1
|
Hockaden N, Leriger G, Wang J, Ray H, Chakrabarti S, Downing N, Desmond J, Williams D, Hollenhorst PC, Longmore G, Carpenter RL. Amyloidogenesis promotes HSF1 activity enhancing cell survival during breast cancer metastatic colonization. Cell Stress Chaperones 2025; 30:143-159. [PMID: 40147541 PMCID: PMC12002613 DOI: 10.1016/j.cstres.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women and the second leading cause of cancer deaths in women. A majority of these breast cancer deaths are due to metastasis, which occurs when primary tumor cells invade into the blood stream to travel and colonize at distant organ sites. Metastatic colonization is the rate-limiting step of metastasis. Heat shock factor 1 (HSF1) is a transcription factor that has been shown to be involved in promoting malignancy with a function in metastatic dissemination due to its contribution to promoting epithelial-to-mesenchymal transition. The role of HSF1 in colonization is unclear. In this study, we observed that HSF1 was essential for metastatic colonization. Consistent with these findings, we also observed that HSF1 was more active in human metastatic tumors compared to primary tumors. HSF1 was also seen to be activated during in vitro colony formation, which was accompanied by increases in amyloid beta (Aβ) fibrils, which was also observed in human metastatic tumors. Aβ fibrils led to HSF1 activation and depletion or inhibition of HSF1 led to increases in Aβ fibrils. HSF1 inhibition with small molecule inhibitors suppressed in vitro colony formation and mammosphere growth of metastatic breast cancer cells. These results suggest that colonization increases Aβ fibril formation that subsequently activates HSF1 as a cell survival mechanism that is essential for metastatic initiation and outgrowth.
Collapse
Affiliation(s)
| | - Gabi Leriger
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | - John Wang
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | - Haimanti Ray
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | | | | | - Jacob Desmond
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - David Williams
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University, Bloomington, IN 47405; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gregory Longmore
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard L Carpenter
- Medical Sciences, Indiana University, Bloomington, IN 47405; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202.
| |
Collapse
|
2
|
Wang Q, Gong M, Liu R, Mo J, Bai R, An R, Wang X, Han L, Wang Z, Ma Q, Wu Z, Zhou C. Huaier enhances the tumor-killing effect and reverses gemcitabine-induced stemness by suppressing FoxM1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155656. [PMID: 38723529 DOI: 10.1016/j.phymed.2024.155656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Gemcitabine is the first-line chemotherapy drug that can easily cause chemotherapy resistance. Huaier is a traditional Chinese medicine and shows an antitumor effect in pancreatic cancer, but whether it can enhance the gemcitabine chemotherapeutic response and the potential mechanism remain unknown. PURPOSE This study was performed to explore the effect of Huaier in promoting the tumor-killing effect of gemcitabine and elucidate the possible mechanism in pancreatic cancer. METHODS Cell Counting Kit-8 assays and colony formation assays were used to detect proliferation after different treatments. Protein coimmunoprecipitation was applied to demonstrate protein interactions. Nuclear protein extraction and immunofluorescence were used to confirm the intracellular localization of the proteins. Western blotting was performed to detect cell proliferation-related protein expression or cancer stem cell-associated protein expression. Sphere formation assays and flow cytometry were used to assess the stemness of pancreatic cancer cells. The in vivo xenograft model was used to confirm the inhibitory effect under physiological conditions, and immunohistochemistry was used to detect protein expression. RESULTS Huaier suppressed the proliferation and stem cell-like properties of pancreatic cancer cells. We found that Huaier suppressed the expression of forkhead box protein M1 (FoxM1). In addition, Huaier inhibited FoxM1 function by blocking its nuclear translocation. Treatment with Huaier reversed the stemness induced by gemcitabine in a FoxM1-dependent manner. Furthermore, we verified the above results by an in vivo study, which reached the same conclusion as those in vitro. CONCLUSION Overall, this study illustrates that Huaier augments the tumor-killing effect of gemcitabine through suppressing the stemness induced by gemcitabine in a FoxM1-dependent way. These results indicate that Huaier can be applied to overcome gemcitabine resistance.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Rujuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Ruiping Bai
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Rui An
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
3
|
Masuo H, Kubota K, Shimizu A, Notake T, Miyazaki S, Yoshizawa T, Sakai H, Hayashi H, Soejima Y. Increased mitochondria are responsible for the acquisition of gemcitabine resistance in pancreatic cancer cell lines. Cancer Sci 2023; 114:4388-4400. [PMID: 37700464 PMCID: PMC10637055 DOI: 10.1111/cas.15962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a particularly poor prognosis as it is often detected at an advanced stage and acquires resistance to chemotherapy early during its course. Stress adaptations by mitochondria, such as metabolic plasticity and regulation of apoptosis, promote cancer cell survival; however, the relationship between mitochondrial dynamics and chemoresistance in pancreatic ductal adenocarcinoma remains unclear. We here established human pancreatic cancer cell lines resistant to gemcitabine from MIA PaCa-2 and Panc1 cells. We compared the cells before and after the acquisition of gemcitabine resistance to investigate the mitochondrial dynamics and protein expression that contribute to this resistance. The mitochondrial number increased in gemcitabine-resistant cells after resistance acquisition, accompanied by a decrease in mitochondrial fission 1 protein, which induces peripheral mitosis, leading to mitophagy. An increase in the number of mitochondria promoted oxidative phosphorylation and increased anti-apoptotic protein expression. Additionally, enhanced oxidative phosphorylation decreased the AMP/ATP ratio and suppressed AMPK activity, resulting in the activation of the HSF1-heat shock protein pathway, which is required for environmental stress tolerance. Synergistic effects observed with BCL2 family or HSF1 inhibition in combination with gemcitabine suggested that the upregulated expression of apoptosis-related proteins caused by the mitochondrial increase may contribute to gemcitabine resistance. The combination of gemcitabine with BCL2 or HSF1 inhibitors may represent a new therapeutic strategy for the treatment of acquired gemcitabine resistance in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Hitoshi Masuo
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Koji Kubota
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Tsuyoshi Notake
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Satoru Miyazaki
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Takahiro Yoshizawa
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Hiroki Sakai
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Hikaru Hayashi
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
4
|
Carbone D, Pecoraro C, Panzeca G, Xu G, Roeten MSF, Cascioferro S, Giovannetti E, Diana P, Parrino B. 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Nortopsentin Derivatives against Pancreatic Ductal Adenocarcinoma: Synthesis, Cytotoxic Activity, and Inhibition of CDK1. Mar Drugs 2023; 21:412. [PMID: 37504943 PMCID: PMC10381170 DOI: 10.3390/md21070412] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell lines, a primary culture and a gemcitabine-resistant variant. The five more potent compounds elicited EC50 values in the submicromolar-micromolar range, associated with a significant reduction in cell migration. Moreover, flow cytometric analysis after propidium iodide staining revealed an increase in the G2-M and a decrease in G1-phase, indicating cell cycle arrest, while a specific ELISA demonstrated the inhibition of CDK1 activity, a crucial regulator of cell cycle progression and cancer cell proliferation.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Margot S. F. Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 Pisa, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| |
Collapse
|
5
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
6
|
Crake R, Gasmi I, Dehaye J, Lardinois F, Peiffer R, Maloujahmoum N, Agirman F, Koopmansch B, D'Haene N, Azurmendi Senar O, Arsenijevic T, Lambert F, Peulen O, Van Laethem JL, Bellahcène A. Resistance to Gemcitabine in Pancreatic Cancer Is Connected to Methylglyoxal Stress and Heat Shock Response. Cells 2023; 12:1414. [PMID: 37408249 DOI: 10.3390/cells12101414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Gemcitabine is the first-line therapy for PDAC, but gemcitabine resistance is a major impediment to achieving satisfactory clinical outcomes. This study investigated whether methylglyoxal (MG), an oncometabolite spontaneously formed as a by-product of glycolysis, notably favors PDAC resistance to gemcitabine. We observed that human PDAC tumors expressing elevated levels of glycolytic enzymes together with high levels of glyoxalase 1 (GLO1), the major MG-detoxifying enzyme, present with a poor prognosis. Next, we showed that glycolysis and subsequent MG stress are triggered in PDAC cells rendered resistant to gemcitabine when compared with parental cells. In fact, acquired resistance, following short and long-term gemcitabine challenges, correlated with the upregulation of GLUT1, LDHA, GLO1, and the accumulation of MG protein adducts. We showed that MG-mediated activation of heat shock response is, at least in part, the molecular mechanism underlying survival in gemcitabine-treated PDAC cells. This novel adverse effect of gemcitabine, i.e., induction of MG stress and HSR activation, is efficiently reversed using potent MG scavengers such as metformin and aminoguanidine. We propose that the MG blockade could be exploited to resensitize resistant PDAC tumors and to improve patient outcomes using gemcitabine therapy.
Collapse
Affiliation(s)
- Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jordan Dehaye
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Fanny Lardinois
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Benjamin Koopmansch
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hôpital Universitaire de Bruxelles Bordet Erasme l Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Frédéric Lambert
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| |
Collapse
|
7
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Nakamura D. The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep 2023; 13:5405. [PMID: 37012331 PMCID: PMC10070612 DOI: 10.1038/s41598-023-32442-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
In regenerative medicine, the tumorigenic potency of cells in cellular therapy products (CTPs) is a major concern for their application to patients. This study presents a method-the soft agar colony formation assay using polymerase chain reaction (PCR)-to evaluate tumorigenicity. MRC-5 cells, contaminated with HeLa cells, were cultured for up to 4 weeks in soft agar medium. Cell-proliferation-related mRNAs, Ki-67 and cyclin B, could be detected in 0.01% of HeLa cells after 5 days of culture, whereas cyclin-dependent kinase 1 (CDK1) could be detected after 2 weeks. On the other hand, CDK2, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance protein 7 (MCM7) were not useful to detect HeLa cells even after 4 weeks of culture. The cancer stem cell (CSC) markers, aldehyde dehydrogenase 1 (ALDH1) and CD133 in 0.01% of HeLa cells, could be detected 2 and 4 weeks after culture, respectively. However, another CSC marker CD44 was not useful because its expression was also detected in MRC-5 cells alone. This study suggests that the application of the PCR method to the soft agar colony formation assay could evaluate not only the tumorigenic potency in the short-term but also characterize the colonies, eventually improving the safety of CTPs.
Collapse
Affiliation(s)
- Daichi Nakamura
- BoZo Research Center Inc., Tsukuba Research Institute, 8 Okubo, Tsukuba, Ibaraki, 300-2611, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
9
|
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel) 2023; 15:cancers15030984. [PMID: 36765939 PMCID: PMC9913431 DOI: 10.3390/cancers15030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Collapse
|
10
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|