1
|
Guan J, Wu F, Wu S, Ren Y, Wang J, Zhu H. FTY720 alleviates D-GalN/LPS-induced acute liver failure by regulating the JNK/MAPK pathway. Int Immunopharmacol 2025; 157:114726. [PMID: 40311319 DOI: 10.1016/j.intimp.2025.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Acute liver failure (ALF) poses a considerable health and economic burden worldwide and has limited treatment options. Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive phospholipid that participates in various cellular processes by through S1P receptors (S1PRs). Previous studies have showed that the hepatic S1P levels were increased. Notably, deletion or inhibition of sphingosine kinase 1 (SphK1), the key enzyme responsible for S1P biosynthesis, could alleviate D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF in mice. However, the role of the S1P receptor modulator FTY720 in ALF remains unclear. In this study, we investigated the effects of FTY720 on D-GalN/LPS-induced ALF model. Our results demonstrated that FTY720 pretreatment significantly alleviated liver injury, decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, and mitigated histopathological damage in ALF model mice. Mechanistically, FTY720 could inhibit the inflammatory response and reduced apoptosis. The protective effect of FTY720 was mediated by c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signalling. A pharmacological JNK activator (anisomycin) partially counteracted these protective effects. FTY720, targeting S1PRs, is expected to be an effective therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fengtian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Shi J, Li Z, Sun X, Zhao D, Kang S, Cao F, Zhang Z, Zhang C. The PPARβ/CERK/C1P signaling pathway is a potential mechanism by which antimony exposure promotes prostate cancer cell proliferation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118268. [PMID: 40327927 DOI: 10.1016/j.ecoenv.2025.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/22/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Prostate cancer (PCa) is the most common malignant tumor in males. Antimony (Sb) is a widespread industrial heavy metal pollutant listed as a Class IIB carcinogen by the International Agency for Research on Cancer (IARC). Previous work found that antimony exposure can promote the proliferation of prostate cancer cells, but the relevant molecular mechanisms have not been fully explored. Lipid metabolomic sequencing revealed that ceramide levels were significantly elevated in PCa cells after low-dose antimony exposure. To explore the relationship between antimony exposure and cell proliferation, we found that the level of ceramide-1-phosphate (C1P), one of the metabolites of ceramide, increased after antimony exposure, and C1P can promote the proliferation of prostate cancer cells and antagonize the apoptosis induced by ceramide. Mechanism exploration shows that antimony exposure activates peroxisome proliferator-activated receptor beta (PPARβ), up-regulates the expression levels of ceramide transport protein (CERT) and ceramide kinase (CERK), promotes the conversion of Cer to C1P, thereby inhibiting apoptosis and promoting PCa cells proliferation. In addition, we also found that C1P can partially inhibit ferroptosis induced by erastin. These findings indicate that C1P is closely related to antimony-induced PCa proliferation and may be a potential biomarker of PCa.
Collapse
Affiliation(s)
- Jianxi Shi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhaopeng Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Xiaoyu Sun
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Duo Zhao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, China.
| | - Fenghong Cao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, China.
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Kiriyama Y, Tokumaru H, Sadamoto H, Nochi H. Biological Actions of Bile Acids via Cell Surface Receptors. Int J Mol Sci 2025; 26:5004. [PMID: 40507815 PMCID: PMC12154436 DOI: 10.3390/ijms26115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in the intestine and transported to the liver as well as the systemic circulation. BAs can activate many types of receptors, including nuclear receptors and cell surface receptors. By activating these receptors, BAs can exert various effects on the metabolic, immune, and nervous systems. Recently, the detailed structure of TGR5, the major plasma membrane receptor for BAs, was elucidated, revealing a putative second BA binding site along with the orthosteric binding site. Furthermore, BAs act as ligands for bitter taste receptors and the Leukemia inhibitory factor receptor. In addition, the Mas-related, G-protein-coupled receptor X4 interacts with receptor activity-modifying proteins. Thus, a variety of cell surface receptors are associated with BAs, and BAs are thought to have very complex activities. This review focuses on recent advances regarding cell surface receptors for bile acids and the biological actions they mediate.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Takamatsu 760-8542, Japan; (H.T.); (H.S.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Takamatsu 760-8542, Japan
| | - Hiroshi Tokumaru
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Takamatsu 760-8542, Japan; (H.T.); (H.S.); (H.N.)
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Takamatsu 760-8542, Japan; (H.T.); (H.S.); (H.N.)
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Takamatsu 760-8542, Japan; (H.T.); (H.S.); (H.N.)
| |
Collapse
|
4
|
Chen S, Wu L, Lang B, Zhao G, Zhang W. Sphingosine 1-phosphate receptor 1 modulators exert neuroprotective effects in central nervous system disorders. Front Pharmacol 2025; 16:1516991. [PMID: 40438602 PMCID: PMC12116545 DOI: 10.3389/fphar.2025.1516991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
The sphingosine 1-phosphate (S1P) signaling pathway has important and diverse functions. S1P receptors (S1PRs) are involved in the regulation of lymphocyte trafficking, cardio-cerebral function, vascular permeability, and bronchiolar tone, and have been recognized as therapeutic targets for a variety of diseases. A number of drugs related to the S1P signaling pathway have been approved for clinical use in the treatment of multiple sclerosis, and many similar drugs are also currently being tested in clinical trials at various stages. It appears that S1PR modulators may not only be useful for the treatment of multiple sclerosis, but may also have therapeutic effects on other types of central nervous system (CNS) disorders. The present review focuses on the therapeutic potential of S1PR1 modulators for treating disorders of the CNS.
Collapse
Affiliation(s)
- Shouming Chen
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lan Wu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bingchen Lang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoyan Zhao
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, SichuanUniversity, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, SichuanUniversity, Chengdu, China
| |
Collapse
|
5
|
Zhu Q, Tao Y, Han Y, He Y, Fu Y, Yang H, Chen Y, Shi Y. Quercetin Alleviates Breast Cancer-Related Depression by Inhibiting Neutrophil Extracellular Traps via Inhibition of Sphingosine 1-Phosphate/Sphingosine 1-Phosphate Receptor Axis. Phytother Res 2025. [PMID: 40313180 DOI: 10.1002/ptr.8513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Breast cancer is associated with a higher incidence of depression and decreased quality of life. Previous studies have indicated that quercetin can mitigate the advancement of breast cancer-related depression (BCRD); however, the specific mechanism by which quercetin affects BCRD is yet to be determined. In this study, we aimed to examine the effect of quercetin on BCRD and explore the underlying mechanisms. We established a mouse model of BCRD and administered quercetin. LC-MS was used to analyze and determine distinct alterations in metabolites in mouse tumor samples. Polymorphonuclear neutrophils (PMNs) were extracted from mouse femurs and treated with PMA and quercetin/Sphingosine 1-phosphate (S1P). Mouse breast cancer cells 4 T1 were treated with lipopolysaccharides (LPS), neutrophil extracellular traps (NETs) and S1P. Neuronal cells were treated with LPS, NETs, S1P, and Corticosterone. Pearson's correlation coefficient was used to evaluate the relationship between differential metabolites and NETs. Quercetin inhibited NET formation in BCRD mice. In vitro, quercetin reversed NET-induced 4 T1 cell proliferation, migration, and ROS production. Quercetin also reversed the effects of NET-induced 4 T1 cells on neuronal cells. LC-MS analysis demonstrated that quercetin ameliorated the metabolic abnormalities in the tumors of BCRD mice. Pearson's correlation analysis showed that S1P, Oleoyl glycine, N-Arachidonoylglycine, 2, 3-butanediol apiosylglucoside, and tetracosatetraenoyl carnitine levels positively correlated with MPO DNA levels. Furthermore, in vitro, S1P enhanced NET-induced 4 T1 cell proliferation, migration, and ROS production, as well as enhanced NET-induced 4 T1 cell damage to neuronal cells. Quercetin alleviated BCRD by inhibiting NETs via inhibition of the S1P/S1PR axis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacy, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ye Tao
- Central South University, Xiangya School of Medicine, Changsha, Hunan, China
| | - Yuanshan Han
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Qiu H, Liu J, You J, Zhou O, Hao C, Shu Y, Ma D, Zou W, Zhang L, Liu E, Luo Z, Ren L, Geng G, Zou L, Peng D, Fu Z. Inhibition of sphingosine 1-phosphate receptor 3 ameliorates bleomycin-induced pulmonary fibrosis by suppressing macrophage M2 polarization. Genes Dis 2025; 12:101244. [PMID: 40092491 PMCID: PMC11907442 DOI: 10.1016/j.gendis.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 03/19/2025] Open
Abstract
Pulmonary fibrosis is a devastating lung disease without effective treatment options. Sphingosine-1-phosphate receptor 3 (S1pr3), a receptor for the lipid signaling molecule sphingosine-1-phosphate, has been shown to mediate the development of pulmonary fibrosis, although the underlying mechanism is not fully understood. Here, we found increased expression of S1pr3 in the lung during the process of bleomycin-induced pulmonary fibrosis in mice and specific overexpression of S1pr3 in the infiltrated M2 macrophages. We constructed LysM-Cre + /S1pr3 flox/flox mice, in which S1pr3 was conditionally depleted in myeloid cells, and this depletion protected mice from bleomycin-induced lung injury and fibrosis, with reduced M2 macrophage accumulation in the lung. Increased S1pr3 expression was found in bone marrow-derived macrophages after alternatively activated by IL4 ex vivo, while loss of S1pr3 attenuated IL-4-induced M2 polarization in bone marrow-derived macrophages by repressing the PI3K/Akt-Stat3 signaling pathway. Moreover, the S1pr3 inhibitors CAY10444 and TY52156 exerted protective effects on pulmonary fibrosis in mice. Taken together, our research showed that inhibition of S1pr3 ameliorates bleomycin-induced pulmonary fibrosis by reducing macrophage M2 polarization via the PI3K/Akt-Stat3 signaling pathway, indicating that S1pr3 may be a potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jiang Liu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jingyi You
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ou Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chang Hao
- Department of Otolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yi Shu
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Deyu Ma
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Linghuan Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Gang Geng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lin Zou
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Clinical Research Unit, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Children's Hospital of Shanghai Jiaotong University Medical School, Shanghai 200062, China
| | - Danyi Peng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
7
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Yao X, Yuen T, Qingchuan C, Jianjun Z, Yefu L, Shulan S. Melanophilin inhibit the growth and lymph node metastasis of triple negative breast cancer via the NONO-SPHK1-S1P axis. J Transl Med 2025; 23:284. [PMID: 40050909 PMCID: PMC11887221 DOI: 10.1186/s12967-025-06240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis, and there are no targeted treatments available. TNBC patients are more likely to develop metastases and relapse than patients with other breast cancer subtypes. Lymph node metastasis is the first sign of metastatic spread. We aimed to characterize the mechanism of lymph node metastasis in TNBC to provide a new strategy for the treatment of TNBC. METHODS Gene Expression Omnibus (GEO) TNBC database was utilized to screen for genes related to N staging. Screening the downstream target of Melanophilin (MLPH) in TNBC through RNA sequencing (RNA seq) analysis. Protein mass spectrometry was utilized to analyze the protein which interacts with MLPH, and RNA binding protein immunoprecipitation and quantitative real-time PCR (RIP qPCR) were utilized to verify the regulation of sphingosine kinase 1 (SPHK1) expression by MLPH through Non-POU domain-containing octamer-binding protein (NONO). Cell functional assays and in vivo models experiments further confirmed the effects of MLPH on proliferation and lymph node metastasis of TNBC through the SPHK1-S1P axis. RESULTS MLPH is downregulated in TNBC and inhibits tumor growth and lymph node metastasis though the MLPH-NONO-SPHK1-S1P pathway. NONO was identified as an essential factor involved in SPHK1 mRNA splicing. MLPH interacts with NONO to inhibit SPHK1 mRNA splicing of SPHK1, which reduces the content of S1P, thereby inhibiting growth and lymph node metastasis in TNBC. CONCLUSIONS This study preliminarily elucidated a mechanism underlying lymph node metastasis in TNBC and identified the role of the MLPH-NONO-SPHK1-S1P axis in regulating proliferation and lymph node metastasis in TNBC. These findings may help design strategies for predicting and treating metastasis in TNBC.
Collapse
Affiliation(s)
- Xing Yao
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China
| | - Tan Yuen
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology (Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China
| | - Chen Qingchuan
- Department of Gastric Surgery, School of Medicine, Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhang Jianjun
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology (Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China.
| | - Liu Yefu
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, P. R. China.
| | - Sun Shulan
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China.
| |
Collapse
|
9
|
He B, Zhao R, Zhang B, Pan H, Liu J, Huang L, Wei Y, Yang D, Liang J, Wang M, Zhao M, Wang S, Dong F, Zhang J, Zhang Y, Zhang X, Zhang X, Dong G, Xiong H, Bie Q, Zhang B. Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis. J Clin Invest 2025; 135:e186291. [PMID: 40026246 PMCID: PMC11870743 DOI: 10.1172/jci186291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Understanding the complexity of the tumor microenvironment is vital for improving immunotherapy outcomes. Here, we report that the T cell costimulatory molecule OX40 was highly expressed in tumor endothelial cells (ECs) and was negatively associated with the prognosis of patients, which is irrelevant to T cell activation. Analysis of conditional OX40 loss- and gain-of-function transgenic mice showed that OX40 signal in ECs counteracted the antitumor effects produced in T cells by promoting angiogenesis. Mechanistically, leucine-rich repeat-containing GPCR5 (Lgr5+ ) cancer stem cells induced OX40 expression in tumor ECs via EGF/STAT3 signaling. Activated OX40 interacted with Spns lysolipid transporter 2 (Spns2), obstructing the export of sphingosine 1-phosphate (S1P) and resulting in S1P intracellular accumulation. Increased S1P directly bound to Yes 1-associated protein (YAP), disrupting its interaction with large tumor suppressor kinase 1 (LATS1) and promoting YAP nuclear translocation. Finally, the YAP inhibitor verteporfin enhanced the antitumor effects of the OX40 agonist. Together, these findings reveal an unexpected protumor role of OX40 in ECs, highlighting the effect of nonimmune cell compartments on immunotherapy.
Collapse
MESH Headings
- Lysophospholipids/immunology
- Lysophospholipids/genetics
- Lysophospholipids/metabolism
- Animals
- Humans
- Mice
- Sphingosine/analogs & derivatives
- Sphingosine/genetics
- Sphingosine/metabolism
- Sphingosine/immunology
- YAP-Signaling Proteins
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Receptors, OX40/immunology
- Receptors, OX40/genetics
- Receptors, OX40/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Line, Tumor
- Tumor Escape
- Mice, Transgenic
- Transcription Factors/genetics
- Cell Cycle Proteins
- Endothelial Cells/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Signal Transduction/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Mice, Knockout
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/genetics
- Angiogenesis
- OX40 Ligand
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine
| | - Rou Zhao
- Department of Laboratory Medicine
| | | | | | | | | | | | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | | | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine
| | | | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanhua Zhang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xu Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | | | | |
Collapse
|
10
|
Autsavapromporn N, Duangya A, Klunklin P, Chitapanarux I, Kranrod C, Jaikang C, Monum T, Paemanee A, Tokonami S. Serum biomarkers associated with health impacts of high residential radon exposure: a metabolomic pilot study. Sci Rep 2025; 15:5099. [PMID: 39934345 PMCID: PMC11814192 DOI: 10.1038/s41598-025-89753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Long-term epidemiological evidence suggests that populations exposed to high natural radiation levels for extended periods may have an increased risk of cancer and other diseases. However, research on health effects in high-radon areas, particularly regarding disease-related biomarkers, remains limited. This study aimed to investigate serum metabolic biomarkers associated with diseases in individuals from areas with high radon exposure. Metabolic profiling was performed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry on 30 healthy participants comprising 15 individuals from a low-residential radon exposure group and 15 from a high-residential radon exposure group. Multivariate analysis, receiver operating characteristic (ROC) curve analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied. Partial least-squares discriminant analysis revealed significant differences (P < 0.05) between the two groups, identifying 92 metabolites. ROC analysis (AUC ≥ 0.85) highlighted 12 key candidates associated with high radon exposure. KEGG pathway analysis linked D-sphingosine to lung cancer development and 3-methylhistidine to kidney disease, early preeclampsia, and Alzheimer's disease. These findings suggest that D-sphingosine and 3-methylhistidine are promising serum biomarkers for identifying high-risk individuals with prolonged radon exposure and contribute to the identification of novel biomarkers in future studies on high-radon exposure areas.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Aphidet Duangya
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pitchayaponne Klunklin
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tawachai Monum
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atchara Paemanee
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| |
Collapse
|
11
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Rufail ML, Bassi R, Giussani P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int J Mol Sci 2025; 26:1056. [PMID: 39940821 PMCID: PMC11817292 DOI: 10.3390/ijms26031056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer biology revolves around understanding how cells undergo uncontrolled proliferation leading to the formation of malignant tumors. Key aspects include self-sufficiency in growth signals, the lack of response to signals of growth inhibition, the evasion of apoptosis, sustained angiogenesis, the evasion of immune response, the capacity to invade and metastasize, and alterations in cellular metabolism. A vast amount of research, which is exponentially growing, over the past few decades highlights the role of sphingolipids in cancer. They act not only as structural membrane components but also as bioactive molecules that regulate cell fate in different physio-pathological conditions. In cancer, sphingolipid metabolism is dysregulated, contributing to tumor progression, metastasis, and drug resistance. In this review, we outline the impact of sphingosine-1-phosphate (S1P) as a key bioactive sphingolipid in cancer. We give an overview of its metabolism summarizing the role of S1P as an intracellular and extracellular mediator through specific plasma membrane receptors in different cancers. We also describe previous findings on how the disruption in the balance between S1P and ceramide (Cer) is common in cancer cells and can contribute to tumorigenesis and resistance to chemotherapy. We finally consider the potential of targeting the metabolic pathways of S1P as well as its receptors and transporters as a promising therapeutic approach in cancer treatments.
Collapse
Affiliation(s)
- Miguel L. Rufail
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| |
Collapse
|
13
|
Ye Y, Huang L, Wang K, Sun Y, Zhou Z, Deng T, Liu Y, Wang R, Wu R, Yao C. Transplantation of engineered endothelial progenitor cells with H19 overexpression promotes arterial reendothelialization and inhibits neointimal hyperplasia. J Tissue Eng 2025; 16:20417314251315959. [PMID: 39974657 PMCID: PMC11837068 DOI: 10.1177/20417314251315959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/12/2025] [Indexed: 02/21/2025] Open
Abstract
Endothelial injury is a key factor initiating in-stent restenosis (ISR) following peripheral artery stent implantation. Genetically modified endothelial progenitor cells (EPCs) can promote reendothelialization of injured arteries and inhibit neointimal hyperplasia. However, the role of engineered EPCs overexpressing lncRNA H19 in these processes remains unclear. We constructed EPCs overexpressing lncRNA H19 and investigated their effects and mechanisms in promoting reendothelialization and inhibiting neointimal hyperplasia both in vitro and in vivo. Compared to the normal control group, ISR patients exhibited a significant reduction in circulating EPCs. Engineered EPCs overexpressing lncRNA H19 promoted reendothelialization and inhibited neointimal hyperplasia in injured arteries. Exogenous overexpression of lncRNA H19 significantly upregulated the endothelial repair-related gene S1PR3 in EPCs, while the opposite was also observed. Additionally, engineered EPCs overexpressing S1PR3 promoted reendothelialization and inhibited neointimal hyperplasia in injured arteries. S1PR3 overexpression enhanced EPCs proliferation, migration, and tube formation in vitro; these effects were lost with S1PR3 inhibition. Binding sites for H3K27 acetylation were identified on the S1PR3 promoter. Mechanistically, we found that lncRNA H19 directly interacted with HDAC2, a known H3K27ac deacetylase, disrupting its binding to H3K27 acetylation. Our findings suggest that lncRNA H19 positively regulates S1PR3 expression by disrupting HDAC2 / H3K27ac binding, thereby promoting reendothelialization of injured arteries and inhibiting neointimal hyperplasia.
Collapse
Affiliation(s)
- Yanchen Ye
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunhao Sun
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tang Deng
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunyan Liu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
15
|
Autsavapromporn N, Duangya A, Klunklin P, Chitapanarux I, Kranrod C, Jaikang C, Monum T, Paemanee A, Tokonami S. Serum Metabolomics Study to Screen Potential Biomarkers of Lung Cancer Risk in High Natural Background Radiation Areas of Thailand: A Pilot Study. Cancers (Basel) 2024; 16:4182. [PMID: 39766081 PMCID: PMC11674310 DOI: 10.3390/cancers16244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Methods: Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively). Results: A total of 90 and 111 differential metabolites were identified in the LC group compared with the low- and high-radon groups, respectively, using criteria such as a variable importance in projection (VIP) of >1, a fold change (FC) of >1 or <0.5, and a p value of <0.05. Receiver operating characteristic (ROC) curves (an AUC of ≥ 0.9) indicated that 30 and 21 of these metabolites had the potential to serve as biomarkers of LC development in the low- and high-radon groups, respectively. The KEGG pathway enrichment analysis suggested that D-sphingosine may have been a candidate biomarker associated with LC in both groups. Conclusions: Overall, this study provides new insights into metabolic biomarkers for screening LC development in high-risk individuals with prolonged exposure to indoor radon. Further large-scale studies are needed to validate our results.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.D.); (P.K.); (I.C.)
| | - Aphidet Duangya
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.D.); (P.K.); (I.C.)
| | - Pitchayaponne Klunklin
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.D.); (P.K.); (I.C.)
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.D.); (P.K.); (I.C.)
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Aomori, Japan; (C.K.); (S.T.)
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (T.M.)
| | - Tawachai Monum
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (T.M.)
| | - Atchara Paemanee
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand;
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Aomori, Japan; (C.K.); (S.T.)
| |
Collapse
|
16
|
Wang X, Jiang Y, Zhang Y, Xia M, Li J, Man C. Adipose tissue responds to stress-induced immunosuppression affecting immune response partially by miR-145-5p/S1PR1 pathway. Poult Sci 2024; 103:104431. [PMID: 39418791 PMCID: PMC11530903 DOI: 10.1016/j.psj.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the most common problems in intensive poultry production, which can cause immunized chickens to still develop diseases and bring huge losses to production. Recently, adipose tissue, as an immunomodulatory organ, has become a hot topic of attention. However, the function and mechanism of adipose tissue involved in SIIS and its influence on the immune response are still unclear. In this study, we dynamically analyzed the correlations between the T cells migration and change of sphingosine-1-phosphate receptor 1(S1PR1) gene in adipose tissue using chicken models with different immune states, and further explored the regulatory mechanisms and application. The results showed that SIIS could significantly change the expressions of lymphocytes migration related S1PR1 gene, and SIIS could inhibit the Newcastle disease virus (NDV) immune response partially by affecting the migration and proliferation of TCRα+ T cells in adipose tissue. Moreover, the miR-145-5p/S1PR1 pathway was a potential key mechanism to regulate T cells migration in adipose tissue, and circulating miR-145-5p had potential value as a molecular marker. This research can provide innovative reference for in-depth studying the immunoregulatory function and mechanism of adipose tissue.
Collapse
Affiliation(s)
- Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yuxin Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Meiqi Xia
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jia Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
17
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Zhang H, Li Q, Li C, Wu M, Chen H, Li Y, You F, Zhao Y, Jin J, Chen X, Ding Y. Evaluation of proximod, a selective agonist of sphingosine-1-phosphate receptor-1, in healthy volunteers and patients with rheumatoid arthritis: a phase 1, double-blind, randomised, placebo-controlled, ascending dose trial. THE LANCET. RHEUMATOLOGY 2024; 6:e837-e847. [PMID: 39454617 DOI: 10.1016/s2665-9913(24)00199-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Proximod is a selective agonist of sphingosine-1-phosphate receptor-1 (S1PR1). It acts by redirecting lymphocytes from the circulation to secondary lymph nodes, and is under development as an immunomodulator for rheumatoid arthritis. We aimed to evaluate the safety, pharmacokinetics, and preliminary efficacy of proximod in healthy volunteers and patients with rheumatoid arthritis. METHODS We did a two part, phase 1, double-blind, randomised, placebo-controlled, ascending dose trial at a single centre in China. Eligible participants were adults aged 18-50 years with a BMI of 18-28 kg/m2 for healthy volunteers and aged 18-70 years with a BMI of 18-30 kg/m2 for patients with rheumatoid arthritis. In part 1, healthy volunteers were randomly assigned within ten cohorts to receive a single oral dose of proximod (0·125 mg, 0·25 mg, 0·5 mg, 1 mg, 1·5 mg, 2 mg, 3 mg, 5 mg, 10 mg, or 15 mg in cohorts 1-10) or placebo. In part 2, healthy volunteers were randomly assigned to receive once-daily doses of proximod 5 mg or placebo, and patients with rheumatoid arthritis were randomly assigned to receive once-daily doses of proximod 5 mg, proximod 10 mg, or placebo, for 28 days. Patients and investigators were masked to treatment assignment. The primary outcomes were safety, tolerability, and pharmacokinetic profile of proximod for 72 days in healthy volunteers and for 48 days in patients with rhematoid arthritis, assessed in all treated participants. This trial is registered with ClinicalTrials.gov (NCT06361199, NCT06361186), and is complete. FINDINGS Between Nov 1, 2017, and June 22, 2021, 124 healthy volunteers were randomly assigned in part 1 of the study and 124 were included in the analyses (mean age 34·3 years [SD 6·9], 62 [50%] of 124 participants were women and 62 [50%] were men, and 116 [94%] were Han Chinese ethnicity). Between Feb 16, 2022, and Oct 8, 2023, 113 participants were screened for inclusion in part 2 (80 healthy volunteers and 33 patients with rheumatoid arthritis). 79 participants were excluded and 34 were randomly assigned (10 healthy participants and 24 patients with rheumatoid arthritis), 34 of whom were included in the analyses. Ten (100%) of ten healthy participants were Han Chinese ethnicity, with a mean age of 39·9 years (SD 7·3). Five (50%) of ten healthy volunteers were women and five (50%) were men). 22 (92%) of 24 participants with rheumatoid arthritis were Han Chinese ethnicity, with a mean age of 52·7 years (SD 6·8). 22 (92%) of 24 patients with rheumatoid arthritis were women and two (8%) were men. In part 1, all doses of proximod were well tolerated, with no dose-related adverse reactions or serious adverse events observed. In part 2, 74 adverse reactions were reported in eight (80%) of ten healthy volunteers and 22 (92%) of 24 patients with rheumatoid arthritis. Adverse events associated with proximod were predominantly mild or moderate. In part 2, the concentration of proximod and its active metabolite, proximod-phosphate, gradually increased in all three groups receiving proximod and the EC50 of the S1PR1 agonist for proximod-phosphate (6·1 ng/mL) was reached on day 14 for both 5 mg groups, and on day 7 for the 10 mg group. The mean Ctrough values for proximod-phosphate on day 28 were 7·7 ng/mL and 10·2 ng/mL for 5 mg in healthy volunteers and patients with rheumatoid arthritis, respectively, and 15·3 ng/mL for 10 mg in patients with rheumatoid arthritis. In patients with rheumatoid arthritis, lymphocyte count decreased after treatment in all proximod groups reaching nadir at approximately day 28, with a corresponding percentage decline from baseline of 65·25% in the 5 mg group, 71·64% in the 10 mg group, and 20·57% in the placebo group. INTERPRETATION Proximod exhibited good tolerability over the 28-day treatment period, demonstrating its potential in reducing blood lymphocyte count. These results highlight the promise of the S1PR1 agonist proximod as a potential candidate for rheumatoid arthritis treatment, warranting further investigation in subsequent clinical studies. FUNDING Beijing Union Pharmaceutical Factory and Jian Kuan (Suzhou) Biotechnology.
Collapse
Affiliation(s)
- Hong Zhang
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Qianqian Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Cuiyun Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Min Wu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Hong Chen
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Yang Li
- Beijing Union Pharmaceutical Factory, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Feng You
- Beijing Union Pharmaceutical Factory, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yanshi Zhao
- Jian Kuan (Suzhou) Biotechnology, Suzhou, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China; Jian Kuan (Suzhou) Biotechnology, Suzhou, China
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China.
| |
Collapse
|
19
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Wang YQ, Ren Y, Gale RP, Niu LT, Huang XJ. Sphingosine-1 phosphate receptor 1 (S1PR1) expression maintains stemness of acute myeloid leukemia stem cells. Cancer Lett 2024; 600:217158. [PMID: 39111385 DOI: 10.1016/j.canlet.2024.217158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Acute myeloid leukemia (AML) arises from leukemia stem cells (LSCs) and is maintained by cells which have acquired features of stemness. We compared transcription profiles of AML cells with/without stem cell features defined as in vitro clonogenicity and serial engraftment in immune-deficient mice xenograft model. We used multi-parameter flow cytometry (MPFC) to separate CD34+ bone marrow-derived leukemia cells into sphingosine-1 phosphate receptor 1 (S1PR1)+ and S1PR1- fractions. Cells in the S1PR1+ fraction demonstrated significantly higher clonogenicity and higher engraftment potential compared with those in the S1PR1- fraction. In contrast, CD34+ bone marrow cells from normal samples showed reduced clonogenicity in the S1PR1+ fraction compared with the S1PR1- fraction. Inhibition of S1PR1 expression in an AML cell line reduced the colony-forming potential of KG1 cells. Transcriptomic analyses and rescue experiments indicated PI3K/AKT pathway and MYBL2 are downstream mediators of S1PR1-associated stemness. These findings implicate S1PR1 as a functional biomarker of LSCs and suggest its potential as a therapeutic target in AML treatment.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yue Ren
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Robert Peter Gale
- Centre for Hematology Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Li-Ting Niu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
21
|
Park S, Kim J, Yang S, Kang SH, Kang W, Paik YH. Exogenous S1P via S1P receptor 2 induces CTGF expression through Src-RhoA-ROCK-YAP pathway in hepatic stellate cells. Mol Biol Rep 2024; 51:950. [PMID: 39222158 DOI: 10.1007/s11033-024-09868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Jonghwa Kim
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Sera Yang
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - So Hee Kang
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
22
|
Li R, Cairns C, Yu T, Jaladanki R, Dodson CM, Chung HK, Xiao L, Wang J, Turner DJ. miR-495 promotes intestinal epithelial cell apoptosis through downregulation of Sphingosine-1-phosphate. Physiol Rep 2024; 12:e70021. [PMID: 39261977 PMCID: PMC11390489 DOI: 10.14814/phy2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Many pathological conditions lead to defects in intestinal epithelial integrity and loss of barrier function; Sphingosine-1-phosphate (S1P) has been shown to augment intestinal barrier integrity, though the exact mechanisms are not completely understood. We have previously shown that overexpression of Sphingosine Kinase 1 (SphK1), the rate limiting enzyme for S1P synthesis, significantly increased S1P production and cell proliferation. Here we show that microRNA 495 (miR-495) upregulation led to decreased levels of SphK1 resultant from a direct effect at the SphK1 mRNA. Increasing expression of miR-495 in intestinal epithelial cells resulted in decreased proliferation and increased susceptibility to apoptosis. Transgenic expression of miR-495 inhibited mucosal growth, as well as decreased proliferation in the crypts. The intestinal villi also expressed decreased levels of barrier proteins and exaggerated damage upon exposure to cecal ligation-puncture. These results implicate miR-495 as a critical negative regulator of intestinal epithelial protection and proliferation through direct regulation of SphK1, the rate limiting enzyme critical for production of S1P.
Collapse
Affiliation(s)
- Ruiyun Li
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Cassandra Cairns
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ting‐Xi Yu
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rao Jaladanki
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Claire M. Dodson
- Ohio University Heritage College of Osteopathic MedicineAthensOhioUSA
| | - Hee Kyoung Chung
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Lan Xiao
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Jian‐Ying Wang
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Pathology, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Douglas J. Turner
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
23
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
24
|
Yu Z, Zhang H, Li L, Li Z, Chen D, Pang X, Ji Y, Wang Y. Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury. Exp Neurol 2024; 379:114864. [PMID: 38866101 DOI: 10.1016/j.expneurol.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β positive (PDGFRβ+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.
Collapse
Affiliation(s)
- Ziyuan Yu
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Huabin Zhang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Linxi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Zhi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Danmin Chen
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Xiao Pang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yunxiang Ji
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yezhong Wang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China.
| |
Collapse
|
25
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
26
|
Khetan R, Eldi P, Lokman NA, Ricciardelli C, Oehler MK, Blencowe A, Garg S, Pillman K, Albrecht H. Unveiling G-protein coupled receptors as potential targets for ovarian cancer nanomedicines: from RNA sequencing data analysis to in vitro validation. J Ovarian Res 2024; 17:156. [PMID: 39068454 PMCID: PMC11282829 DOI: 10.1186/s13048-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Genetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery. Here we report on the systematic analysis of public ribonucleic acid-sequencing (RNA-seq) gene expression data, which led to prioritisation of 13 GPCRs as candidates with frequent overexpression in ovarian cancer tissues. Subsequently, primary ovarian cancer cells derived from ascites and ovarian cancer cell lines were used to confirm frequent gene expression for the selected GPCRs. However, the expression levels showed high variability within our selection of samples, therefore, supporting and emphasising the need for the future development of case-to-case personalised targeting approaches.
Collapse
Affiliation(s)
- Riya Khetan
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Preethi Eldi
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sanjay Garg
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Hugo Albrecht
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
27
|
Zhou X, Zou L, Deng H, Zhou Y, Wu Y, Ouyang X, Liu L, Wang L, Li T. Protective Effects and Mechanisms of Inhibiting Endoplasmic Reticulum Stress on Cold Seawater Immersion Combined with Hemorrhagic Shock. J Inflamm Res 2024; 17:4923-4940. [PMID: 39070132 PMCID: PMC11283250 DOI: 10.2147/jir.s469622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Cold seawater immersion aggravates hemorrhagic shock-induced homeostasis imbalance and organ dysfunction, leading to increased mortality. Previous studies have shown that treatments targeting oxidative stress and mitochondrial dysfunction have limited efficacy for cold seawater immersion combined with hemorrhagic shock (SIHS). Thus, the mechanisms responsible for SIHS need further investigation. Methods and Results Data from the hemorrhagic shock transcriptome and cold seawater immersion targets used for bioinformatics analysis revealed the involvement of endoplasmic reticulum stress (ERS) in SIHS occurrence and progression. Based on these findings, the effects and possible mechanism of inhibiting ERS in SIHS rats were investigated. SIHS causes a lethal triad and impairment of vital organ function, leading to death. Compared to lactated Ringer's solution, the ERS inhibitor 4-phenylbutyric acid (PBA)significantly ameliorated acidosis and coagulopathy and protected vital organ function while prolonging survival and the golden treatment time. Through target screening and validation, 7 targets were identified for the ERS inhibitor PBA for the treatment of SIHS, among which S1PR1, MMP8 and CFTR may play more important roles. Conclusion ERS plays a crucial role in the progression of SIHS. Inhibition of ERS caused by SIHS alleviates the lethal triad, protects organ function, and prolongs survival and the golden treatment time. The ERS inhibitor PBA may be an effective therapeutic measure for treating SIHS.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liyong Zou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Haoyue Deng
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yuanqun Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yue Wu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Xingnan Ouyang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liangming Liu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Li Wang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
28
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
29
|
Morang S, Bisht M, Upadhyay V, Thapliyal S, Handu S. S1P Signaling Genes as Prominent Drivers of BCR-ABL1-Independent Imatinib Resistance and Six Herbal Compounds as Potential Drugs for Chronic Myeloid Leukemia. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:367-376. [PMID: 38986084 DOI: 10.1089/omi.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Imatinib (IM), a breakthrough in chronic myeloid leukemia (CML) treatment, is accompanied by discontinuation challenges owing to drug intolerance. Although BCR-ABL1 mutation is a key cause of CML resistance, understanding mechanisms independent of BCR-ABL1 is also important. This study investigated the sphingosine-1-phosphate (S1P) signaling-associated genes (SphK1 and S1PRs) and their role in BCR-ABL1-independent resistant CML, an area currently lacking investigation. Through comprehensive transcriptomic analysis of IM-sensitive and IM-resistant CML groups, we identified the differentially expressed genes and found a notable upregulation of SphK1, S1PR2, and S1PR5 in IM-resistant CML. Functional annotation revealed their roles in critical cellular processes such as proliferation and GPCR activity. Their network analysis uncovered significant clusters, emphasizing the interconnectedness of the S1P signaling genes. Further, we identified interactors such as BIRC3, TRAF6, and SRC genes, with potential implications for IM resistance. Additionally, receiver operator characteristic curve analysis suggested these genes' potential as biomarkers for predicting IM resistance. Network pharmacology analysis identified six herbal compounds-ampelopsin, ellagic acid, colchicine, epigallocatechin-3-gallate, cucurbitacin B, and evodin-as potential drug candidates targeting the S1P signaling genes. In summary, this study contributes to efforts to better understand the molecular mechanisms underlying BCR-ABL1-independent CML resistance. Moreover, the S1P signaling genes are promising therapeutic targets and plausible new innovation avenues to combat IM resistance in cancer clinical care in the future.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Signal Transduction/drug effects
- Lysophospholipids/metabolism
- Gene Expression Profiling/methods
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Female
- Sphingosine/analogs & derivatives
Collapse
Affiliation(s)
- Sikha Morang
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Manisha Bisht
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Vikas Upadhyay
- Department of AYUSH, All India Institute of Medical Sciences, Rishikesh, India
| | | | - Shailendra Handu
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
30
|
Rushendran R, Singh A, Ankul Singh S, Chitra V, Ilango K. A role of NLRP3 and MMP9 in migraine progression: a systematic review of translational study. Front Neurol 2024; 15:1307319. [PMID: 38836002 PMCID: PMC11148868 DOI: 10.3389/fneur.2024.1307319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
Background Migraines affect one billion individuals globally, with a higher occurrence among young adults and women. A significant survey in the United States indicated that 17.1% of women and 5.6% of men suffer from migraines. This study seeks to investigate the potential connection between NLRP3 and MMP9 in migraine pathology. Methods The research involved searching databases such as PubMed, Scopus, Science Direct, Google Scholar, and Proquest, with the search concluding on March 31, 2024. Following PRISMA guidelines, PICO data were collected, focusing exclusively on animal models induced by Nitroglycerine (10 mg/kg), while excluding clinical studies. Results The study, originally registered in Prospero Reg. No. CRD42022355893, conducted bias analysis using SYRCLE's RoB tool and evaluated author consensus using GraphPad v9.5.1. Out of 7,359 search results, 22 papers met the inclusion criteria. Inter-rater reliability among reviewers was assessed using Cohen's kappa statistics. Conclusion This review summarizes 22 preclinical studies on Nitroglycerin (NTG), NLRP3, MMP9, and related biomarkers in migraine. They reveal that NTG, especially at 10 mg/kg, consistently induces migraine-like symptoms in rodents by activating NLRP3 inflammasome and stimulating proinflammatory molecule production. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, CRD42022355893.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, India
| | - Anuragh Singh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, India
| | - S Ankul Singh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, India
| | - Kaliappan Ilango
- Department of Pharmaceutical Chemistry, Tagore College of Pharmacy, Chennai, India
| |
Collapse
|
31
|
Lin T, Peng M, Zhu Q, Pan X. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis. Front Immunol 2024; 15:1405622. [PMID: 38827741 PMCID: PMC11140028 DOI: 10.3389/fimmu.2024.1405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | - Xinting Pan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
32
|
Zheng YS, Liu YL, Xu ZG, He C, Guo ZY. Is myeloid-derived growth factor a ligand of the sphingosine-1-phosphate receptor 2? Biochem Biophys Res Commun 2024; 706:149766. [PMID: 38484568 DOI: 10.1016/j.bbrc.2024.149766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based β-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.
Collapse
Affiliation(s)
- Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China.
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
33
|
Yao X, Liu Y, Mao M, Yang L, Zhan Q, Xiao J. Calorie restriction mimetic, resveratrol, attenuates hepatic ischemia and reperfusion injury through enhancing efferocytosis of macrophages via AMPK/STAT3/S1PR1 pathway. J Nutr Biochem 2024; 126:109587. [PMID: 38262562 DOI: 10.1016/j.jnutbio.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1β were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Menghan Mao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
34
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
35
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
36
|
Wilkinson J, Lehmler HJ, Roman DL. High-Throughput GPCRome Screen of Pollutants Reveals the Activity of Polychlorinated Biphenyls at Melatonin and Sphingosine-1-phosphate Receptors. Chem Res Toxicol 2024; 37:439-449. [PMID: 38295294 PMCID: PMC10880096 DOI: 10.1021/acs.chemrestox.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Exposure to environmental pollutants is linked to numerous toxic outcomes, warranting concern about the effect of pollutants on human health. To assess the threat of pollutant exposure, it is essential to understand their biological activity. Unfortunately, gaps remain for many pollutants' specific biological activity and molecular targets. A superfamily of signaling proteins, G-protein-coupled receptors (GPCRs), has been shown as potential targets for pollutant activity. However, research investigating the pollutant activity at the GPCRome is scarce. This work explores pollutant activity across a library of human GPCRs by leveraging modern high-throughput screening techniques devised for drug discovery and pharmacology. We designed and implemented a pilot screen of eight pollutants at 314 human GPCRs and discovered specific polychlorinated biphenyl (PCB) activity at sphingosine-1-phosphate and melatonin receptors. The method utilizes open-source resources available to academic and governmental institutions to enable future campaigns that screen large numbers of pollutants. Thus, we present a novel high-throughput approach to assess the biological activity and specific targets of pollutants.
Collapse
Affiliation(s)
- Joshua
C. Wilkinson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - David L. Roman
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Iowa
Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine,
University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
37
|
Wan S, Xie X, Yang G, Feng F. Discovery of the toxicity-related quality markers and mechanisms of Zhi-Zi-Hou-Po decoction based on Chinmedomics combined with differentially absorbed components and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117408. [PMID: 37972910 DOI: 10.1016/j.jep.2023.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Hou-Po decoction (ZZHPD), as a representative traditional Chinese medicine (TCM) formula for the treatment of depression, has frequently triggered hepatorenal toxicity in recent years. However, its toxic effect, material basis, and underlying mechanisms have not been fully elucidated. AIM OF THE STUDY To explore the hepatorenal toxicity-material basis-quality markers (Q-markers) and multiple mechanisms of ZZHPD. MATERIALS AND METHODS ZZHPD-induced rat model of toxicity was evaluated by behavioral indicators, biochemical parameters, and histopathological sections. Then, UHPLC-Q-Exactive Orbitrap-MS combined with multivariate data analysis was utilized to identify the endogenous differential metabolites and the prototype components of ZZHPD in the plasma. A comprehensive strategy integrating in-house library, diagnostic ions, Compound Discover software, and network databases was constructed to identify the chemical constituents of ZZHPD. Additionally, the differentially absorbed components of ZZHPD were screened out based on the spectrum-effect relationship (toxic state and normal state), feature extraction of exogenous components, and variable influence on projection (VIP). Further, Chinmedomics and network pharmacology oriented by differentially absorbed components were performed to predict toxicity-related Q-markers and core targets, as well as relevant pathways. Finally, the binding ability between components and targets was predicted using molecular docking, and the mRNA expression of core target genes was determined by real-time qPCR experiment. RESULTS ZZHPD exerted significant hepatotoxicity and nephrotoxicity in rats accompanied by body weight loss, abnormal biochemical indicators, and pathologic characteristics with mild inflammation and cell damage. The results of plasma metabolomics indicated that 22 differential metabolites interfered by ZZHPD mainly involved in primary bile acid biosynthesis, arginine and proline metabolism, phenylalanine metabolism and biosynthesis, sphingolipid metabolism, pyrimidine and purine metabolism. Firstly, 106 chemical substances of ZZHPD were identified, 44 of them were absorbed into the blood, mainly including 7 iridoid glycosides, 15 flavonoids, 5 lignans, and others. Then, the correlation analysis results suggested that 12 of 19 differentially absorbed constituents were highly correlated with 22 differential metabolites and recognized as potential Q-markers. Finally, 9 toxicity-related Q-markers were predicted and confirmed with better binding ability to 5 core targets (PTGS2, CASP3, TNF, PPARG, HMOX1), including 3 flavonoids (naringin, hesperidin, and neohesperidin), 2 iridoid glycosides (geniposide and genipin-1-β-D-gentiobioside), 2 lignans (honokiol and magnolol), organic acid (chlorogenic acid), and crocin (crocetin). The real-time qPCR results showed that the mRNA levels of CASP3, TNF-α, and PPARG significantly increased in the damaged liver. Combining metabolomics and network pharmacology results, the multiple mechanisms of toxicity might involve in oxidative damage, inflammation, and apoptosis pathways. CONCLUSION Taken together, the toxicity-related Q-markers of ZZHPD screened for the first time in this work were reliable, and the holistic intervention for hepatorenal toxicity further revealed the multi-component, multi-target, and multi-pathway features in TCM. The integrated approach provides a novel perspective for the discovery of toxicity/efficacy-related substances and mechanistic studies in TCM.
Collapse
Affiliation(s)
- Shulin Wan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoxia Xie
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Yang S, Li HW, Tian JY, Wang ZK, Chen Y, Zhan TT, Ma CY, Feng M, Cao SF, Zhao Y, Li X, Ren J, Liu Q, Jin LY, Wang ZQ, Jiang WY, Zhao YX, Zhang Y, Liu X. Myeloid-derived growth factor suppresses VSMC dedifferentiation and attenuates postinjury neointimal formation in rats by activating S1PR2 and its downstream signaling. Acta Pharmacol Sin 2024; 45:98-111. [PMID: 37726422 PMCID: PMC10770085 DOI: 10.1038/s41401-023-01155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/13/2023] [Indexed: 09/21/2023]
Abstract
Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 μg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Hou-Wei Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jia-Ying Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Zheng-Kai Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yi Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Ting-Ting Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Chun-Yue Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Min Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Shi-Feng Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Xue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Jing Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Qian Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Lu-Ying Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Zhi-Qi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Wen-Yu Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yi-Xiu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China.
| | - Xue Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China.
| |
Collapse
|
39
|
Yang Q, Tang D, Gan C, Bai M, Song X, Jiang W, Li Q, Chen Y, Zhang A, Wang M. Novel variants in CRB2 targeting the malfunction of slit diaphragm related to focal segmental glomerulosclerosis. Pediatr Nephrol 2024; 39:149-165. [PMID: 37452832 DOI: 10.1007/s00467-023-06087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a leading cause of steroid-resistant nephrotic syndrome (SRNS) that predominantly affects the podocytes. While mutations in genes causing pediatric SRNS have enhanced our understanding of FSGS, the disease's etiology remains complex and poorly understood. METHODS Whole exome sequencing (WES) was performed on a 9-year-old girl with SRNS associated with FSGS (SRNS-FSGS). We analyzed the expression of CRB2, slit diaphragm (SD)-associated proteins, and sphingosine 1-phosphate receptor 1 (S1PR1) in the proband and CRB2 knock-down podocytes. RESULTS In this study, we identified two novel compound heterozygous mutations in the Crumbs homolog 2 (CRB2) gene (c.2905delinsGCCACCTCGCGCTGGCTG, p.T969Afs*179 and c.3268C > G, p.R1090G) in a family with early-onset SRNS-FSGS. Our findings demonstrate that these CRB2 abnormalities were the underlying cause of SRNS-FSGS. CRB2 defects led to the dysfunction of podocyte SD-related proteins, including podocin, nephrin, and zonula occludens-1 (ZO-1), by reducing the phosphorylation level of S1PR1. Interestingly, the podocytic cytoskeleton remained unaffected, as demonstrated by normal expression and localization of synaptopodin. Our study also revealed a secondary decrease in CRB2 expression in idiopathic FSGS patients, indicating that CRB2 mutations may cause FSGS through a previously unknown mechanism involving SD-related proteins. CONCLUSIONS Overall, our findings shed new light on the pathogenesis of SRNS-FSGS and revealed that the novel pathogenic mutations in CRB2 contribute to the development of FSGS through a previously unknown mechanism involving SD-related proteins. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Qing Yang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Tang
- Department of Pediatrics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Chun Gan
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaomei Song
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Jiang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Mo Wang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
40
|
Zhang Y, Li H, Liu X, Wang Q, Zhao D, Su M, Jia Z, Shen S. Integrating Metabolomics and Network Pharmacology to Decipher the Hepatoprotective Effect Mechanisms of Magnesium Isoglycyrrhizinate Injection. Curr Issues Mol Biol 2023; 46:279-298. [PMID: 38248321 PMCID: PMC10813909 DOI: 10.3390/cimb46010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the liver protective effects of a fourth-generation glycyrrhizic acid product (magnesium isoglycyrrhizinate injection, MII) in the treatment of mice with drug-induced liver injury-specifically, to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in lipid metabolism and amino acid metabolism through the liver protective effect was preliminarily explored, combined with network pharmacology. The liver injury model of mice was established using acetaminophen (APAP). The protective effect of MII on the mice model was evaluated using pathological tissue sections and biochemical indices such as alanine transaminase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD). Metabolomics analysis of plasma was performed using the UHPLC-QTOF/MS technique to screen for potential biomarkers and enriched metabolic pathways. The potential targets and pathways of MII were predicted by network pharmacology, and the mechanism was verified by Western blot analysis. MII significantly improved the pathological liver changes in mice with liver injury. The content of ALT and AST was decreased, and the activity of SOD was increased significantly (p < 0.05, 0.01). A total of 29 potential biomarkers were identified in the metabolomics analysis, mainly involving seven pathways, such as lipid metabolism and amino acid metabolism. A total of 44 intersection targets of MII in the treatment of liver injury were obtained by network pharmacology, involving lipid metabolism and other related pathways. Western blot analysis results showed that MII could significantly reduce the expression of JAK2 and STAT3. MII can effectively ameliorate liver injury in modeled mice through related pathways such as lipid metabolism and amino acid metabolism. This study could provide not only a scientific basis for the elucidation of the mechanism of action of MII in exerting a hepatoprotective effect, but also a reference for its rational clinical application.
Collapse
Affiliation(s)
- Yihua Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Hui Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Xueli Liu
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Qiang Wang
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Dong Zhao
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| | - Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| |
Collapse
|
41
|
Grasso G, Sommella EM, Merciai F, Abouhany R, Shinde SA, Campiglia P, Sellergren B, Crescenzi C. Enhanced selective capture of phosphomonoester lipids enabling highly sensitive detection of sphingosine 1-phosphate. Anal Bioanal Chem 2023; 415:6573-6582. [PMID: 37736841 PMCID: PMC10567913 DOI: 10.1007/s00216-023-04937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Sphingolipids play crucial roles in cellular membranes, myelin stability, and signalling responses to physiological cues and stress. Among them, sphingosine 1-phosphate (S1P) has been recognized as a relevant biomarker for neurodegenerative diseases, and its analogue FTY-720 has been approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Focusing on these targets, we here report three novel polymeric capture phases for the selective extraction of the natural biomarker and its analogue drug. To enhance analytical performance, we employed different synthetic approaches using a cationic monomer and a hydrophobic copolymer of styrene-DVB. Results have demonstrated high affinity of the sorbents towards S1P and fingolimod phosphate (FTY-720-P, FP). This evidence proved that lipids containing phosphate diester moiety in their structures did not constitute obstacles for the interaction of phosphate monoester lipids when loaded into an SPE cartridge. Our suggested approach offers a valuable tool for developing efficient analytical procedures.
Collapse
Affiliation(s)
- Giuliana Grasso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Rahma Abouhany
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Sudhirkumar A Shinde
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, 411038, Pune, India
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Börje Sellergren
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
42
|
Bzdęga W, Kurzyna PF, Harasim-Symbor E, Hołownia A, Chabowski A, Konstantynowicz-Nowicka K. How Does CBG Administration Affect Sphingolipid Deposition in the Liver of Insulin-Resistant Rats? Nutrients 2023; 15:4350. [PMID: 37892425 PMCID: PMC10609522 DOI: 10.3390/nu15204350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cannabigerol (CBG), a non-psychotropic phytocannabinoid found in Cannabis sativa plants, has been the focus of recent studies due to its potential therapeutic properties. We proposed that by focusing on sphingolipid metabolism, which plays a critical role in insulin signaling and the development of insulin resistance, CBG may provide a novel therapeutic approach for metabolic disorders, particularly insulin resistance. METHODS In a rat model of insulin resistance induced by a high-fat, high-sucrose diet (HFHS), we aimed to elucidate the effect of intragastrically administered CBG on hepatic sphingolipid deposition and metabolism. Moreover, we also elucidated the expression of sphingolipid transporters and changes in the sphingolipid concentration in the plasma. RESULTS The results, surprisingly, showed a lack of changes in de novo ceramide synthesis pathway enzymes and significant enhancement in the expression of enzymes involved in ceramide catabolism, which was confirmed by changes in hepatic sphingomyelin, sphinganine, sphingosine-1-phosphate, and sphinganine-1-phosphate concentrations. CONCLUSIONS The results suggest that CBG treatment may modulate sphingolipid metabolism in the liver and plasma, potentially protecting the liver against the development of metabolic disorders such as insulin resistance.
Collapse
Affiliation(s)
- Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Piotr Franciszek Kurzyna
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Adam Hołownia
- Department of Pharmacology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | | |
Collapse
|
43
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
44
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
45
|
Saurabh K, Mbadhi MN, Prifti KK, Martin KT, Frolova AI. Sphingosine 1-Phosphate Activates S1PR3 to Induce a Proinflammatory Phenotype in Human Myometrial Cells. Endocrinology 2023; 164:bqad066. [PMID: 37120767 PMCID: PMC10201982 DOI: 10.1210/endocr/bqad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
One of the common mechanisms responsible for obstetric complications, affecting millions of women every year, is abnormal uterine contractility. Despite the critical importance of this process for women's health, the mechanisms of uterine contraction regulation remain poorly understood. The initiation of uterine smooth muscle (myometrial) contraction is an inflammatory process, accompanied by upregulation of proinflammatory genes and cytokine release. In this study, we show that sphingolipid metabolism is activated during human labor and that sphingosine 1-phosphate (S1P), the main bioactive sphingolipid, may modify the myometrial proinflammatory phenotype. Our data in both primary and immortalized human myometrial cells show that exogenous S1P induces a proinflammatory gene signature and upregulates the expression of known inflammatory markers of parturition, such as IL8 and COX2. Using expression of IL8 as a readout for S1P activity in myometrial cells, we established that these S1P effects are mediated through the activation of S1P receptor 3 (S1PR3) and downstream activation of ERK1/2 pathways. Inhibition of S1PR3 in human myometrial cells attenuates upregulation of IL8, COX2, and JUNB both at the mRNA and protein levels. Furthermore, activation of S1PR3 with a receptor-specific agonist recapitulated the effects seen after treatment with exogenous S1P. Collectively, these results suggest a signaling pathway activated by S1P in human myometrium during parturition and propose new targets for development of novel therapeutics to alter uterine contractility during management of preterm labor or labor dystocia.
Collapse
Affiliation(s)
- Kumar Saurabh
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Magdaleena Naemi Mbadhi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin K Prifti
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kaci T Martin
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonina I Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|
47
|
Wang X, Huang R, Huang B, Li X. S1PR2 Regulates Autophagy Through the AKT/mTOR Pathway to Promote Pathological Damage in Alzheimer's Disease. J Alzheimers Dis 2023; 96:1489-1504. [PMID: 38007654 DOI: 10.3233/jad-230533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal and debilitating neurodegenerative disease. Sphingosine-1-phosphate receptor 2 (S1PR2), one of the receptors of S1P, is a key regulatory factor for various diseases. OBJECTIVE This study aimed to explore the role and possible mechanism of S1PR2 in AD. METHODS S1PR2 expression in the AD mice was detected, and after intervening S1PR2 expression with sh-S1PR2 in AD mice, the behavioral changes, pathological lesions of the hippocampus, autophagy level, and AKT/mTOR pathway activation were analyzed. Furthermore, SH-SY5Y cells were induced by Aβ25-35 to construct an AD cell model, and the effects of sh-S1PR2 on proliferation, apoptosis, autophagy, and AKT/mTOR pathway of AD cells were investigated. In addition, the effects of pathway inhibitor rapamycin on model cells were further analyzed. RESULTS The expression of S1PR2 was significantly increased in AD mice, the sh-S1PR2 significantly improved behavioral dysfunction, alleviated pathological injury of the hippocampus, increased the number of neurons, and inhibited Aβ production and p-tau expression, showing a positive effect on the AD pathology. In addition, silencing of S1PR2 expression significantly promoted the autophagy level and inhibited the activation of the AKT/mTOR pathway in AD model mice. In vitro experiments further confirmed that sh-S1PR2 promoted cell proliferation, inhibited apoptosis, relieved cytopathology, promoted autophagy, and inhibited the activation of the AKT/mTOR pathway in the cell model. The use of rapamycin further confirmed the role of AKT/mTOR pathway-mediated autophagy in the regulation of AD by S1PR2. CONCLUSION S1PR2 promoted AD pathogenesis by inhibiting autophagy through the activation of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| |
Collapse
|