1
|
Fang W, Chen Y, Nie M, Zhou X, Liu Y, Tao H, Yang B, Wang X. Targeting YY1-DR5 Axis by Pyripyropene O as a Novel Therapeutic Strategy Against Prostate Cancer: Molecular Mechanisms and In Vivo Zebrafish Validation. Mar Drugs 2025; 23:214. [PMID: 40422804 DOI: 10.3390/md23050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Induction of apoptosis is an important strategy for the treatment of prostate cancer. DR5 is a member of the death receptor superfamily and targeting DR5 is an effective way to induce apoptosis. Pyripyropene O is a natural compound isolated from the marine fungus Aspergillus fumigatus SCSIO 41220. We found it has anti-prostate cancer potential by inducing apoptosis; Methods: The effects of pyripyropene O on the viability, proliferation, cell cycle, apoptosis and migration of prostate cancer cells were investigated by MTT assay, plate clone formation assay, 3D cell sphere assay, flow cytometry and real-time cell analysis. Transmission electron microscopy was used to observe the changes in the internal structure of prostate cancer cells after treatment with pyripyropene O. After determining the mode of cell death, the mechanism of action of pyripyropene O on prostate cancer was further investigated using apoptotic protein microarray, western blot, qPCR, molecular docking, cellular immunofluorescence staining and cellular thermal shift assay. After explaining the mechanism of action of pyriproxyfen O, the in vivo absorption, distribution, metabolism, excretion and potential toxicity of pyriproxyfen O were investigated using ADMETLab 2.0 software. Finally, a zebrafish xenograft tumour model was developed to evaluate the anti-prostate cancer effects of pyriproxyfen O in vivo; Results: The experimental results at the cellular level showed that pyripyropene O inhibited the survival, proliferation and migration of prostate cancer cells, and also showed that pyripyropene O blocked the prostate cancer cell cycle at the G2/M phase and induced apoptosis. At the molecular level, pyripyropene O binds to the transcription factor YY1, promotes YY1 nuclear translocation, regulates the transcription level of DR5, a target gene of YY1, and upregulates the expression of DR5 mRNA and protein. The in vivo results showed that pyripyropene O effectively inhibited the development of prostate cancer in zebrafish; Conclusions: Pyripyropene O has a clear anti-prostate cancer effect at both cellular and animal levels, inhibiting the survival and proliferation of prostate cancer cells by binding to the transcription factor YY1 to activate the expression of DR5 to promote apoptosis, thus exerting an inhibitory effect on prostate cancer.
Collapse
Affiliation(s)
- Wenxuan Fang
- Guangxi Engineering Research Center for High-Value Utilization of Guangxi-Produced Authentic Medicinal Herbs, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ying Chen
- Guangdong Key Laboratory of Marine Materia Medica/State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Mingyi Nie
- Guangxi Engineering Research Center for High-Value Utilization of Guangxi-Produced Authentic Medicinal Herbs, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuefeng Zhou
- Guangdong Key Laboratory of Marine Materia Medica/State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangdong Key Laboratory of Marine Materia Medica/State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bin Yang
- Guangdong Key Laboratory of Marine Materia Medica/State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xueni Wang
- Guangxi Engineering Research Center for High-Value Utilization of Guangxi-Produced Authentic Medicinal Herbs, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
2
|
Cheng H, Chen Z, Wang Y, Ji C, Wang J, Song N. RBM15B Promotes Prostate Cancer Cell Proliferation via PCNA m6A Modification. Cell Biochem Biophys 2025; 83:1237-1248. [PMID: 39361104 DOI: 10.1007/s12013-024-01558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 03/03/2025]
Abstract
Prostate cancer (PC) is the most frequently occurring cancer in men, characterized by the abnormal proliferation of cells within the prostate gland. This study explores the role of RNA binding motif protein 15B (RBM15B) in PC. RBM15B expression levels in PC patients were predicted using the Starbase database. The expression of RBM15B and proliferating cell nuclear antigen (PCNA) expression in PC cells was detected. Following RBM15B knockdown, cell proliferation assays were conducted. N6-methyladenosine (m6A) levels in PC cells were quantified, and RNA immunoprecipitation was performed to analyze the binding of m6A and YTH N-methyladenosine RNA binding protein 1 (YTHDF1) on PCNA mRNA. The stability of PCNA mRNA was assessed after treatment with actinomycin D. An in vivo nude mouse xenograft model was created to validate the role of RBM15B. The findings revealed the upregulation of RBM15B in PC. RBM15B knockdown resulted in decreased proliferation, colony formation, and EdU-positive cells. Mechanical analysis showed that RBM15B facilitated m6A modification of PCNA mRNA, leading to increasing m6A methylation. YTHDF1 bound to these m6A sites on PCNA mRNA, thus stabilizing it. Furthermore, PCNA overexpression mitigated the effects of RBM15B knockdown on PC cell proliferation. In conclusion, RBM15B promotes PC cell proliferation by enhancing the stability of PCNA mRNA through YTHDF1-mediated m6A modification.
Collapse
Affiliation(s)
- Huan Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zeyu Chen
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junqi Wang
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Gan X, Luo X, Chen J, Fang W, Nie M, Lu H, Liu Y, Wang X. Ilicicolin C suppresses the progression of prostate cancer by inhibiting PI3K/AKT/mTOR pathway. Mol Cell Biochem 2025; 480:1089-1104. [PMID: 38801644 DOI: 10.1007/s11010-024-05026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Aberrant activation of the PI3K/AKT pathway is a driving factor in the development of prostate cancer. Therefore, inhibiting the function of the PI3K/AKT signaling pathway is a strategy for the treatment of prostate cancer. Ilicicolin C is an ascochlorin derivative isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501. Which has anti-inflammatory activity, but its activity against prostate cancer has not yet been elucidated. MTT assay, plate clone-formation assay, flow cytometry and real-time cell analysis technology were used to detect the effects of ilicicolin C on cell viability, proliferation, apoptosis and migration of prostate cancer cells. Molecular docking software and surface plasmon resonance technology were used to analyze the interaction between ilicicolin C and PI3K/AKT proteins. Western blot assay was performed to examine the changes in protein expression. Finally, QikProp software was used to simulate the process of ilicicolin C in vivo, and a zebrafish xenograft model was used to further verify the anti-prostate cancer activity of ilicicolin C in vivo. Ilicicolin C showed cytotoxic effects on prostate cancer cells, with the most significant effect on PC-3 cells. Ilicicolin C inhibited proliferation and migration of PC-3 cells. It could also block the cell cycle and induce apoptosis in PC-3 cells. In addition, ilicicolin C could bind to PI3K/AKT proteins. Furthermore, ilicicolin C inhibited the expression of PI3K, AKT and mTOR proteins and could also regulate the expression of downstream proteins in the PI3K/AKT/mTOR signaling pathway. Moreover, the calculations speculated that ilicicolin C was well absorbed orally, and the zebrafish xenograft model confirmed the in vivo anti-prostate cancer effect of ilicicolin C. Ilicicolin C emerges as a promising marine compound capable of inducing apoptosis of prostate cancer cells by counteracting the aberrant activation of PI3K/AKT/mTOR, suggesting that ilicicolin C may be a viable candidate for anti-prostate cancer drug development. These findings highlight the potential of ilicicolin C against prostate cancer and shed light on its mechanism of action.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jingqin Chen
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenxuan Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Humu Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
4
|
Zhang T, Pan W, Tan X, Yu J, Cheng S, Wei S, Fan K, Wang L, Luo H, Hu X. A novel L-shaped ortho-quinone analog suppresses glioblastoma progression by targeting acceleration of AR degradation and regulating PI3K/AKT pathway. Biochem Pharmacol 2024; 226:116398. [PMID: 38944395 DOI: 10.1016/j.bcp.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.
Collapse
Affiliation(s)
- Tao Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Xin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Kuan Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| | - Xiao Hu
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
5
|
Yang B, Shao S, Nie M, Tie Q, Pang X, Lin X, Zhou X, Liu Y, Wang X, Li Y. Novel Metabolites from the Marine-Derived Fungus Peniophora sp. SCSIO41203 Show Promising In Vitro Antitumor Activity as Methuosis Inducers in PC-3 Cells. Mar Drugs 2024; 22:218. [PMID: 38786609 PMCID: PMC11123344 DOI: 10.3390/md22050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Two new cytochalasin derivatives, peniotrinins A (1) and B (2), three new citrinin derivatives, peniotrinins C-E (4, 5, 7), and one new tetramic acid derivative, peniotrinin F (12), along with nine structurally related known compounds, were isolated from the solid culture of Peniophora sp. SCSIO41203. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis, quantum chemical calculations, and the calculated ECD. Interestingly, 1 is the first example of a rare 6/5/5/5/6/13 hexacyclic cytochalasin. We screened the above compounds for their anti-prostate cancer activity and found that compound 3 had a significant anti-prostate cancer cell proliferation effect, while compounds 1 and 2 showed weak activity at 10 μM. We then confirmed that compound 3 exerts its anti-prostate cancer effect by inducing methuosis through transmission electron microscopy and cellular immunostaining, which suggested that compound 3 might be first reported as a potential anti-prostate methuosis inducer.
Collapse
Affiliation(s)
- Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (B.Y.); (X.P.); (X.L.); (X.Z.)
| | - Surun Shao
- Pharmacy School, Guilin Medical University, Guilin 541004, China; (S.S.); (Q.T.)
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qingqing Tie
- Pharmacy School, Guilin Medical University, Guilin 541004, China; (S.S.); (Q.T.)
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (B.Y.); (X.P.); (X.L.); (X.Z.)
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (B.Y.); (X.P.); (X.L.); (X.Z.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (B.Y.); (X.P.); (X.L.); (X.Z.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (B.Y.); (X.P.); (X.L.); (X.Z.)
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunqiu Li
- Pharmacy School, Guilin Medical University, Guilin 541004, China; (S.S.); (Q.T.)
| |
Collapse
|
6
|
Lv B, Wang Z, Wu Y, Zheng Y, Cui Z, Li J, Gu W. A novel dual-responsive colorimetric/fluorescent probe for the detection of N 2H 4 and ClO - and its application in environmental analysis and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134105. [PMID: 38521038 DOI: 10.1016/j.jhazmat.2024.134105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Hydrazine (N2H4) and hypochlorite (ClO-) are both reactive chemical substances extensively utilized across various industrial domains. Excessive hydrazine (N2H4) and hypochlorite (ClO-) can pose significant risks to the environment, ecosystems, and human health. In order to assess and control the environmental hazard caused by N2H4 and ClO-, there is an imperative need for efficient methods capable of rapid and precise detection of these contaminants. This paper introduces a novel dual-responsive colorimetric/fluorescent probe (MDT) for the detection of N2H4 and ClO- in environmental and biological samples. The probe exhibits turn-on fluorescent responses to N2H4 or ClO- with low detection limits (N2H4: 8 nM; ClO-: 15 nM), large Stokes shifts (N2H4: 175 nm; ClO-: 203 nm), short response time (N2H4: 4 min; ClO-: 5 s) and broad pH range (5-10). In practical applications, MDT has been successfully employed in detecting N2H4 and ClO- in water and soil samples from diverse locations. Test strips loaded with MDT offer a visual and convenient means to track N2H4 vapor and quantify N2H4 and ClO- concentrations in solutions. Finally, MDT has been utilized for sensing N2H4 and ClO- in Arabidopsis thaliana roots and living zebrafish. This study presents a promising tool for monitoring N2H4 and ClO- in the environment and living organisms.
Collapse
Affiliation(s)
- Boyu Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yisheng Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhennan Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
He K, Wang T, Chen J, Huang X, Wang Z, Yang Z, Wang K, Zhao W, Jiang J, Zhao L. A Pegylated Liposome Loaded with Raddeanin A for Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:4007-4021. [PMID: 37496689 PMCID: PMC10368069 DOI: 10.2147/ijn.s420803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Raddeanin A (RA), a potent triterpenoid extracted from Anemone raddeana Regel, has a moderate therapeutic effect on prostate cancer (PCa), correlating with serious biological toxicity. Therefore, a RA-loaded PEGylated liposome drug delivery system was devised in this study. Methods Hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-Polyethyleneglycol-2000 (sodium salt) (DSPE-PEG2k), cholesterol (CHO), and RA were utilised to prepare a RA-loaded liposome (LRA) drug delivery system via the thin film hydration technique., The drug loading content was confirmed by high performance liquid chromatography. Dynamic light scattering was employed to evaluate the drug's particle size and stability. Methyl tetrazolium, colony formation, and Western blot (WB) were used in vitro to elucidate the inhibitory effect and mechanism of LRA on prostate cancer cells. Finally, xenograft model was used to confirm the tumor-inhibiting efficacy, clarify the mechanism, and determine the biosafety in mice. Results LRA has stable physicochemical properties and a diameter of 173.5 15.3 nm. LRA inhibited the growth of prostate cancer cells in a dose- and time-dependent manner. LRA can substantially reduce the expression of AR and HMGB1, induce apoptosis, regulate the expression of cell cycle-related proteins in vitro and in vivo. The results of the biosafety tests demonstrated that LRA effectively reduced the adverse effects of RA. Conclusion As a drug delivery system, LRA could effectively and safely inhibit the progression of prostate cancer.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weixin Zhao
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
8
|
Gökalp F. A Study on Natural Control against Nematodes and Whiteflies with Marigold, Known as an Antagonist Plant. J Chem Ecol 2023; 49:230-234. [PMID: 37097510 DOI: 10.1007/s10886-023-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 03/25/2023] [Indexed: 04/26/2023]
Abstract
The importance of finding natural solutions for the protection of our health in the fight against pests in agriculture is increasing day by day. In this study, the interaction of the active ingredients in marigolds as the great importance as a garden flower, with nematode and whitefly receptors as ligands in the fight against them, have been investigated by chemical calculation method. The inhibition effect of ligands (alpha-Terthienyl, Quercetagetin in marigold) on nematode and whitefly receptors in this plant was determined by comparing the binding energy values with reference drug active ingredients (imidacloprid, Perhexiline).This calculation method, the accuracy determined by different studies, is very important in terms of determining the most active substance in a short time, preventing time and substance loss, and will guide the experimental studies and applications to be made in this field.
Collapse
Affiliation(s)
- Faik Gökalp
- Kırıkkale University,Education Faculty, Department Of Mathematics and Science Education, Science Education, /Kırıkkale, 71450, Yahşihan, Turkey.
| |
Collapse
|