1
|
Kim Y, Ghil S. Negative regulation of cannabinoid receptor 2‑induced tumorigenic effect by sphingosine‑1‑phosphate receptor 5 activation. Oncol Rep 2025; 53:41. [PMID: 39918009 DOI: 10.3892/or.2025.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 05/08/2025] Open
Abstract
G protein‑coupled receptors (GPCR), also known as seven‑transmembrane proteins, serve a role in transmitting extracellular information into the cellular environment. Type 2 cannabinoid receptors (CB2) and type 5 sphingosine‑1‑phosphate receptor (S1P5) are GPCRs that are activated by biolipids and involved in tumor progression in various cancer types. At present, effects of crosstalk between CB2 and S1P5 receptors on tumor cell proliferation and migration in gliomas are not fully understood. The present study screened S1Ps for potential interactions with CB2 using bioluminescence resonance energy transfer analysis. S1P5 interacted strongly and specifically with CB2. 293T cells were transfected with CB2 tagged with Venus and S1P5 tagged with mCherry to investigate the cellular localization of both receptors. After 24 h, Confocal microscopy analysis revealed that, in the absence of agonists, both receptors were predominantly localized at the plasma membrane. Notably, both receptors were co‑internalized from the membrane to the cytoplasm upon individual and combined activation. The effects of co‑activation of both receptors on tumor progression were investigated using U‑87 MG, the human glioblastoma cell line. Activation of CB2 induced an increase in cell migration and proliferation, which were downregulated following the co‑activation of S1P5. Furthermore, activation of S1P5 significantly attenuated the upregulation of tumor progression‑related genes, including zinc finger protein 91, activating transcription factor 3, Ki67, basic transcription factor 3, and p21, induced by CB2 activation. This suggests that S1P5 exerts a negative regulatory effect on CB2‑mediated tumor progression. The present findings provide evidence of the crosstalk between CB2 and S1P5.
Collapse
MESH Headings
- Humans
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Cell Proliferation
- Cell Movement/drug effects
- Sphingosine-1-Phosphate Receptors/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/genetics
- Gene Expression Regulation, Neoplastic
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/genetics
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Yuna Kim
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| |
Collapse
|
2
|
Rašić D, Zandona A, Katalinić M, Češi M, Kopjar N. Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes. Toxins (Basel) 2024; 16:534. [PMID: 39728792 PMCID: PMC11679033 DOI: 10.3390/toxins16120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT's potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products.
Collapse
Affiliation(s)
- Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Martin Češi
- Independent Researcher, Kauzlarićev Prilaz 9, HR-10 000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| |
Collapse
|
3
|
Zemnou Tepap C, Anissi J, Bounou S, Berton Zanchi F. In Silico Approach for Assessment of the Anti-Tumor Potential of Cannabinoid Compounds by Targeting Glucose-6-Phosphate Dehydrogenase Enzyme. Chem Biodivers 2024; 21:e202401338. [PMID: 39109709 DOI: 10.1002/cbdv.202401338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a pentose phosphate pathway (PPP) enzyme that generates NADPH, which is required for cellular redox equilibrium and reductive biosynthesis. It has been demonstrated that abnormal G6PD activation promotes cancer cell proliferation and metastasis. To date, no G6PD inhibitor has passed clinical testing successfully enough to be launched as a medicine. As a result, in this investigation, cannabinoids were chosen to evaluate their anticancer potential by targeting G6PD. Molecular docking indicated that three molecules, Tetrahydrocannabinolic acid (THCA), Cannabichromenic acid (CBCA), and tetrahydrocannabivarin (THCV), have the highest binding affinities for G6PD of -8.61, -8.39, and 8.01 Kcal mol. ADMET analysis found that all of them were safe prospective drug candidates. Molecular dynamics (MD) simulation and MM-PBSA analysis confirm the structural compactness and lower conformational variation of protein-ligand complexes, thereby maintaining structural stability and rigidity. Thus, our in silico investigation exhibited all three cannabinoids as potential competitive inhibitors of G6PD.
Collapse
Affiliation(s)
| | | | | | - Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal (LABIOQUIM), Fundação Oswaldo Cruz Rondônia,Porto Velho, RO, Brasil
| |
Collapse
|
4
|
Younes M, Hage ME, Shebaby W, Al Toufaily S, Ismail J, Naim HY, Mroueh M, Rizk S. The molecular anti-metastatic potential of CBD and THC from Lebanese Cannabis via apoptosis induction and alterations in autophagy. Sci Rep 2024; 14:25642. [PMID: 39463375 PMCID: PMC11514238 DOI: 10.1038/s41598-024-76340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The medicinal plant Cannabis sativa L. (C. sativa) is currently being extensively studied to determine the full extent of its therapeutic pharmacological potential. Δ9-tetrahydocannabinol (THC) and cannabidiol (CBD) are the most thoroughly investigated compounds. We aimed to explore the anticancer activity of cannabinoids mixture isolated from the Lebanese C. sativa plant in ratios comparable to the local medicinal plant, to elucidate its mechanism of action in breast cancer cells in vitro. Cells were subjected to cytotoxicity assay, cell cycle analysis, Annexin V/PI dual staining, cell death ELISA, immunofluorescence, in addition to western blot analysis of apoptotic and autophagy markers. We further evaluated the anti-metastatic effect of cannabinoids on MDA-MB-231 using the scratch wound-healing, trans-well migration and invasion assays. Our results revealed the promising therapeutic benefits of CBD/THC on inhibiting the growth of breast cancer cells by promoting cellular fragmentation, phosphatidylserine translocation to the outer membrane leaflet and DNA fragmentation in both cell lines while inhibiting the motility of the triple negative breast cancer cells. In our study, CBD/THC mixture was found to exhibit a pro-apoptotic activity via the activation of the mitochondrial apoptotic pathway, independent from ROS production while also suggesting the activation of a caspase-dependent apoptotic pathway. Even though autophagy was altered upon exposure to the cannabinoid mixture, our data suggested that it is not the mechanism responsible of inducing cell death. In conclusion, our study demonstrates the promising therapeutic benefits of CBD and THC isolated from the Lebanese C. sativa plant on breast cancer cells in vitro.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Marissa El Hage
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Shebaby
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | | - Jana Ismail
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mohammad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Tavakoli-Yaraki M, Abbasi A, Pishkenari FN, Baranipour S, Jahangirifard A, Mirtajani SB, Mejareh ZN, Vaezi MA, Yavarian J, Abdollahi B, Mokhtari-Azad T, Salimi V. Beyond prediction: unveiling the prognostic power of μ-opioid and cannabinoid receptors, alongside immune mediators, in assessing the severity of SARS-CoV-2 infection. BMC Infect Dis 2024; 24:398. [PMID: 38609845 PMCID: PMC11015610 DOI: 10.1186/s12879-024-09280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This study aims to explore the potential of utilizing the expression levels of cannabinoid receptor 2 (CB2), μ-opioid receptor (MOR), MCP-1, IL-17, IFN-γ, and osteopontin as predictors for the severity of SARS-CoV-2 infection. The overarching goal is to delineate the pathogenic mechanisms associated with SARS-CoV-2. METHODS Using quantitative Real-time PCR, we analyzed the gene expression levels of CB2 and MOR in nasopharynx specimens obtained from patients diagnosed with SARS-CoV-2 infection, with 46 individuals classified as having severe symptoms and 46 as non-severe. Additionally, we measured the circulating levels of MCP-1, IL-17, IFN-γ, and osteopontin using an ELISA assay. We examined the predictive capabilities of these variables and explored their correlations across all patient groups. RESULTS Our results demonstrated a significant increase in MOR gene expression in the epithelium of patients with severe infection. The expression of CB2 receptor was also elevated in both male and female patients with severe symptoms. Furthermore, we observed concurrent rises in MCP-1, IL-17, IFN-γ, and osteopontin levels in patients, which were linked to disease severity. CB2, MOR, MCP-1, IL-17, IFN-γ, and osteopontin showed strong predictive abilities in distinguishing between patients with varying degrees of SARS-CoV-2 severity. Moreover, we identified a significant correlation between CB2 expression and the levels of MOR, MCP-1, osteopontin, and IFN-γ. CONCLUSIONS These results underline the interconnected nature of molecular mediators in a sequential manner, suggesting that their overexpression may play a role in the development of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Abbasi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O. Box: 1417613151, Iran
| | - Fatemeh Nejat Pishkenari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Baranipour
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Jahangirifard
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bashir Mirtajani
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Noorani Mejareh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O. Box: 1417613151, Iran
| | - Bahare Abdollahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O. Box: 1417613151, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O. Box: 1417613151, Iran.
| |
Collapse
|
6
|
Prateeksha P, Sharma VK, Singh SM, Sharma M, Diwan D, Hesham AEL, Guleria S, Nguyen QD, Gupta VK, Singh BN. Tetrahydrocannabinols: potential cannabimimetic agents for cancer therapy. Cancer Metastasis Rev 2023; 42:823-845. [PMID: 36696005 DOI: 10.1007/s10555-023-10078-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023]
Abstract
Tetrahydrocannabinols (THCs) antagonize the CB1 and CB2 cannabinoid receptors, whose signaling to the endocannabinoid system is essential for controlling cell survival and proliferation as well as psychoactive effects. Most tumor cells express a much higher level of CB1 and CB2; THCs have been investigated as potential cancer therapeutic due to their cannabimimetic properties. To date, THCs have been prescribed as palliative medicine to cancer patients but not as an anticancer modality. Growing evidence of preclinical research demonstrates that THCs reduce tumor progression by stimulating apoptosis and autophagy and inhibiting two significant hallmarks of cancer pathogenesis: metastasis and angiogenesis. However, the degree of their anticancer effects depends on the origin of the tumor site, the expression of cannabinoid receptors on tumor cells, and the dosages and types of THC. This review summarizes the current state of knowledge on the molecular processes that THCs target for their anticancer effects. It also emphasizes the substantial knowledge gaps that should be of concern in future studies. We also discuss the therapeutic effects of THCs and the problems that will need to be addressed in the future. Clarifying unanswered queries is a prerequisite to translating the THCs into an effective anticancer regime.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79410, USA
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv M Singh
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, Rue de la Sucrerie, 7800, Mons, ATH, Belgium
| | - Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO 63108, USA
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Sanjay Guleria
- Natural Product-cum-Nano Lab, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu and Kashmir, 180009, India
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, Budapest, H-1118, Hungary
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
7
|
García-Morales L, Mendoza-Rodríguez MG, Tapia Ramírez J, Meza I. CBD Inhibits In Vivo Development of Human Breast Cancer Tumors. Int J Mol Sci 2023; 24:13235. [PMID: 37686042 PMCID: PMC10488207 DOI: 10.3390/ijms241713235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a critical component of cancer development. Previously, we showed in vitro that IL-1β treatment of non-invasive human breast cancer MCF-7 cells promoted their transition to a malignant phenotype (6D cells). This epithelial-mesenchymal transition was reverted by exposure to cannabidiol (CBD). We show in a murine model that subcutaneous inoculation of 6D cells induced formation and development of tumors, the cells of which keep traits of malignancy. These processes were interrupted by administration of CBD under two schemes: therapeutic and prophylactic. In the therapeutic scheme, 6D cells inoculated mice developed tumors that reached a mean volume of 540 mm3 at 45 days, while 50% of CBD-treated mice showed gradual resorption of tumors. In the prophylactic scheme, mice were pre-treated for 15 days with CBD before cells inoculation. The tumors formed remained small and were eliminated under continuous CBD treatment in 66% of the animals. Histological and molecular characterization of tumors, from both schemes, revealed that CBD-treated cells decreased the expression of malignancy markers and show traits related with apoptosis. These results confirm that in vivo CBD blocks development of breast cancer tumors formed by cells induced to malignancy by IL-1β, endorsing its therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Lázaro García-Morales
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico;
| | - José Tapia Ramírez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Isaura Meza
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| |
Collapse
|
8
|
Pennant NM, Hinton CV. The evolution of cannabinoid receptors in cancer. WIREs Mech Dis 2023; 15:e1602. [PMID: 36750231 PMCID: PMC10484301 DOI: 10.1002/wsbm.1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023]
Abstract
Cannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA. In the late 1990s in some states, legislation assisted in legalizing the use of cannabis for medical purposes under physician supervision. As it has been proven that cannabinoids and their receptors play an essential role in the regulation of the physiological and biological processes in our bodies. The endocannabinoid system (ECS) is the complex that regulates the cell-signaling system consisting of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The ECS along with phytocannabinoids and synthetic cannabinoids serves to be a beneficial therapeutic target in treating diseases as they play roles in cell homeostasis, cell motility, inflammation, pain-sensation, mood, and memory. Cannabinoids have been shown to inhibit proliferation, metastasis, and angiogenesis and even restore homeostasis in a variety of models of cancer in vitro and in vivo. Cannabis and its receptors have evolved into a therapeutic treatment for cancers. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Nakea M Pennant
- Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| | - Cimona V Hinton
- Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Golan H, Mechoulam R, Smoum R, Cohen-Zada E, Pri-Chen S, Wiener S, Grinberg I, Bar-Lev DD, Haj CG, Fisher T, Toren A. Anti-Tumorigenic Effect of a Novel Derivative of 2-Hydroxyoleic Acid and the Endocannabinoid Anandamide on Neuroblastoma Cells. Biomedicines 2022; 10:biomedicines10071552. [PMID: 35884854 PMCID: PMC9312959 DOI: 10.3390/biomedicines10071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Modulation of the endogenous cannabinoid system has been suggested as a potential anticancer strategy. In the search for novel and less toxic therapeutic options, structural modifications of the endocannabinoid anandamide and the synthetic derivative of oleic acid, Minerval (HU-600), were done to obtain 2-hydroxy oleic acid ethanolamide (HU-585), which is an HU-600 derivative with the anandamide side chain. We showed that treatment of SK-N-SH neuroblastoma cells with HU-585 induced a better anti-tumorigenic effect in comparison to HU-600 as evidenced by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay, colony-forming assay, and migration assay. Moreover, HU-585 demonstrated pro-apoptotic properties shown by increased levels of activated caspase-3 following treatment and a better senescence induction effect in comparison to HU-600, as demonstrated by increased activity of lysosomal β-galactosidase. Finally, we observed that combined treatment of HU-585 with the senolytic drugs ABT-263 in vitro, and ABT-737 in vivo resulted in enhanced anti-proliferative effects and reduced neuroblastoma xenograft growth in comparison to treatment with HU-585 alone. Based on these results, we suggest that HU-585 is a pro-apoptotic and senescence-inducing compound, better than HU-600. Hence, it may be a beneficial option for the treatment of resistant neuroblastoma especially when combined with senolytic drugs that enhance its anti-tumorigenic effects.
Collapse
Affiliation(s)
- Hana Golan
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
- Department of Pediatric Hematology Oncology, The Edmond and Lily Safra Children’s Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Reem Smoum
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Efrat Cohen-Zada
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Sara Pri-Chen
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Sapir Wiener
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Igor Grinberg
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Dekel D. Bar-Lev
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Christeeneh G. Haj
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Tamar Fisher
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Amos Toren
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
- Department of Pediatric Hematology Oncology, The Edmond and Lily Safra Children’s Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|