1
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
2
|
Tian W, Zhang P, Yu N, Zhu J, Liu C, Liu X, Liu Y. Role of COX6C and NDUFB3 in septic shock and stroke. Open Med (Wars) 2024; 19:20241050. [PMID: 39655053 PMCID: PMC11627056 DOI: 10.1515/med-2024-1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Background Septic shock is a clinical syndrome characterized by acute circulatory disturbance. Stroke is an acute cerebrovascular disease caused by brain tissue damage. However, the relationship of COX6C and NDUFB3 to them is unclear. Method The stroke dataset GSE58294 and the septic shock dataset GSE15491 were downloaded from the gene expression omnibus database. Screening of differentially expressed genes (DEGs), weighted gene co-expression network analysis, construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, and comparative toxicogenomics database (CTD) analysis were performed. Gene expression heat map was drawn. TargetScan screened miRNAs regulating central DEGs. Results A total of 664 DEGs were obtained. Gene ontology analysis showed that they were mainly enriched in leukocyte activation, intracellular vesicle, neutrophil activation, and cytokine receptor activity. According to Kyoto Encyclopedia of Genes and Genomes analysis, they are mainly enriched in metabolic pathways, phagosomes, and Staphylococcus aureus infection. Core genes (UQCRQ, USMG5 [ATP5MD], COX6C, NDUFB3, ATP5L [ATP5MG], COX7C, NDUFA1, NDUFA4) were highly expressed in septic shock and stroke samples. CTD analysis found that eight core genes are associated with liver enlargement, inflammation, proliferation, fibrosis, and necrosis. Conclusion COX6C and NDUFB3 genes are highly expressed in septic shock and stroke. The higher the COX6C and NDUFB3 genes, the worse the prognosis.
Collapse
Affiliation(s)
- Wenbin Tian
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junyu Zhu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuefang Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Xu G, Ge R, Zhang C, Zhao Z, Han L, Zhang W, Yue W, Zhang J, Zhao Y, Hou S, Li L, Wang P. Promotion of nerve regeneration and motor function recovery in SCI rats using LOCAS-iPSCs-NSCs. Stem Cell Res Ther 2024; 15:376. [PMID: 39444002 PMCID: PMC11515548 DOI: 10.1186/s13287-024-03999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe traumatic spinal condition with a poor prognosis. In this study, a scaffold called linearly ordered collagen aggregates (LOCAS) was created and loaded with induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) from human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) to treat SCI in a rat model. METHODS The rats underwent a complete transection SCI resulting in a 3-mm break at either the T9 or T10 level of the spinal cord. RESULTS Scanning electron microscope analysis revealed a uniform pore structure on the coronal plane of the scaffold. The LOCAS had a porosity of 88.52% and a water absorption of 1161.67%. Its compressive modulus and stress were measured at 4.1 MPa and 205 kPa, respectively, with a degradation time of 10 weeks. After 12 weeks, rats in the LOCAS-iPSCs-NSCs group exhibited significantly higher BBB scores (8.6) compared to the LOCAS-iPSCs-NSCs group (5.6) and the Model group (4.2). The CatWalk analysis showed improved motion trajectory, regularity index (RI), and swing speed in the LOCAS-iPSCs-NSCs group compared to the other groups. Motor evoked potentials latency was lower and amplitude was higher in the LOCAS-iPSCs-NSCs group, indicating better neural function recovery. Histological analysis demonstrated enhanced neuronal differentiation of NSCs and nerve fiber regeneration promoted by LOCAS-iPSCs-NSCs, leading to improved motor function recovery in rats. The LOCAS scaffold facilitated ordered neurofilament extension and guided nerve regeneration. CONCLUSIONS The combination of LOCAS and iPSCs-NSCs demonstrated a positive therapeutic impact on motor function recovery and tissue repair in rats with SCI. This development offers a more resilient bionic microenvironment and presents novel possibilities for clinical SCI repair.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, Liaoning Province, China.
| | - Rui Ge
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, Liaoning Province, China
| | - Chunli Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Liwei Han
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - WenJie Yue
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Shuxun Hou
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Li Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China.
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Fu Q, Song Y, Ling Z, Liu J, Kong Q, Hao X, Xu T, Zhang Q, Liu Y. Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of Luteolin. Diabetes 2024; 73:1513-1526. [PMID: 38869375 DOI: 10.2337/db23-0969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication of the central nervous system associated with diabetes. In this study, we investigated the regulatory role of mammalian target of rapamycin (mTOR) on nuclear factor κB (NF-κB) in mice with DE, and the neuroprotective effect and therapeutic mechanisms of luteolin, a natural flavonoid compound with anti-inflammatory, antioxidant, and neuroprotective properties. The results indicated that treatment with luteolin improved the degree of cognitive impairment in mice with DE. It also decreased the levels of phosphorylated mTOR, phosphorylated NF-κB, and histone deacetylase 2 (HDAC2) and increased the expression of brain-derived neurotrophic factor and synaptic-related proteins. Furthermore, protein-protein interaction and the Gene Ontology analysis revealed that luteolin was involved in the regulatory network of HDAC2 expression through the mTOR/NF-κB signaling cascade. Our bioinformatics and molecular docking results indicated that luteolin may also directly target HDAC2, as an HDAC2 inhibitor, to alleviate DE, complementing mTOR/NF-κB signaling inhibition. Analysis of luteolin's target proteins and their interactions suggest an effect on HDAC2 and cognition. In conclusion, HDAC2 and tau hyperphosphorylation are regulated by the mTOR/NF-κB signaling cascade in DE, and luteolin is found to reverse these effects, demonstrating its protective role in DE. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Qian Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yilin Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaoke Ling
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
7
|
Gao X, Li Q, Hao J, Sun K, Feng H, Guo K, Gao C. Therapeutic effects of exendin-4 on spinal cord injury via restoring autophagy function and decreasing necroptosis in neuron. CNS Neurosci Ther 2024; 30:e14835. [PMID: 39004783 PMCID: PMC11246977 DOI: 10.1111/cns.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
AIMS Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.
Collapse
Affiliation(s)
- Xiao Gao
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Qu‐Peng Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jing‐Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Kai Sun
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Hu Feng
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Kai‐Jin Guo
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Can Gao
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
8
|
Guo H, Chen LQ, Zou ZR, Cheng S, Hu Y, Mao L, Tian H, Mei XF. Zinc remodels mitochondrial network through SIRT3/Mfn2-dependent mitochondrial transfer in ameliorating spinal cord injury. Eur J Pharmacol 2024; 968:176368. [PMID: 38316246 DOI: 10.1016/j.ejphar.2024.176368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.
Collapse
Affiliation(s)
- Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Li-Qing Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Zhi-Ru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Xi-Fan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
9
|
Ke H, Bai F, Li Z, Zhu Y, Zhang C, Li Y, Talifu Z, Pan Y, Liu W, Xu X, Gao F, Yang D, Du L, Yu Y, Li J. Inhibition of phospholipase D promotes neurological function recovery and reduces neuroinflammation after spinal cord injury in mice. Front Cell Neurosci 2024; 18:1352630. [PMID: 38572075 PMCID: PMC10987874 DOI: 10.3389/fncel.2024.1352630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Han Ke
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zihan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunjia Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zuliyaer Talifu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yunzhu Pan
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Wubo Liu
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Xu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Feng Gao
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Degang Yang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Liangjie Du
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Yu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Jianjun Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Jiang X, Wang W, Tang J, Han M, Xu Y, Zhang L, Wu J, Huang Y, Ding Z, Sun H, Xi K, Gu Y, Chen L. Ligand-Screened Cerium-Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306780. [PMID: 38037294 PMCID: PMC10853750 DOI: 10.1002/advs.202306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1β signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.
Collapse
Affiliation(s)
- Xinzhao Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jincheng Tang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Meng Han
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
- Department of Spinal SurgeryXuzhou Central HospitalXuzhou221000China
| | - Yichang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Lichen Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jie Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yiyang Huang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Zhouye Ding
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Huiwen Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Kun Xi
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yong Gu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Liang Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| |
Collapse
|
11
|
Lin FX, Pan QL, Gu HY, Zeng FJ, Lu ZJ. The Role of Resveratrol on Spinal Cord Injury: from Bench to Bedside. Mol Neurobiol 2024; 61:104-119. [PMID: 37584822 DOI: 10.1007/s12035-023-03558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Spinal cord injury (SCI) is a severe and disabling injury of the central nervous system, with complex pathological mechanisms leading to sensory and motor dysfunction. Pathological processes, such as oxidative stress, inflammatory response, apoptosis, and glial scarring are important factors that aggravate SCI. Therefore, the inhibition of these pathological processes may contribute to the treatment of SCI. Currently, the pathogenesis of SCI remains under investigation as SCI treatment has not progressed considerably. Resveratrol, a natural polyphenol with anti-inflammatory and antioxidant properties, is considered a potential therapeutic drug for various diseases and plays a beneficial role in nerve damage. Preclinical studies have confirmed that signaling pathways are closely related to the pathological processes in SCI, and resveratrol is believed to exert therapeutic effects in SCI by activating the related signaling pathways. Based on current research on the pathways of resveratrol and its role in SCI, resveratrol may be a potentially effective treatment for SCI. This review summarizes the role of resveratrol in promoting the recovery of nerve function by regulating oxidative stress, inflammation, apoptosis, and glial scar formation in SCI through various mechanisms and pathways, as well as the deficiency of resveratrol in SCI research and the current and anticipated research trends of resveratrol. In addition, this review provides a background for further studies on the molecular mechanisms of SCI and the development of potential therapeutic agents. This information could also help clinicians understand the known mechanisms of action of resveratrol and provide better treatment options for patients with SCI.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Fang-Jun Zeng
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
12
|
Zeng CW. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 2023; 24:14349. [PMID: 37762654 PMCID: PMC10532158 DOI: 10.3390/ijms241814349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injuries (SCIs) can lead to significant neurological deficits and lifelong disability, with far-reaching physical, psychological, and economic consequences for affected individuals and their families. Current treatments for SCIs are limited in their ability to restore function, and there is a pressing need for innovative therapeutic approaches. Stem cell therapy has emerged as a promising strategy to promote the regeneration and repair of damaged neural tissue following SCIs. This review article comprehensively discusses the potential of different stem cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and neural stem/progenitor cells (NSPCs), in SCI treatment. We provide an in-depth analysis of the unique advantages and challenges associated with each stem cell type, as well as the latest advancements in the field. Furthermore, we address the critical challenges faced in stem cell therapy for SCIs, including safety concerns, ethical considerations, standardization of protocols, optimization of transplantation parameters, and the development of effective outcome measures. We also discuss the integration of novel technologies such as gene editing, biomaterials, and tissue engineering to enhance the therapeutic potential of stem cells. The article concludes by emphasizing the importance of collaborative efforts among various stakeholders in the scientific community, including researchers, clinicians, bioengineers, industry partners, and patients, to overcome these challenges and realize the full potential of stem cell therapy for SCI patients. By fostering such collaborations and advancing our understanding of stem cell biology and regenerative medicine, we can pave the way for the development of groundbreaking therapies that improve the lives of those affected by SCIs.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Li N, Chen L, Zhao X, Gu C, Chang Y, Feng S. Targeting ANXA7/LAMP5-mTOR axis attenuates spinal cord injury by inhibiting neuronal apoptosis via enhancing autophagy in mice. Cell Death Discov 2023; 9:309. [PMID: 37620352 PMCID: PMC10449888 DOI: 10.1038/s41420-023-01612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Spinal cord injury (SCI) could lead to severe disabilities in motor and sensory functions, and cause a heavy burden on patient physiology and psychology due to lack of specific repair measures so far. ANXA7 is an annexin with Ca2+ -dependent GTPase activity, which were mainly expressed in neuron in spinal cord and downregulated significantly after SCI in mice. In our study, GTPase activity activation of ANXA7 plays the protective role in neuron after OGD/R through inhibiting neuron apoptosis, which mediated by enhancing autophagy via mTOR/TFEB pathway. We also discovered that ANXA7 has significant interaction with neural-specific lysosomal-associated membrane protein LAMP5, which together with ANXA7 regulates autophagy and apoptosis. Asp411 mutation of ANXA7 obviously impaired the interaction of ANXA7 and LAMP5 compared with the wild type. Furthermore, it was found that activation of ANXA7 could help to stabilize the protein expression of LAMP5. Overexpression of LAMP5 could attenuate the destruction of lysosomal acidic environment, inhibition of autophagy and activation of apoptosis caused by ANXA7 downregulation after OGD/R. We verified that injecting ANXA7 overexpression lentivirus and activation of ANXA7 both have significant repair effects on SCI mice by using CatWalk assay and immunohistochemistry staining. In summary, our findings clarify the new role of ANXA7 and LAMP5 in SCI, provided a new specific target of neuronal repair and discovered new molecular mechanisms of ANXA7 to regulate autophagy and apoptosis. Targeting ANXA7 may be a prospective therapeutic strategy for SCI in future.
Collapse
Affiliation(s)
- Na Li
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Lu Chen
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Xiaoqing Zhao
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Chi Gu
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Yong Chang
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Shiqing Feng
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China.
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
15
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
16
|
Meshkini A, Sarpoolaki MK, Vafaei A, Mirzaei F, Badripour A, Rafiei E, Khalilzadeh M, Fattahi MR, Iranmehr A. The efficacy of intrathecal methyl-prednisolone for acute spinal cord injury: A pilot study. Heliyon 2023; 9:e15548. [PMID: 37128349 PMCID: PMC10148034 DOI: 10.1016/j.heliyon.2023.e15548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Study design Randomized clinical trial. Objectives To evaluate the safety and effectiveness of intrathecal methyl-prednisolone compared to intravenous methyl-prednisolone in acute spinal cord injuries. Setting Imam Reza Hospital, Tabriz University of Medical Sciences. Methods Patients meeting our inclusion and exclusion criteria were enrolled in the study and divided randomly into two treatment arms: intrathecal and intravenous. Standard spinal cord injury care (including surgery) was given to each patient based on our institutional policy. Patients were then assessed for neurological status (based on ASIA scores, Frankel scores) and complications for six months and compared to baseline status after injury. To better understand the biological bases of methyl-prednisolone on spinal cord injuries, we measured two biomarkers for oxidative stress (serum malondialdehyde and total antioxidant capacity) in these patients at arrival and day three after injury. Results The present study showed no significant difference between the treatment arms in neurological status (sensory scores or motor scores) or complications. However, the within-group analysis showed improvement in neurological status in each treatment arm within six months. Serum malondialdehyde and total antioxidant capacity were analyzed, and no significant difference between the groups was seen. Conclusion This is the first known clinical trial investigating the effect of intrathecal MP in acute SCI patients. Our finding did not show any significant differences in complication rates and neurological outcomes between the two study arms. Further studies should be conducted to define the positive and negative effects of this somehow novel technique in different populations as well.
Collapse
Affiliation(s)
- Ali Meshkini
- Neurosurgery Department, Tarbiz University of Medical Sciences, Iran
| | - Mohammad Kazem Sarpoolaki
- Neurological Surgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Iran
| | - Ali Vafaei
- Experimental Medicine Research Center, Department of Pharmacology, Tehran University of Medical Sciences, Iran
| | - Farhad Mirzaei
- Neurosurgery Department, Tarbiz University of Medical Sciences, Iran
| | - Abolfazl Badripour
- Experimental Medicine Research Center, Department of Pharmacology, Tehran University of Medical Sciences, Iran
- Brain and Spinal Cord Injuries Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Ebrahim Rafiei
- Neurosurgery Department, Tarbiz University of Medical Sciences, Iran
| | | | | | - Arad Iranmehr
- Neurological Surgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Iran
- Sina hospital, Hasanabad, Tehran, Iran
- Corresponding author. Neurological Surgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Iran.
| |
Collapse
|
17
|
Iranpanah A, Kooshki L, Moradi SZ, Saso L, Fakhri S, Khan H. The Exosome-Mediated PI3K/Akt/mTOR Signaling Pathway in Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15031006. [PMID: 36986865 PMCID: PMC10057486 DOI: 10.3390/pharmaceutics15031006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
As major public health concerns associated with a rapidly growing aging population, neurodegenerative diseases (NDDs) and neurological diseases are important causes of disability and mortality. Neurological diseases affect millions of people worldwide. Recent studies have indicated that apoptosis, inflammation, and oxidative stress are the main players of NDDs and have critical roles in neurodegenerative processes. During the aforementioned inflammatory/apoptotic/oxidative stress procedures, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a crucial role. Considering the functional and structural aspects of the blood-brain barrier, drug delivery to the central nervous system is relatively challenging. Exosomes are nanoscale membrane-bound carriers that can be secreted by cells and carry several cargoes, including proteins, nucleic acids, lipids, and metabolites. Exosomes significantly take part in the intercellular communications due to their specific features including low immunogenicity, flexibility, and great tissue/cell penetration capabilities. Due to their ability to cross the blood-brain barrier, these nano-sized structures have been introduced as proper vehicles for central nervous system drug delivery by multiple studies. In the present systematic review, we highlight the potential therapeutic effects of exosomes in the context of NDDs and neurological diseases by targeting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
18
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
19
|
Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. iScience 2022; 26:105885. [PMID: 36654858 PMCID: PMC9840934 DOI: 10.1016/j.isci.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons. We found that axonal regrowth induced by UBE4B depletion depended on the cooperative activation of p53 and mTOR. Importantly, overexpression of UbV.E4B, a competitive inhibitor of UBE4B, in corticospinal neurons promoted corticospinal axon sprouting and facilitated the recovery of corticospinal axon-dependent function in a cortical stroke model. Thus, our findings provide a translatable strategy for restoring corticospinal tract-dependent functions after cortical stroke.
Collapse
|
20
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
21
|
Mech D, Korgol K, Kurowska A, Adamski B, Miazga M, Biala G, Kruk-Slomka M. Promising Advances in Pharmacotherapy for Patients with Spinal Cord Injury-A Review of Studies Performed In Vivo with Modern Drugs. J Clin Med 2022; 11:jcm11226685. [PMID: 36431161 PMCID: PMC9698573 DOI: 10.3390/jcm11226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological neurological condition that leads to significant motor dysfunction. It is a condition that occurs as a result of tragic accidents, violent acts, or as a consequence of chronic diseases or degenerative changes. The current treatments for patients with SCI have moderate efficacy. They improve the quality of life of patients, but they are still doomed to long-term disability. In response to the modern directions of research on possible therapeutic methods that allow for the recovery of patients with SCI, a scientific review publication is needed to summarize the recent developments in this topic. The following review is focused on the available pharmacological treatments for SCIs and the problems that patients face depending on the location of the injury. In the following review, the research team describes problems related to spasticity and neuropathic pain; possible therapeutic pathways are also described for neuroprotection and the improvement of neurotransmission within the injured spinal cord, and the review focuses on issues related to oxidative stress.
Collapse
Affiliation(s)
- Dominika Mech
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Katarzyna Korgol
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Antonina Kurowska
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Malgorzata Miazga
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1448-7258; Fax: +48-8-1448-7252
| |
Collapse
|
22
|
Chen H, Zhou J, Zhang G, Luo Z, Li L, Kang X. Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration. Cell Prolif 2022; 56:e13338. [PMID: 36193577 PMCID: PMC9816935 DOI: 10.1111/cpr.13338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.
Collapse
Affiliation(s)
- Hai‐Wei Chen
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Jian‐Wei Zhou
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| | - Guang‐Zhi Zhang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Zhang‐Bin Luo
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Lei Li
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Xue‐Wen Kang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| |
Collapse
|
23
|
Shi H, Jin L, Li J, Liang K, Li X, Ye Z, Zhu X, Oliveira JM, Reis RL, Mao Z, Wu M. Mesoporous polydopamine nanoparticles for sustained release of rapamycin and reactive oxygen species scavenging to synergistically accelerate neurogenesis after spinal cord injury. J Mater Chem B 2022; 10:6351-6359. [PMID: 35942619 DOI: 10.1039/d2tb00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinal cord injury (SCI) is an intractable condition with complex pathological processes and poor prognosis. Reactive oxygen species (ROS) generation induced by the mammalian target of the rapamycin (mTOR) protein is one of the causes of secondary inflammation of SCI. Rapamycin (Rapa) is a pharmacological inhibitor of mTOR, which can inhibit ROS overproduction mediated by abnormal activation of the mTOR protein. Polydopamine, as a nanocarrier with excellent biological safety, has been reported to possess satisfactory ROS scavenging ability. Therefore, we designed a mesoporous polydopamine nanoparticle loaded with Rapa (mPDA@Rapa) for combination therapy, which simultaneously inhibited abnormally activated mTOR-mediated ROS production and eliminated already generated ROS. The synthesized mPDA nanoparticles could realize the effective encapsulation and sustained release of Rapa due to their mesoporous cavities and a hydrophobic benzene ring structure. In vitro experiments proved that mPDA@Rapa nanoparticles had a good ROS scavenging ability towards hydrogen peroxide and hydroxyl radicals. Furthermore, mPDA@Rapa also showed a good therapeutic effect in SCI model rats, which was evidenced by a smaller injury cavity, more coordinated hind limb movements, and a higher degree of neurogenesis and tissue regeneration. Our work provides a combined strategy to inhibit ROS overproduction and eliminate excess ROS, with potential applications not only in SCI, but also in other ROS-induced inflammations.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jinyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Kejiong Liang
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Xigong Li
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinyue Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
24
|
Luo J, Xie M, Peng C, Ma Y, Wang K, Lin G, Yang H, Chen T, Liu Q, Zhang G, Lin H, Ji Z. Protein disulfide isomerase A6 promotes the repair of injured nerve through interactions with spastin. Front Mol Neurosci 2022; 15:950586. [PMID: 36090256 PMCID: PMC9449696 DOI: 10.3389/fnmol.2022.950586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
The maintenance of appropriate endoplasmic reticulum (ER) homeostasis is critical to effective spinal cord injury (SCI) repair. In previous reports, protein disulfide isomerase A6 (PDIA6) demonstrated to serve as a reversible functional modulator of ER stress responses, while spastin can coordinate ER organization through the modulation of the dynamic microtubule network surrounding this organelle. While both PDIA6 and spastin are thus important regulators of the ER, whether they interact with one another for SCI repair still needs to be determined. Here a proteomics analysis identified PDIA6 as being related to SCI repair, and protein interaction mass spectrometry further confirmed the ability of PDIA6 and spastin to interact with one another. Pull-down and co-immunoprecipitation assays were further performed to validate and characterize the interactions between these two proteins. The RNAi-based knockdown of PDIA6 in COS-7 cells inhibited the activity of spastin-dependent microtubule severing. PDIA6 was also found to promote injured neuron repair, while spastin knockdown reversed this reparative activity. Together, these results thus confirm that PDIA6 and spastin function together as critical mediators of nerve repair, highlighting their potential value as validated targets for efforts to promote SCI repair.
Collapse
Affiliation(s)
- Jianxian Luo
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Min Xie
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Orthopedics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Orthopedics Department I, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ke Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxiong Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianjun Chen
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiuling Liu
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Guowei Zhang,
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Hongsheng Lin,
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Zhisheng Ji,
| |
Collapse
|
25
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|