ferroptosis levels observed after FTH1 depletion were indeed due to the induction of ferritinophagy. Hemin stimulation promoted the differentiation of K562 cells, while downregulation of FTH1 gene expression had an impact on erythroid differentiation and haemoglobin synthesis. Taken together, our results suggest that FTH1-mediated ferritinophagy may represent a novel therapeutic target for MDS.
Collapse
Affiliation(s)
- Liyan Yang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Mengying Zhang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Mengyuan Liu
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Yating Yu
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Yue Zhang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Jinyue Yang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Limin Xing
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Zonghong Shao
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Huaquan Wang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| |
Collapse
|
10
|
Cao Y, Song N, Wang Y, Leng X, Wang Q, Ma Y, Chen S, Ju X, Jia L. The Potential Association of TFR1/SLC11A2/GPX4 with Ferroptosis in Mediating Lipid Metabolism Disorders in Atherosclerosis. Comb Chem High Throughput Screen 2025; 28:467-477. [PMID: 38213145 DOI: 10.2174/0113862073271348231213071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE Atherosclerosis is the most common and significant form of arterial disease, characterized primarily by lipid accumulation and inflammatory cell infiltration as its main pathological basis. This study aims to investigate the molecular mechanisms and associated pathways by which iron accumulation may be involved in lipid metabolism abnormalities in atherosclerotic mice. METHODS Relying on ApoE-/- mouse body position observation, blood biochemical analysis, oxidative stress test and aortic tissue sectioning techniques, the effects of ferroptosis on lipid metabolism in atherosclerotic mice were analyzed. Use RT-PCR analysis and transcriptomics tests to understand the specific molecular mechanism. RESULTS Our analysis reveals a correlation between Ferroptosis and elevated levels of TC, TG, ALT, AST, IL-1β, and TNF-α in the blood of atherosclerotic model mice. At the same time, it exacerbates the pathological changes of mouse aorta tissue. Our results suggest a potential link between ferroptosis and the dysregulation of TFR1/SLC11A2/GPX4 expression, along with the presence of oxidative stress, in the progression of AS. Transcriptomics results indicate that ferroptosis- mediated deterioration of atherosclerosis in ApoE-/- mice is potentially associated with cell phagocytosis, apoptosis involving TNF-α, and the expression of atherosclerotic and other process-related genes. CONCLUSION Ferroptosis exacerbated the lipid metabolism disorder in atherosclerotic mice. The core mechanism of its effect is that ferroptosis activates the TFR1/SLC11A2/GPX4 signaling pathway, which leads to the up-regulation of oxidative stress in ApoE-/- mice, and ultimately aggravates the abnormal lipid metabolism in ApoE-/- mice.
Collapse
Affiliation(s)
- Yuan Cao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ying Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xue Leng
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Qun Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Yixin Ma
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Si Chen
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xing Ju
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| |
Collapse
|
11
|
Wu T, Ji M, Li T, Luo L. The molecular and metabolic landscape of ferroptosis in respiratory diseases: Pharmacological aspects. J Pharm Anal 2025; 15:101050. [PMID: 40034685 PMCID: PMC11873008 DOI: 10.1016/j.jpha.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 03/05/2025] Open
Abstract
Ferroptosis is a form of cell death that occurs when there is an excess of reactive oxygen species (ROS), lipid peroxidation, and iron accumulation. The precise regulation of metabolic pathways, including iron, lipid, and amino acid metabolism, is crucial for cell survival. This type of cell death, which is associated with oxidative stress, is controlled by a complex network of signaling molecules and pathways. It is also implicated in various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), lung cancer, pulmonary fibrosis (PF), and the coronavirus disease 2019 (COVID-19). To combat drug resistance, it is important to identify appropriate biological markers and treatment targets, as well as intervene in respiratory disorders to either induce or prevent ferroptosis. The focus is on the role of ferroptosis in the development of respiratory diseases and the potential of targeting ferroptosis for prevention and treatment. The review also explores the interaction between immune cell ferroptosis and inflammatory mediators in respiratory diseases, aiming to provide more effective strategies for managing cellular ferroptosis and respiratory disorders.
Collapse
Affiliation(s)
- Tong Wu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Miaorong Ji
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
12
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
13
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Zhao CZ, Ding HM, Hu ZQ, Zhou L, Du YQ, Zhou P, Wang L. Exploring the mechanism of Ling-Gui-Zhu-Gan decoction in metabolic cardiomyopathy via inhibiting ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156234. [PMID: 39547098 DOI: 10.1016/j.phymed.2024.156234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study was to investigate the mechanism of Ling-Gui-Zhu-Gan decoction (LGZGD) in regulating lipid metabolism and thus inhibiting ferroptosis. METHODS UPLC for the determination of the main chemical composition of LGZGD. A HF-induced rat model of metabolic cardiomyopathy was established. Echocardiography was used to detect cardiac function. Serum lipid levels, myocardial injury markers, and lipid peroxidation levels were detected. Pathological changes were detected. Lipid deposition was assessed by oil red O, and the mitochondrial ultrastructure was observed by electron microscopy. Mechanistically, PLIN5, CD36, ATGL, GPX4, ACSL4, FPN1, DRP1, MFF, FIS1, and OPA1 expressions were examined. After PA-induced H9c2 cells established, apoptosis, myocardial injury markers, and lipid peroxidation levels were detected and lipid deposition levels were assessed. The expressions of PLIN5, CD36, ATGL, GPX4, ACSL4 and FPN1 were detected. H9c2 cardiomyocytes with transient knockdown of PLIN5 and overexpression of PLIN5 were constructed and treated with drug administration and modeling, and the apoptosis level was detected by flow cytometry, the levels of lipid peroxidation and ROS were detected by fluorescence, and the protein and gene expressions of ACSL4 and GPX4 were detected. Results The main active components of LGZGD were liquiritin, isoliquiritin, cinnamic acid, cinnamaldehyde, glycyrrhizic acid, and atractylenolide III. LGZGD significantly improved cardiac dysfunction, lowered lipid level and lipid deposition, reduced CK, NT-proBNP and MDA levels, restored SOD levels, and improved inflammatory cell infiltration as well as collagen fiber deposition. LGZGD decreased the expression of PLIN5, CD36, ACSL4, and increased the expression of ATGL, GPX4, and FPN1. LGZGD also decreased the gene expression of DRP1, MFF, FIS1, and increased OPA1 expression. LGZGD significantly ameliorated PA-induced apoptosis, decreased lipid deposition, lowered lipid peroxidation levels and CK level, decreased PLIN5, CD36, and ACSL4 expressions, and increased ATGL, GPX4, and FPN1 expressions. LGZGD reversed cardiomyocyte injury aggravated by transient knockdown of PLIN5, decreased apoptosis levels, lipid peroxidation levels, ROS levels, and ACSL4 expressions, and increased GPX4 expression. LGZGD enhanced cardiomyocyte protection after overexpression of PLIN5, reduced apoptosis levels, lipid peroxidation level and ROS level, decreased ACSL4 expression, and increased GPX4 expression. CONCLUSION PLIN5 interferes with lipid peroxidation, regulates mitochondrial function, and inhibits HF-induced ferroptosis in cardiomyocytes. LGZGD ameliorates impairment of cardiac structural function in model rats through PLIN5-mediated ferroptosis pathway, and has the effect of preventing metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Chuan-Zhi Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Hui-Min Ding
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zi-Qing Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yong-Qin Du
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
15
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
16
|
Wang X, Xu L, Meng Y, Chen F, Zhuang J, Wang M, An W, Han Y, Chu B, Chai R, Liu W, Wang H. FOXO1-NCOA4 Axis Contributes to Cisplatin-Induced Cochlea Spiral Ganglion Neuron Ferroptosis via Ferritinophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402671. [PMID: 39206719 PMCID: PMC11515924 DOI: 10.1002/advs.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yu Meng
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Jinzhu Zhuang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Man Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Weibin An
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yuechen Han
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| |
Collapse
|
17
|
Wu J, Zhang J, Tang Q, Zhu H, Chen Y, Xiong H, Jiang H. The significance of serum SLC7A11 levels in the occurrence of vascular calcification in maintenance peritoneal dialysis patients. Nephrology (Carlton) 2024; 29:663-670. [PMID: 38866394 DOI: 10.1111/nep.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
AIM This research aimed to explore the serum levels of solute carrier family 7 member 11 (SLC7A11) in patients with maintenance peritoneal dialysis (MPD) and its correlation with vascular calcification (VC) and clinical results. METHODS This present prospective observational cohort study enrolled 189 patients with MPD who were undergoing regular peritoneal dialysis for over 3 months in our hospital from February 2020 to July 2022. The abdominal aortic calcification score was used to assess the VC condition of MPD patients. The serum SLC7A11, interleukin (IL)-6, IL-1β and C-reactive protein levels were measured by enzyme-linked immunosorbent assay (ELISA). Demographic and clinical statistics were collected. All patients were followed up for 1 year and the overall survival time (OS) of all patients were recorded. All data used SPSS 18.0 for statistical analyses. RESULTS Patients with moderate/severe calcification in MPD had a longer duration of dialysis, higher serum levels of phosphate (P) and calcium (Ca) and lower serum levels of SLC7A11. Spearman's analysis revealed a negative correlation between serum SLC7A11 levels and the levels of P, Ca and IL-1β. Additionally, we observed an association between serum SLC7A11 levels and clinical prognosis as well as the extent of VC in MPD patients. Multivariate logistic regression analysis indicated that dialysis duration, SLC7A11, and P were risk factors for VC in MPD patients. CONCLUSION The serum SLC7A11 levels decreased remarkably in MPD patients with moderate/severe calcification. This study may provide new targets and comprehensive approach to cardiovascular protection in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Jing Wu
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Junling Zhang
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qiong Tang
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Huixian Zhu
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yan Chen
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hua Xiong
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongwei Jiang
- Department of Nephrology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
18
|
Chen W, Liu M, Tsou Y, Wu H, Lin H, Liang C, Wang C. Extensive Dysregulation of Phenylalanine Metabolism Is Associated With Stress Hyperphenylalaninemia and 30-Day Death in Critically Ill Patients With Acute Decompensated Heart Failure. J Am Heart Assoc 2024; 13:e035821. [PMID: 39258552 PMCID: PMC11935636 DOI: 10.1161/jaha.124.035821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Stress hyperphenylalaninemia predicts elevated mortality rates in patients with acute decompensated heart failure (ADHF). This study investigated the metabolic pathways underlying this association and identified a unique metabolic phenotype underlying the association between stress hyperphenylalaninemia and adverse outcomes in ADHF. METHODS AND RESULTS This was a retrospective cohort study. We enrolled 120 patients with ADHF in an intensive care unit (60 with a phenylalanine level ≥112 μM, 60 with a phenylalanine level <112 μM), and 30 controls. Plasma phenylalanine-derived metabolites were measured, and participants were evaluated for 30-day death. Patients with ADHF had extensive activations of the alternative pathways for metabolizing phenylalanine, leading to the levels of phenylalanine-derived downstream metabolites 1.5 to 6.1 times higher in patients with ADHF than in the controls (all P<0.001). Extensive dysregulation of these alternative pathways significantly increased phenylalanine levels and contributed to a distinct metabolic phenotype, characterized by increased phenylalanine, tyrosine, homogentisic acid, and succinylacetone levels but decreased benzoic acid and 3,4-dihydroxyphenylalanine levels. Throughout the 30-day follow-up period, 47 (39.2%) patients died. This distinct metabolic phenotype was associated with an increased mortality rate (odds ratio, 1.59 [95% CI, 1.27-1.99]; P<0.001). A multivariable analysis confirmed the independent association of this metabolic phenotype, in addition to phenylalanine and tyrosine levels, with 30-day death. CONCLUSIONS In patients with ADHF, extensive dysregulation of the alternative pathways for metabolizing phenylalanine was correlated with stress hyperphenylalaninemia and a distinct metabolic phenotype on the phenylalanine-tyrosine-homogentisic acid-succinylacetone axis. Both stress hyperphenylalaninemia and metabolic dysregulation on this axis were associated with poor outcomes.
Collapse
Affiliation(s)
- Wei‐Siang Chen
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Min‐Hui Liu
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Department of NursingChang Gung Memorial HospitalKeelungTaiwan
| | - Yi‐Liang Tsou
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Huang‐Ping Wu
- Division of Pulmonary, Critical Care and Sleep MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Hsuan‐Ching Lin
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chung‐Yu Liang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chao‐Hung Wang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Chang Gung University College of MedicineTaoyuanTaiwan
| |
Collapse
|
19
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B, Ni J. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res 2024; 63:159-170. [PMID: 37871772 PMCID: PMC11380017 DOI: 10.1016/j.jare.2023.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qianzhi Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Shan Chen
- Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayi Si
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Jie Ni
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
20
|
Chen Y, Bao S, Wang Z, Fang Z, Tang H. Baicalin promotes the sensitivity of NSCLC to cisplatin by regulating ferritinophagy and macrophage immunity through the KEAP1-NRF2/HO-1 pathway. Eur J Med Res 2024; 29:387. [PMID: 39061086 PMCID: PMC11282607 DOI: 10.1186/s40001-024-01930-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/07/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) chemotherapy is commonly used in therapy for non-small cell lung cancer (NSCLC), but increased drug resistance has become a huge obstacle. Baicalin (BA) contributed to the sensitivity of NSCLC to DDP. Here, we aimed to further probe the pathophysiological mechanisms of BA in NSCLC. METHODS A549 and A549/DDP cells and xenograft mice were treated with BA and DDP. Xenograft mice were treated additionally with the NRF2 inducer (Bardoxolone methyl, BM) and KEAP1 knockdown. The levels of ferritinophagy-related proteins and biomarkers were determined. The autophagosomes were observed. M1 macrophage polarization and the contents of related indicators were analyzed. The involvement of KEAP1/NRF2/HO-1 was determined. RESULTS BA inhibited cell development, and the effect of BA and DDP on cell development was additive. The abundance of ferritinophagy-related proteins and the number of autophagosomes were induced by BA. BA also promoted the transition of GSH to GSSH. BA favored M1 macrophage polarization and affected the expression of related proteins. When BA and DDP combined, these molecular phenomena were further exacerbated. BA induced accumulation of KEAP1 and reduction of NRF2 and HO-1. However, BM and KEAP1 knockdown disrupted the synergistic effects of BA and DDP on inhibiting NSCLC growth. BM and KEAP1 knockdown reversed DDP and BA-promoted protein expression activity and M1 macrophage polarization. CONCLUSION Our findings suggest that BA is involved in ferritinophagy and macrophage immunity through the KEAP1-NRF2/HO-1 axis, thereby improving the DDP sensitivity in NSCLC, which could provide new candidates for treatment strategies.
Collapse
Affiliation(s)
- Yang Chen
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhongzhao Wang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zheng Fang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
21
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
22
|
Guo C, Peng J, Cheng P, Yang C, Gong S, Zhang L, Zhang T, Peng J. Mechanistic elucidation of ferroptosis and ferritinophagy: implications for advancing our understanding of arthritis. Front Physiol 2024; 15:1290234. [PMID: 39022306 PMCID: PMC11251907 DOI: 10.3389/fphys.2024.1290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.
Collapse
Affiliation(s)
- Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| |
Collapse
|
23
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
24
|
Tang N, Liu X, Liu Y, Wang H, Zhao Y, Wang H, Hu Z. Dihydroartemisinin induces ferroptosis in T cell acute lymphoblastic leukemia cells by downregulating SLC7A11 and activating the ATF4‑CHOP signaling pathway. Oncol Lett 2024; 28:337. [PMID: 38846431 PMCID: PMC11153983 DOI: 10.3892/ol.2024.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
The present study aimed to investigate the anti-leukemic effects of dihydroartemisinin (DHA) on T-cell acute lymphoblastic leukemia (T-ALL) cell lines, Jurkat and Molt-4, and the underlying mechanisms. Cell Counting Kit-8 was performed to measure cell viability. Cell apoptosis and cell cycle distribution were assessed by flow cytometry. The expression levels of ATF4 and CHOP mRNA were assessed by reverse transcription-quantitative PCR, while the protein abundance of SLC7A11, GPX4, ATF4 and CHOP was determined by western blotting. Moreover, malondialdehyde, glutathione (GSH) and reactive oxygen species (ROS) assays were used to detect the levels of ferroptosis. The results showed that DHA suppressed T-ALL cell viability in vitro, and induced cell cycle arrest at S or G2/M phase. DHA also induced ROS burst, activated endoplasmic reticulum (ER) stress, disrupted the system Xc--GSH-GSH peroxidase 4 antioxidant system, and increased lipid peroxide accumulation, resulting in cell death. By contrast, the pharmacological inhibition of ferroptosis alleviated DHA-induced cell death, confirming that DHA induces T-ALL cell death via ferroptosis. Mechanistically, the effect of DHA on ferroptosis was partly mediated by downregulating SLC7A11 and upregulating the ATF4-CHOP signaling pathway, which is associated with ER stress. These results indicated that DHA may induce ferroptosis in T-ALL cell lines and could represent a promising therapeutic agent for treating T-ALL.
Collapse
Affiliation(s)
- Na Tang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
- Graduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yong Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Haihua Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yao Zhao
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Haiying Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
25
|
Chen S, Shi J, Yu D, Dong S. Advance on combination therapy strategies based on biomedical nanotechnology induced ferroptosis for cancer therapeutics. Biomed Pharmacother 2024; 176:116904. [PMID: 38878686 DOI: 10.1016/j.biopha.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Globally, cancer is a serious health problem. It is unfortunate that current anti-cancer strategies are insufficiently specific and damage the normal tissues. There's urgent need for development of new anti-cancer strategies. More recently, increasing attention has been paid to the new application of ferroptosis and nano materials in cancer research. Ferroptosis, a condition characterized by excessive reactive oxygen species-induced lipid peroxidation, as a new programmed cell death mode, exists in the process of a number of diseases, including cancers, neurodegenerative disease, cerebral hemorrhage, liver disease, and renal failure. There is growing evidence that inducing ferroptosis has proven to be an effective strategy against a variety of chemo-resistant cancer cells. Nano-drug delivery system based on nanotechnology provides a highly promising platform with the benefits of precise control of drug release and reduced toxicity and side effects. This paper reviews the latest advances of combination therapy strategies based on biomedical nanotechnology induced ferroptosis for cancer therapeutics. Given the new chances and challenges in this emerging area, we need more attention to the combination of nanotechnology and ferroptosis in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Jialin Shi
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, PR China
| | - Dongzhi Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Siyuan Dong
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
26
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
27
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
28
|
Zhang Y, Xie J. Targeting ferroptosis regulators by natural products in colorectal cancer. Front Pharmacol 2024; 15:1374722. [PMID: 38860170 PMCID: PMC11163120 DOI: 10.3389/fphar.2024.1374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant global health challenge, ranking as the third most diagnosed cancer and the second leading cause of cancer-related deaths. Despite advancements in treatment, challenges such as delayed diagnosis, multidrug resistance, and limited therapeutic effectiveness persist, emphasizing the need for innovative approaches. This review explores the potential of natural products, nutraceuticals, and phytochemicals for targeting ferroptosis-related regulators as a novel strategy in CRC. Ferroptosis, a form of regulated cell death characterized by iron-dependent lethal lipid peroxide accumulation, holds substantial importance in CRC progression and therapy resistance. Natural products, known for their diverse bioactive effects and favorable safety profiles, emerge as promising candidates to induce ferroptosis in CRC cells. Exploring amino acid, iron, lipid metabolism regulators, and oxidative stress regulators reveals promising avenues for inducing cell death in CRC. This comprehensive review provides insights into the multifaceted effects of natural products on proteins integral to ferroptosis regulation, including GPX4, SLC7A11, ACSL4, NCOA4, and HO-1. By elucidating the intricate mechanisms through which natural products modulate these proteins, this review lays the foundation for a promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
29
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
30
|
Jin S, Wang H, Zhang X, Song M, Liu B, Sun W. Emerging regulatory mechanisms in cardiovascular disease: Ferroptosis. Biomed Pharmacother 2024; 174:116457. [PMID: 38518600 DOI: 10.1016/j.biopha.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, autophagy, and other types of cell death, is a novel iron-dependent regulated cell death characterized by the accumulation of lipid peroxides and redox imbalance with distinct morphological, biochemical, and genetic features. Dysregulation of iron homeostasis, the disruption of antioxidative stress pathways and lipid peroxidation are crucial in ferroptosis. Ferroptosis is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis, cardiomyopathy, myocardial infarction, ischemia-reperfusion injury, abdominal aortic aneurysm, aortic dissection, and heart failure. Therefore, a comprehensive understanding of the mechanisms that regulate ferroptosis in cardiovascular diseases will enhance the prevention and treatment of these diseases. This review discusses the latest findings on the molecular mechanisms of ferroptosis and its regulation in cardiovascular diseases, the application of ferroptosis modulators in cardiovascular diseases, and the role of traditional Chinese medicines in ferroptosis regulation to provide a comprehensive understanding of the pathogenesis of cardiovascular diseases and identify new prevention and treatment options.
Collapse
Affiliation(s)
- Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| |
Collapse
|
31
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Zhou J. Serum ferritin and the risk of myocardial infarction: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37952. [PMID: 38669402 PMCID: PMC11049730 DOI: 10.1097/md.0000000000037952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The potential role of serum ferritin as a risk factor for myocardial infarction (MI) is controversial, necessitating a systematic exploration of the causal relationship between ferritin and MI through Mendelian randomization (MR) methods. Genetic data were derived from a genome-wide association study (GWAS), employing the inverse variance-weighted (IVW) method as the primary approach. Comprehensive sensitivity analyses were conducted to validate the robustness of the results. Evaluation of instrumental variables was performed using the F-statistic, and a meta-analysis was employed to assess the average gene-predicted effect between ferritin and MI. The MR study revealed a negative correlation between ferritin and MI. The odds ratios (ORs) in the IVW method were 0.83 [95% confidence interval (CI) = 0.72-0.97; P = .017] and 0.86 (95% CI = 0.72-1.02; P = .080). Additionally, meta-analysis consistently indicated a negative causal relationship between ferritin and MI, with no heterogeneity or horizontal pleiotropy, thereby indicating a negative correlation between ferritin levels and the risk of MI. The genetic evidence sheds light on the causal relationship between ferritin levels and MI risk, providing new perspectives for future interventions in acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Jianwei Zhou
- People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan, China
| |
Collapse
|
33
|
El-Gohary RM, Okasha AH, Abd El-Azeem AH, Abdel Ghafar MT, Ibrahim S, Hegab II, Farghal EE, Shalaby SAF, Elshora OA, ElMehy AE, Barakat AN, Amer BS, Sobeeh FG, AboEl-Magd GH, Ghalwash AA. Uncovering the Cardioprotective Potential of Diacerein in Doxorubicin Cardiotoxicity: Mitigating Ferritinophagy-Mediated Ferroptosis via Upregulating NRF2/SLC7A11/GPX4 Axis. Antioxidants (Basel) 2024; 13:493. [PMID: 38671940 PMCID: PMC11047461 DOI: 10.3390/antiox13040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a life-threatening clinical issue with limited preventive approaches, posing a substantial challenge to cancer survivors. The anthraquinone diacerein (DCN) exhibits significant anti-inflammatory, anti-proliferative, and antioxidant actions. Its beneficial effects on DIC have yet to be clarified. Therefore, this study investigated DCN's cardioprotective potency and its conceivable molecular targets against DIC. Twenty-eight Wister rats were assigned to CON, DOX, DCN-L/DOX, and DCN-H/DOX groups. Serum cardiac damage indices, iron assay, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis, ferritinophagy, and ferroptosis-related biomarkers were estimated. Nuclear factor E2-related factor 2 (NRF2) DNA-binding activity and phospho-p53 immunoreactivity were assessed. DCN administration effectively ameliorated DOX-induced cardiac cytomorphological abnormalities. Additionally, DCN profoundly combated the DOX-induced labile iron pool expansion alongside its consequent lethal lipid peroxide overproduction, whereas it counteracted ferritinophagy and enhanced iron storage. Indeed, DCN valuably reinforced the cardiomyocytes' resistance to ferroptosis, mainly by restoring the NRF2/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis. Furthermore, DCN abrogated the cardiac oxidative damage, inflammatory response, ER stress, and cardiomyocyte apoptosis elicited by DOX. In conclusion, for the first time, our findings validated DCN's cardioprotective potency against DIC based on its antioxidant, anti-inflammatory, anti-ferroptotic, and anti-apoptotic imprint, chiefly mediated by the NRF2/SLC7A11/GPX4 axis. Accordingly, DCN could represent a promising therapeutic avenue for patients under DOX-dependent chemotherapy.
Collapse
Affiliation(s)
- Rehab M. El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Asmaa H. Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Alaa H. Abd El-Azeem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Muhammad T. Abdel Ghafar
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Islam I. Hegab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
| | - Eman E. Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | | | - Ola A. Elshora
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Aisha E. ElMehy
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Basma Saed Amer
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Fatma G. Sobeeh
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Gehan H. AboEl-Magd
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Asmaa A. Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| |
Collapse
|
34
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
35
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
36
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
37
|
Gensluckner S, Wernly B, Datz C, Aigner E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:208. [PMID: 38397806 PMCID: PMC10886327 DOI: 10.3390/antiox13020208] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Excess free iron is a substrate for the formation of reactive oxygen species (ROS), thereby augmenting oxidative stress. Oxidative stress is a well-established cause of organ damage in the liver, the main site of iron storage. Ferroptosis, an iron-dependent mechanism of regulated cell death, has recently been gaining attention in the development of organ damage and the progression of liver disease. We therefore summarize the main mechanisms of iron metabolism, its close connection to oxidative stress and ferroptosis, and its particular relevance to disease mechanisms in metabolic-dysfunction-associated fatty liver disease and potential targets for therapy from a clinical perspective.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
38
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
39
|
Chen K, Tang Y, Lan L, Li M, Lu Z. Autophagy mediated FTH1 degradation activates gasdermin E dependent pyroptosis contributing to diquat induced kidney injury. Food Chem Toxicol 2024; 184:114411. [PMID: 38128689 DOI: 10.1016/j.fct.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) induced by diquat (DQ) progresses rapidly, leading to high mortality, and there is no specific antidote for this chemical. Our limited knowledge of the pathogenic toxicological mechanisms of DQ has hindered the development of treatments against DQ poisoning. Pyroptosis is a form of programmed cell death and was recently identified as a novel molecular mechanism of drug-induced AKI. To explore the role of pyroptosis in HK-2 cells exposed to DQ, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDME. Proteomics analysis was performed to explore the mechanism of DQ induced nephrotoxicity. FerroOrange probe was used to measure the intracellular Fe2+ levels. Herein, we show that DQ induces pyroptosis in HK-2 cells. Mechanistically, DQ induces the accumulation of mitochondrial ROS and initiates the cleavage of gasdermin E (GSDME) in an intrinsic mitochondrial pathway. Knockout of GSDME attenuated DQ-induced cell death. Further analysis revealed that loss of FTH1 induces Fe2+ accumulation, contributing to DQ-induced pyroptosis. Knockdown LC3B could help restore the expression of FTH1 and improve cell viability. Moreover, we found DFO, an iron chelator, could reduce cellular Fe2+ levels and inhibit pyroptosis. Collectively, these findings suggest an unrecognized mechanism for GSDME-dependent pyroptosis in DQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
40
|
Shen J, Sun Y, Zhuang Q, Xue D, He X. NAT10 promotes renal ischemia-reperfusion injury via activating NCOA4-mediated ferroptosis. Heliyon 2024; 10:e24573. [PMID: 38312597 PMCID: PMC10835180 DOI: 10.1016/j.heliyon.2024.e24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI) and is associated with substantial morbidity and mortality rates. In this study, we aimed to investigate the role of NAT10 and its ac4C RNA modification in IRI-induced renal injury. Our findings revealed that both the expression level of NAT10 and the RNA ac4C level in the kidneys were elevated in the IRI group compared to the sham group. Functionally, we observed that inhibition of NAT10 activity with Remodelin or the specific knockout of NAT10 in the kidney led to a significant attenuation of IRI-induced renal injury. Furthermore, in vitro experiments demonstrated that NAT10 inhibition and specific knockout of NAT10 in the kidney markedly suppressed global ac4C RNA modification, providing protection against hypoxia/reoxygenation-induced tubular epithelial cell injury and ferroptosis. Mechanistically, our study uncovered that NAT10 promoted ac4C RNA modification of NCOA4 mRNA, thereby enhancing its stability and contributing to IRI-induced ferroptosis in tubular epithelial cells (TECs). These findings underscore the potential of NAT10 and ac4C RNA modification as promising therapeutic targets for the treatment of AKI. Overall, our study sheds light on the critical involvement of NAT10 and ac4C RNA modification in the pathogenesis of IRI-induced renal injury, offering valuable insights for the development of novel AKI treatment strategies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yangyang Sun
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
41
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
42
|
Han WM, Hong YX, Xiao GS, Wang RY, Li G. NMDARs activation regulates endothelial ferroptosis via the PP2A-AMPK-HMGB1 axis. Cell Death Discov 2024; 10:34. [PMID: 38233385 PMCID: PMC10794209 DOI: 10.1038/s41420-023-01794-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated, voltage-dependent channels of the ionotropic glutamate receptor family. The present study explored whether NMDAR activation induced ferroptosis in vascular endothelial cells and its complicated mechanisms in vivo and in vitro. Various detection approaches were used to determine the ferroptosis-related cellular iron content, lipid reactive oxygen species (LOS), siRNA molecules, RNA-sequence, MDA, GSH, and western blotting. The AMPK activator Acadesine (AICAR), HMGB1 inhibitor glycyrrhizin (GLY), PP2A inhibitor LB-100, and NMDAR inhibitor MK801 were used to investigate the involved in vivo and in vitro pathways. The activation of NMDAR with L-glutamic acid (GLU) or NMDA significantly promoted cellular ferroptosis, iron content, MDA, and the PTGS2 expression, while decreasing GPX4 expression and GSH concentration in human umbilical vein endothelial cells (HUVECs), which was reversed by ferroptosis inhibitors Ferrostatin-1(Fer-1), Liproxstatin-1 (Lip-1), or Deferoxamine (DFO). RNA-seq revealed that ferroptosis and SLC7A11 participate in NMDA or GLU-mediated NMDAR activation. The PP2A-AMPK-HMGB1 pathway was majorly associated with NMDAR activation-induced ferroptosis, validated using the PP2A inhibitor LB-100, AMPK activator AICAR, or HMGB1 siRNA. The role of NMDAR in ferroptosis was validated in HUVECs induced with the ferroptosis activator errasin or RSL3 and counteracted by the NMDAR inhibitor MK-801. The in vivo results showed that NMDA- or GLU-induced ferroptosis and LOS production was reversed by MK-801, LB-100, AICAR, MK-801, and GLY, confirming that the PP2A-AMPK-HMGB1 pathway is involved in NMDAR activation-induced vascular endothelium ferroptosis. In conclusion, the present study demonstrated a novel role of NMDAR in endothelial cell injury by regulating ferroptosis via the PP2A-AMPK-HMGB1 pathway.
Collapse
Affiliation(s)
- Wei-Min Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, Fujian, 361008, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, Fujian, 361008, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China.
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, Fujian, 361008, China.
| | - Rui-Ying Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China.
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, Fujian, 361008, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China.
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, Fujian, 361008, China.
| |
Collapse
|
43
|
Li Z, Wang Y, Xu J, Sun J, Zhang W, Liu Z, Shao H, Qin Z, Cui G, Du Z. Silica nanoparticles induce ferroptosis of HUVECs by triggering NCOA4-mediated ferritinophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115889. [PMID: 38150751 DOI: 10.1016/j.ecoenv.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in electronics, chemistry, and biomedicine. Human exposure to SiNPs and possible health effects have attracted much attention. The potential cardiovascular toxicity of SiNPs and their related mechanisms are still unclear. Therefore, in this study, we investigated the toxic effects of SiNPs on human umbilical vein endothelial cells (HUVECs). We found that SiNPs could induce HUVECs ferroptosis. The results showed that the level of intracellular divalent iron and lipid peroxidation increased, and mitochondrial cristae decreased. In addition, the pretreatment of the iron chelator deferoxamine mesylate (DFO) could alleviate the ferroptosis of cells. Interestingly, pretreatment of 3-methyladenine (3-MA), an autophagy/PI3K inhibitor could partially inhibit autophagy and reduce ferroptosis, which indicated that autophagy played an important role in cell ferroptosis. Additionally, after knocking down nuclear receptor coactivator 4 (NCOA4), Ferritin Heavy Chain 1 (FTH1) expression was up-regulated, and the levels of divalent iron and lipid peroxidation decreased, which suggested that NCOA4 mediated the ferroptosis of HUVECs induced by SiNPs. In conclusion, this study shows that SiNPs can induce cardiovascular toxicity in which there is ferroptosis. NCOA4-mediated ferritinophagy and resultant ferroptosis by SiNPs may play an important role. This study provides a new theoretical strategy for the treatment and prevention of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, People's Republic of China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Yihua Wang
- Chemical Institute of Chemical Industry, Xinjiang University of Science and Technology, Korla 841000, Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jin Xu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 2, Minzu Street, Ji'nan 250001, Shandong, People's Republic of China
| | - Jiayin Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Wanxin Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Zuodong Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Zhanxia Qin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China.
| | - Guanqun Cui
- Department of Respiratory Medicine, Children's Hospital Affiliated to Shandong University, Ji'nan 250022, Shandong, People's Republic of China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
45
|
Chen L, Sun X, Wang Z, Chen M, He Y, Zhang H, Han D, Zheng L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol 2024; 482:116794. [PMID: 38142782 DOI: 10.1016/j.taap.2023.116794] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Doxorubicin (Dox) is a widely used antitumor agent with dose-dependent and cumulative cardiotoxic effects. Resveratrol (Res) is a natural non-flavonoid polyphenol that can potentially provide cardiovascular benefits. We aimed to estimate the protective effect of Res on Dox-induced cardiotoxicity (DIC) and explore whether it was related to attenuating ferroptosis. We established DIC models in C57BL/6 J mice, H9C2 cardiomyoblasts, and neonatal rat cardiomyocytes (NRCMs). We further treated H9C2 cells with RSL3, a ferroptosis agonist, to investigate whether Res exerted protective effects through inhibiting ferroptosis. Ferrostatin-1 (Fer-1) was applied to suppress ferroptosis. Dox treatment caused cardiac dysfunction and resulted in apparent ferroptotic damage in cardiac tissue, involving increased iron accumulation, glutathione depletion, increased expression of ferroptosis-related proteins, and decreased expression of glutathione peroxidase 4, which were alleviated by Fer-1 and Res administration. These findings were also confirmed in Dox-treated H9C2 cells and NRCMs, with Fer-1 and Res effectively attenuating Dox-induced cytotoxicity and ferroptosis. Furthermore, Res protected H9C2 cells from RSL3-induced ferroptotic cell death, and the protective effect was similar to that of Fer-1. Both Dox and RSL3 treatment increased the phosphorylation levels of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinases; however, these changes were hindered by Res. This study demonstrates that Res effectively alleviates DIC by suppressing ferroptosis possibly through modulating the MAPK signaling pathway. Our results highlight that targeting ferroptosis can be a potential cardioprotective strategy for DIC.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xingang Sun
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miao Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yuxian He
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Han Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Deheng Han
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
46
|
Shi Y, Shi X, Zhao M, Zhang Y, Zhang Q, Liu J, Duan H, Yang B, Zhang Y. Ferroptosis is involved in focal segmental glomerulosclerosis in rats. Sci Rep 2023; 13:22250. [PMID: 38097813 PMCID: PMC10721625 DOI: 10.1038/s41598-023-49697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
To explore whether ferroptosis is involved in focal segmental glomerulosclerosis (FSGS) and its mechanism. The FSGS rat model was constructed by single nephrectomy combined with fractional tail vein injection of doxorubicin. 24-hour urine protein, serum biochemistry, HE, PAS and Masson pathological staining were measured to assess renal injury. Glomerular and morphological changes of ferroptosis were observed by transmission electron microscopy. Iron content in renal tissue was assessed by Prussian blue staining and iron detection. GSH/GSSG kit was used to detect the content and proportion of reduced/oxidized glutathione. Lipid peroxidation related proteins including MDA expression was assessed by colorimetry. The iron metabolism biomarkers such as hepcidin, ferroportin and TFR, ferroptosis biomarkers such as GPX4, ACSL4, and ferritinophagy biomarkers such as LC3II/LC3I, NCOA4, and FTH1 were detected by Western blot. Significant urinary protein, hyperlipidemia, azotemia, increased serum creatinine and hypoproteinemia were observed in FSGS rats. Histology and electron microscopy showed segmental sclerosis of glomeruli, compensatory enlargement of some glomeruli, occlusion of capillary lumen, balloon adhesion, increased mesangial matrix, atrophy of some tubules, and renal interstitial fibrosis in renal tissue of FSGS rats. The morphology of glomerular foot processes disappeared; the foot processes were extensively fused and some foot processes detached. Mitochondria became smaller, membrane density increased, and mitochondrial cristae decreased or disappeared. In addition, iron deposition was observed in renal tissue of FSGS rats. Compared with the control group, the levels of GSH, GSH/GSSG, GPX4, and ferroportin were reduced and the expression of GSSG, MDA, ACSL4, hepcidin, and TFR was increased in the renal tissue of FSGS rats; meanwhile, the expression of LC3II/LC3I and NCOA4 was increased and the expression of FTH1 was decreased. Ferroptosis is involved in the pathological progression of FSGS, which is probably associated with activation of ferritinophagy. This represents a potential therapeutic target for FSGS.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Yifan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Qi Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Jing Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Hangyu Duan
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1, Xiyuan Playground, Haidian District, Beijing, 100091, China.
| |
Collapse
|
47
|
Guan XY, Guan XL, Zhu JR. Mechanisms and applications of ferroptosis-associated regulators in cancer therapy and drug resistance. J Chemother 2023; 35:671-688. [PMID: 36764828 DOI: 10.1080/1120009x.2023.2177808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Iron is an essential element for almost all living things. Both iron excess and iron deficiency can damage the body's health, but the body has developed complex mechanisms to regulate iron balance. The imbalance of iron homeostasis and lipid peroxidation are important features of ferroptosis. In this review, we summarize the latest regulatory mechanisms of ferroptosis, the roles of relevant regulators that target ferroptosis for cancer therapy, and their relationship to drug resistance. In conclusion, targeting ferroptosis is an important strategy for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jia-Rui Zhu
- Cuiying Biomedical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
48
|
Liu R, Zhou Y, Cao Y. CircRNA and ferroptosis in human disease: Insights for new treatments. Animal Model Exp Med 2023; 6:508-517. [PMID: 38093404 PMCID: PMC10757220 DOI: 10.1002/ame2.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 12/31/2023] Open
Abstract
Circular RNA (circRNA), classified as a type of non-coding RNA, has gained significant attention in the field of biology due to its distinctive ring structure and functional properties. Recent research has provided evidence that specific circRNAs have the ability to modulate disease progression through diverse mechanisms, one of which is by regulating cellular ferroptosis. Ferroptosis is a form of regulated cell death that is driven by iron dependency and lipid peroxidation, and extensive investigations have revealed a relationship between ferroptosis and disease development. In addition to evidence that both circRNAs and ferroptosis exert critical roles in disease progression, circRNAs have also been shown to actively mediate the process of ferroptosis. The relationship between circRNAs and ferroptosis therefore influences disease progression and offers novel targets for disease treatment. By directly or indirectly modulating the expression of circRNAs that regulate the expression of ferroptosis-related proteins, it may be possible to impact disease progression by promoting or inhibiting ferroptosis. Current research indicates such approaches may hold significant value in a wide variety of common diseases across physiological systems. This review comprehensively summarizes the findings of recent studies investigating the roles of circRNAs in the regulation of ferroptosis in various diseases.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical LaboratoryChina‐Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yun Zhou
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
49
|
Wang Y, Yang J, Lu J, Wang Q, Wang J, Zhao J, Huang Y, Sun K. Novel hub genes and regulatory network related to ferroptosis in tetralogy of Fallot. Front Pediatr 2023; 11:1177993. [PMID: 37920788 PMCID: PMC10619671 DOI: 10.3389/fped.2023.1177993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death mainly triggered by uncontrolled lipid peroxidation, and it could potentially have a significant impact on the development and progression of tetralogy of Fallot (TOF). Our project aims to identify and validate potential genes related to ferroptosis in TOF. We obtained sequencing data of TOF from the GEO database and ferroptosis-related genes from the ferroptosis database. We employed bioinformatics methods to analyze the differentially expressed mRNAs (DEmRNAs) and microRNAs between the normal control group and TOF group and identify DEmRNAs related to ferroptosis. Protein-protein interaction analysis was conducted to screen hub genes. Furthermore, a miRNA-mRNA-TF co-regulatory network was constructed to utilize prediction software. The expression of hub genes was further validated through quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). After conducting the differential gene analysis, we observed that in TOF, 41 upregulated mRNAs and three downregulated mRNAs associated with ferroptosis genes were found. Further Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis revealed that these genes were primarily involved in molecular functions and biological processes related to chemical stress, oxidative stress, cellular response to starvation, response to nutrient levels, cellular response to external stimulus, and cellular response to extracellular stimulus. Furthermore, we constructed a miRNA-mRNA-TF co-regulatory network. qRT-PCR analysis of the right ventricular tissues from human cases showed an upregulation in the mRNA levels of KEAP1 and SQSTM1. Our bioinformatics analysis successfully identified 44 potential genes that are associated with ferroptosis in TOF. This finding significantly contributes to our understanding of the molecular mechanisms underlying the development of TOF. Moreover, these findings have the potential to open new avenues for the development of innovative therapeutic approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Yang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyuan Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Huang
- Linyi Maternal and Child Health Care Hospital, Linyi, China
| | - Kun Sun
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Liu S, Chen M, Tang L, Li X, Zhou S. Association between Serum Ferritin and Prognosis in Patients with Ischemic Heart Disease in Intensive Care Units. J Clin Med 2023; 12:6547. [PMID: 37892684 PMCID: PMC10607098 DOI: 10.3390/jcm12206547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Recent years have seen a clear link established between elevated ferritin levels and COVID-19 prognosis. However, the impact of heightened ferritin levels on the prognosis of individuals with severe ischemic heart disease remains uncertain. METHODS We utilized the MIMIC IV database to identify a cohort of ischemic heart disease patients who underwent serum ferritin testing. We conducted regression analyses, employed the overlap propensity score weighting model, and utilized the restricted cubic splines model to comprehensively investigate the associations between serum ferritin levels and clinical outcomes. RESULTS Our cohort included 1173 patients with diagnosed ischemic heart disease, categorized into high and low serum ferritin groups. After meticulous adjustment for confounding factors in a fully adjusted model, the hazard ratios (HRs) for 90-day and 1-year mortality were 1.63 (95% CI: 1.27-2.09) and 1.49 (95% CI: 1.19-1.86), respectively, in the high-ferritin group compared to the low-ferritin group. Subsequent analyses with propensity score weighting confirmed these results. Remarkably, restricted cubic spline analysis revealed an almost linear relationship between log-transformed serum ferritin levels and the risk of both 90-day and 1-year all-cause mortality. Moreover, incorporating ferritin into conventional severity of illness scores significantly improved the area under the curve for both 90-day and 1-year mortality. CONCLUSIONS This study provides compelling evidence regarding the prognostic significance of serum ferritin in predicting 90-day and one-year mortality rates among patients diagnosed with ischemic heart disease.
Collapse
Affiliation(s)
| | | | | | | | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (S.L.)
| |
Collapse
|