1
|
Sahoo BK, Velavalapalli VM. Deciphering the biophysical aspects of the interaction of 3,5,4'-trihydroxy-trans-stilbene with ribonuclease A: spectroscopic and computational studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5773-5783. [PMID: 39607551 DOI: 10.1007/s00210-024-03664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Drug-receptor interaction is an important aspect in drug action, drug discovery, and pharmacological aspects. The molecule 3,5,4'-trihydroxy-trans-stilbene known as resveratrol is a natural polyphenol and exhibits diverse biological activities. Ribonuclease A catalyses the degradation of RNA by its ribonucleolytic activity. The report presents the binding interaction of resveratrol with RNase A using experimental and theoretical techniques. Experimental studies revealed the interaction strength of 104 M-1 order with a single binding site. Resveratrol quenched the ribonuclease A fluorescence with a quenching constant of 104 M-1 range. The accessible fraction of the fluorophore was found to be 0.75 besides non-radiative energy transfer from ribonuclease A to resveratrol. The donor-acceptor distance was 2.14 nm from FRET calculations. No visible changes in the protein structure was evident from the circular dichroism studies. The interface residues involved in the interaction were obtained from docking studies. Further, the participation of the active site residues, His 12, His 119, and Lys 41 with interaction indicates the location of resveratrol near to the active site of ribonuclease A and indicates its possible potential to inhibit the ribonuclease A activity. The RMSD of less than 3 Å indicates stable conformation of protein in the complex. The protein RMSF value in the complex less than 3 Å shows no deviation of protein residues over time and thus suggests no conformational variation in the protein after binding.
Collapse
Affiliation(s)
- Bijaya Ketan Sahoo
- Department of Chemistry, School of Science, GITAM Deemed to Be University, Hyderabad Campus, Hyderabad, 502329, India.
| | | |
Collapse
|
2
|
Stefan K, Puri S, Rafehi M, Latambale G, Neif M, Tägl F, Arlt NS, Yazdi ZN, Bakos É, Chen X, Zhang B, Ismail Al-Khalil W, Busch H, Chen ZS, Özvegy-Laczka C, Namasivayam V, Juvale K, Stefan SM. Functional and structural polypharmacology of indazole-based privileged ligands to tackle the undruggability of membrane transporters. Eur J Med Chem 2025; 287:117234. [PMID: 39892094 DOI: 10.1016/j.ejmech.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
Despite the significant roles of solute carrier (SLC) and ATP-binding cassette (ABC) transporters in human health and disease, most remain poorly characterized as intrinsic and/or xenobiotic ligands are unknown, rendering them as 'undruggable'. Polypharmacology, defined as the simultaneous engagement of multiple targets by a single ligand, offers a promising avenue for discovering novel lead compounds addressing these emerging pharmacological challenges - a major focus in contemporary medicinal chemistry. While common structural motifs among phylogenetically diverse proteins have been proposed to underlie polypharmacology through the concept of 'multitarget binding sites', a comprehensive analysis of these functional and structural aspects from a medicinal chemistry perspective has yet to be undertaken. In our study, we synthesized 65 distinct indazole derivatives and evaluated their activity across a broad biological assessment platform encompassing 17 specific and polyspecific SLC and ABC transporters. Notably, ten indazoles exhibited cross-target activity against challenging transporter targets associated with neurodegeneration (ABCA1), metabolic reprogramming (MCT4), and cancer multidrug resistance (ABCC10). Furthermore, molecular blind docking experiments and advanced binding site analyses revealed, for the first time, conserved binding motifs across monocarboxylate transporters (MCTs), organic anion transporting polypeptides (OATPs), organic cation transporters (OCTs), and ABC transporters, characterized by specific and recurring residues of tyrosine, phenylalanine, serine, and threonine. These findings highlight not only the potential of polypharmacology in drug discovery but also provide insights into the structural underpinnings of ligand binding across membrane transporters.
Collapse
Affiliation(s)
- Katja Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Sachin Puri
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India; SVKM's NMIMS, School of Pharmacy & Technology Management, Plot no. B4, Green Industrial Park, Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Dist. Telangana 509 301, Hyderabad, 509301, India
| | - Muhammad Rafehi
- University Hospital of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Department of Medical Education Augsburg, Faculty of Medicine, University of Augsburg, Am Medizincampus 2, 86156, Augsburg, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ganesh Latambale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Maria Neif
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Tägl
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Nike Sophia Arlt
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Zeinab Nezafat Yazdi
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Éva Bakos
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Xiang Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Bohan Zhang
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Wouroud Ismail Al-Khalil
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hauke Busch
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Zhe-Sheng Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Csilla Özvegy-Laczka
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Vigneshwaran Namasivayam
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| | - Kapil Juvale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Sven Marcel Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway; Medical University of Lublin, Department of Biopharmacy, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
3
|
Yang Y, Sun Y, Gu T, Yan Y, Guo J, Zhang X, Pang H, Chen J. The Metabolic Characteristics and Bioavailability of Resveratrol Based on Metabolic Enzymes. Nutr Rev 2025; 83:749-770. [PMID: 39520710 DOI: 10.1093/nutrit/nuae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The natural polyphenol resveratrol (RV) has garnered fame for its extensive pharmacological properties. Although clinical studies have shown some positive results, many contradictory outcomes remain. An important obstacle to the development of therapeutic applications for RV is its low bioavailability in vivo. This may be partially attributed to biotransformation mediated by phase I and II enzymes, such as cytochrome P450s, UDP-glucuronosyltransferases, and sulfotransferases. To date, more than 20 different types of metabolites have been detected after catalysis by these enzymes. Notably, RV and some of its metabolites serve as substrates for these enzymes. Conversely, RV can directly regulate the expression or activity of these enzymes. Given the increasing number of studies investigating the bioactivity of RV, this review summarizes its physicochemical and pharmacokinetic characteristics and describes the metabolism of RV and the bioactivities of its metabolites, with emphasis on the interaction between RV and its related metabolic enzymes. In addition to hepatic metabolism, the crucial roles of RV metabolism in multiple other tissues and organs cannot be overlooked, and they reveal the relationship between RV metabolism and its biological potential.
Collapse
Affiliation(s)
- Yang Yang
- Guangling College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan Sun
- Inner Mongolia Minutes University, Hulunbuir People's Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Tianyi Gu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yang Yan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Jiaxiu Guo
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Xue Zhang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hanqing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guiling, Guangxi Zhuang Autonomous Region 541000, China
| | - Jing Chen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
4
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2025; 45:311-343. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Nowacka A, Śniegocka M, Smuczyński W, Liss S, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. Int J Mol Sci 2024; 25:13338. [PMID: 39769099 PMCID: PMC11728356 DOI: 10.3390/ijms252413338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound found in various plants, has been extensively studied for its broad spectrum of beneficial biological effects. These encompass its potent antioxidant properties, anti-inflammatory activities, anti-aging capabilities, cardioprotective functions, and neuroprotective potential. The diverse biological actions of resveratrol extend beyond these well-established properties. It also exerts a significant impact on metabolic processes and bioavailability, and critically, it demonstrates the ability to effectively traverse the blood-brain barrier. This capacity to penetrate the central nervous system renders resveratrol a promising therapeutic agent for the management of central nervous system malignancies, as it has been shown to inhibit tumor cell proliferation, induce apoptosis, and modulate key signaling cascades, such as PI3K/Akt, JAK/STAT, and NF-kB. The multifaceted nature of resveratrol's biological effects, including its influence on diverse physiological processes, underscores its potential as a valuable therapeutic option for the treatment of central nervous system tumors.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland
| | - Sara Liss
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
6
|
de Almeida Sousa Cruz MA, de Barros Elias M, Calina D, Sharifi-Rad J, Teodoro AJ. Insights into grape-derived health benefits: a comprehensive overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:91. [DOI: 10.1186/s43014-024-00267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractGrapes, renowned for their diverse phytochemical composition, have long been recognized for their health-promoting properties. This narrative review aims to synthesize the current research on grapes, with a particular emphasis on their role in disease prevention and health enhancement through bioactive compounds.A comprehensive review of peer-reviewed studies, including in vitro, in vivo, and clinical investigations, was conducted to elucidate the relationship between grape consumption and health outcomes. The review highlights the positive association of grape intake with a decreased risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Notable bioactive components like resveratrol are emphasized for their neuroprotective and antioxidative capabilities. Additionally, the review explores emerging research on the impact of grapes on gut microbiota and its implications for metabolic health and immune function.This updated review underscores the importance of future research to fully leverage and understand the therapeutic potential of grape-derived compounds, aiming to refine dietary guidelines and functional food formulations. Further translational studies are expected to clarify the specific bioactive interactions and their impacts on health.
Graphical Abstract
Collapse
|
7
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024; 187:6327-6345.e20. [PMID: 39321800 PMCID: PMC11531382 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Jubilee R, Komala M, Patel S. Therapeutic Potential of Resveratrol and Lignans in the Management of Tuberculosis. Cell Biochem Biophys 2024; 82:1809-1823. [PMID: 38914838 DOI: 10.1007/s12013-024-01378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
This study aims to investigate the therapeutic potential of herbal remedies, specifically resveratrol and lignans, as alternative treatments for tuberculosis (TB), given the challenges posed by drug-resistant strains and adverse effects of conventional therapies. A comprehensive review of the literature was conducted to analyze the mechanisms of action, safety profiles, and efficacy of resveratrol and lignans in the context of TB management. This review focused on the bactericidal and bacteriostatic effects of these compounds, examining their interaction with Mycobacterium tuberculosis within macrophages. Resveratrol and lignans were found to exhibit significant antibacterial properties through mechanisms such as SIRT1 modulation, coenzyme A transferase inhibition, suppression of intracellular bacterial proliferation in macrophages, and induction of autophagy. These mechanisms contribute to their effectiveness in combating TB and highlight their potential as alternative therapeutic agents.
Collapse
Affiliation(s)
- R Jubilee
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, (Deemed to be University), Saveetha Nagar, Chennai, India
| | - M Komala
- Department of Pharmaceutical Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India
| | - Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, (Deemed to be University), Saveetha Nagar, Chennai, India.
| |
Collapse
|
9
|
Wu X, Fan Q, Gao C, Wu J, Wu D, Hu E, Tan D, Zhao Y, Li X, Yang Z, Qin L, He Y. Metabolites rapid-annotation in mice by comprehensive method of virtual polygons and Kendric mass loss filtering: A case study of Dendrobium nobile Lindl. J Pharm Biomed Anal 2024; 243:116106. [PMID: 38492511 DOI: 10.1016/j.jpba.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
With significant advancements in high-resolution mass spectrometry, there has been a substantial increase in the amount of chemical component data acquired from natural products. Therefore, the rapid and efficient extraction of valuable mass spectral information from large volumes of high-resolution mass spectrometry data holds crucial significance. This study illustrates a targeted annotation of the metabolic products of alkaloid and sesquiterpene components from Dendrobium nobile (D. nobile) aqueous extract in mice serum through the integration of an in-houses database, R programming, a virtual metabolic product library, polygonal mass defect filtering, and Kendrick mass defect strategies. The research process involved initially establishing a library of alkaloids and sesquiterpenes components and simulating 71 potential metabolic reactions within the organism using R programming, thus creating a virtual metabolic product database. Subsequently, employing the virtual metabolic product library allowed for polygonal mass defect filtering, rapidly screening 1705 potential metabolites of alkaloids and 3044 potential metabolites of sesquiterpenes in the serum. Furthermore, based on the chemical composition database of D. nobile and online mass spectrometry databases, 95 compounds, including alkaloids, sesquiterpenes, and endogenous components, were characterized. Finally, utilizing Kendrick mass defect analysis in conjunction with known alkaloids and sesquiterpenes targeted screening of 209 demethylation, methylation, and oxidation products in phase I metabolism, and 146 glucuronidation and glutathione conjugation products in phase II metabolism. This study provides valuable insights for the rapid and accurate annotation of chemical components and their metabolites in vivo within natural products.
Collapse
Affiliation(s)
- Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunxue Gao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Enming Hu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550016, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaoshan Li
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhou Yang
- Guizhou Standard Pharmaceutical Health Co., Ltd, Zunyi, 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
10
|
Drago L, Ciprandi G, Brindisi G, Brunese FP, Dinardo G, Gori A, Indolfi C, Naso M, Tondina E, Trincianti C, Varricchio A, Zicari AM, Ullah H, Daglia M. Certainty and uncertainty in the biological activities of resveratrol. FOOD FRONTIERS 2024; 5:849-854. [DOI: 10.1002/fft2.375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
AbstractResveratrol is a nonflavonoid polyphenolic compound with a chemical structure consisting of two aromatic rings linked by a methylene bridge. It exists in two primary isomers and has a broad range of desirable biological activities, including antioxidant, anti‐inflammatory, antidiabetic, cardioprotective, and antitumor activities. Some antioxidant properties of resveratrol are known with certainty, such as its potential to positively impact cardiovascular health, inflammation, and the metabolism. On the other hand, many uncertainties and controversies plague its efficacy, including issues related to its bioavailability, dosing, human clinical trial results, interactions with other food components and drugs, and individual variability. In brief, although promising results have been observed in in vitro and in vivo studies, the translation of these findings to human health remains uncertain. Many human clinical trials on resveratrol are ongoing or have proven inconclusive, making it challenging to definitively determine its efficacy for specific health conditions and its dose and duration of treatment. Resveratrol may interact with medications and have varying effects on individuals. In conclusion, it is essential to approach resveratrol with a balanced perspective, consulting with healthcare professionals, and considering the evolving scientific evidence when making decisions regarding its clinical use.
Collapse
Affiliation(s)
- Lorenzo Drago
- Department of Biomedical Sciences for Health Laboratory of Clinical Microbiology & Microbiome University of Milan Milan Italy
- MultiLab Department UOC Laboratory of Clinical Medicine IRCCS Multimedica Milan Italy
| | | | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | | | - Giulio Dinardo
- Department of Woman Child and General and Specialized Surgery University of Campania “Luigi Vanvitelli” Naples Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | - Cristiana Indolfi
- Department of Woman Child and General and Specialized Surgery University of Campania “Luigi Vanvitelli” Naples Italy
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | | | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | - Hammad Ullah
- Department of Pharmacy University of Napoli Federico II Naples Italy
| | - Maria Daglia
- Department of Pharmacy University of Napoli Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | | |
Collapse
|
11
|
Gopalakrishna R, Aguilar J, Oh A, Lee E, Hou L, Lee T, Xu E, Nguyen J, Mack WJ. Resveratrol and its metabolites elicit neuroprotection via high-affinity binding to the laminin receptor at low nanomolar concentrations. FEBS Lett 2024; 598:995-1007. [PMID: 38413095 PMCID: PMC11087200 DOI: 10.1002/1873-3468.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer Aguilar
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Oh
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Lee
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucas Hou
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tammy Lee
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Xu
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - James Nguyen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Sato T, Yagi A, Yamauchi M, Kumondai M, Sato Y, Kikuchi M, Maekawa M, Yamaguchi H, Abe T, Mano N. The Use of an Antioxidant Enables Accurate Evaluation of the Interaction of Curcumin on Organic Anion-Transporting Polypeptides 4C1 by Preventing Auto-Oxidation. Int J Mol Sci 2024; 25:991. [PMID: 38256064 PMCID: PMC10815578 DOI: 10.3390/ijms25020991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Ayaka Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan;
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan;
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
14
|
Ungvári O, Bakos É, Kovacsics D, Özvegy-Laczka C. The fluorescence-based competitive counterflow assay developed for organic anion transporting polypeptides 1A2, 1B1, 1B3 and 2B1 identifies pentamidine as a selective OATP1A2 substrate. FASEB J 2023; 37:e23223. [PMID: 37781971 DOI: 10.1096/fj.202300530rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Daniella Kovacsics
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
15
|
Rojas-Aguilar FA, Briones-Aranda A, Jaramillo-Morales OA, Romero-Nava R, Esquinca-Avilés HA, Espinosa-Juárez JV. The Additive Antinociceptive Effect of Resveratrol and Ketorolac in the Formalin Test in Mice. Pharmaceuticals (Basel) 2023; 16:1078. [PMID: 37630993 PMCID: PMC10460057 DOI: 10.3390/ph16081078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pain represents one of the leading causes of suffering and disability worldwide. Currently available drugs cannot treat all types of pain and may have adverse effects. Hence, the use of pharmacological combinations is an alternative treatment strategy. Therefore, this study aimed to evaluate the combination of resveratrol and ketorolac through isobolographic analysis. CD1 mice were used to study the antinociceptive effect of this combination using the formalin test and the study was divided into two phases. In the first phase, four individual doses of each drug were evaluated, totaling eight testing groups. From these data, the median effective doses (ED50) of each drug were calculated. In the second phase, four testing groups were used to evaluate the combination of sub-doses of both drugs and obtain the experimental ED50. To evaluate gastric damage, five groups were employed, including indomethacin, vehicle, resveratrol, ketorolac, and combined resveratrol and ketorolac groups. Stomach samples from the mice were taken after 5 h of treatment, and the area of the ulcers was determined. Resveratrol plus ketorolac elicited a reduction in nociceptive behavior during both phases of the formalin test, and isobologram analysis revealed that the theoretical and experimental ED50 values of resveratrol and ketorolac did not differ significantly, implying an additive interaction between the drugs. Additionally, the drug combination did not generate gastric ulcers, thus enhancing the desired effects without increasing the adverse effects. Consequently, these findings substantiate the efficacy of the resveratrol and ketorolac combination in the formalin test, thereby highlighting its potential as a viable alternative for alleviating pain.
Collapse
Affiliation(s)
- Fidencio Abner Rojas-Aguilar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (F.A.R.-A.); (R.R.-N.)
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Osmar Antonio Jaramillo-Morales
- División de Ciencias de la Vida, Departamento de Enfermería y Obstetricia, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Guanajuato, Mexico;
| | - Rodrigo Romero-Nava
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (F.A.R.-A.); (R.R.-N.)
| | | | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico;
| |
Collapse
|
16
|
O'Croinin C, Garcia Guerra A, Doschak MR, Löbenberg R, Davies NM. Therapeutic Potential and Predictive Pharmaceutical Modeling of Stilbenes in Cannabis sativa. Pharmaceutics 2023; 15:1941. [PMID: 37514127 PMCID: PMC10386382 DOI: 10.3390/pharmaceutics15071941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa is a plant used for recreational and therapeutic purposes; however, many of the secondary metabolites in the plant have not been thoroughly investigated. Stilbenes are a class of compounds with demonstrated anti-inflammatory and antioxidant properties and are present in cannabis. Many stilbenes present in cannabis have been investigated for their therapeutic effects. Fourteen stilbenes have been identified to be present in cannabis, all of which are structurally dihydrostilbenoids, with half possessing a prenylated moiety. The stilbenes summarized in this analysis show varying degrees of therapeutic benefits ranging from anti-inflammatory, antiviral, and anti-cancer to antioxidant effects. Many of the identified stilbenes have been researched to a limited extent for potential health benefits. In addition, predictive in silico modeling was performed on the fourteen identified cannabis-derived stilbenes. This modeling provides prospective activity, pharmacokinetic, metabolism, and permeability data, setting the groundwork for further investigation into these poorly characterized compounds.
Collapse
Affiliation(s)
- Conor O'Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andres Garcia Guerra
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael R Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
17
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Jesus A, Sebastião AI, Brites G, Correia-da-Silva M, Cidade H, Cruz MT, Sousa E, Almeida IF. A Hydrophilic Sulfated Resveratrol Derivative for Topical Application: Sensitization and Anti-Allergic Potential. Molecules 2023; 28:molecules28073158. [PMID: 37049922 PMCID: PMC10096149 DOI: 10.3390/molecules28073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Resveratrol (RSV), a naturally occurring metabolite, is widely used in skincare products, but its hydrophobicity impairs its own incorporation into cosmetic formulations. RSV-GS is a synthetic hydrophilic sulfated glycosylated derivative inspired by marine natural products that present a lower cytotoxicity than RSV while exhibiting similar levels of bioactivity. Herein, we predict the skin sensitization potential of this new compound using an in vitro approach based on the OECD 442E guideline. Furthermore, the anti-allergic potential of RSV-GS was also disclosed. The monocyte THP-1 cell line was stimulated with RSV and RSV-GS in the presence or absence of the extreme skin allergen 1-fluoro-2,4-dinitrobenzene (DNFB). The results demonstrated that RSV-GS alone (500 µM) evoked a relative fluorescence index (RFI) lower than the thresholds established by the OECD guideline for CD54 (200%) and CD86 (150%), indicating the absence of a skin sensitization potential. Interestingly, in the presence of the skin allergen DNFB, RSV-GS exhibited the ability to rescue the DNFB-induced maturation of THP-1 cells, with RFI values lower than those for RSV, suggesting the potential of RSV-GS to mitigate skin sensitization evoked by allergens and, consequently, allergic contact dermatitis. These results open new avenues for the use of RSV-GS as a safe and anti-allergic active cosmetic ingredient.
Collapse
Affiliation(s)
- Ana Jesus
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana I. Sebastião
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, 3004-504 Coimbra, Portugal
| | - Gonçalo Brites
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, 3004-504 Coimbra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Pharmaceutical and Organic Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Pharmaceutical and Organic Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Pharmaceutical and Organic Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Isabel F. Almeida
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
20
|
Gui C, Li Y, Peng T. Development of predictive QSAR models for the substrates/inhibitors of OATP1B1 by deep neural networks. Toxicol Lett 2023; 376:20-25. [PMID: 36649904 DOI: 10.1016/j.toxlet.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The organic anion transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter. Inhibition of its normal function could lead to drug-drug interactions. In silico prediction is an effective means to identify potential OATP1B1 inhibitors and quantitative structure-activity relationship (QSAR) modeling is extensively used. As the structures of OATP1B1 substrates/inhibitors are quite diverse, machine learning based methods should be a good option for their QSAR analysis. In the present study, deep neural networks (DNNs) were employed to develop QSAR models for the substrates/inhibitors of OATP1B1 with different molecular fingerprints. Our results showed that QSAR models based on 4-hidden layer DNNs and ECFP4/FCFP4 fingerprints had the best generalization performance. The correlation coefficients (R2) of test set for ECFP4 and FCFP4 models were 0.641 and 0.653, respectively. Model application domain (AD) was calculated with Euclidean distance-based method, and AD could improve the performance of ECFP4 model but has little effect on FCFP4 model. Finally, the prediction of additional 8 compounds that not included in the data set further demonstrated that our QSAR models had a good predictive ability (averaged prediction accuracy >92%). The developed QSAR models could be used to screen large data sets and discover novel inhibitors for OATP1B1.
Collapse
Affiliation(s)
- Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Ying Li
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Taotao Peng
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
21
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
22
|
β-lactoglobulin and resveratrol nanocomplex formation is driven by solvation water release. Food Res Int 2022; 158:111567. [DOI: 10.1016/j.foodres.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
|