1
|
Saif-Elnasr M, Elmalawany AM, Abdel-Khalek AF. The antioxidant and anti-inflammatory effects of gallic acid and/or cerium oxide nanoparticles synthesized by gamma-irradiation ameliorate cisplatin-induced hepatic injury. Arch Physiol Biochem 2025:1-13. [PMID: 40402839 DOI: 10.1080/13813455.2025.2507760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/30/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025]
Abstract
CONTEXT Cisplatin is a widely utilised chemotherapeutic agent for cancer therapy, but various systemic toxicities limit its effectiveness. OBJECTIVE This study aimed to assess the hepatoprotective properties expressed by gallic acid (GA) and gamma-irradiation synthesized cerium oxide nanoparticles (CONPs) in response to hepatic damage produced by cisplatin in albino rats. MATERIALS AND METHODS Serum AST and ALT activities and levels of MDA, TAC, NF‑kB, TNF‑α, and TGF‑β were determined in hepatic tissue, along with histopathological examination. RESULTS The executive impact of cisplatin led to a notable rise in the serum activity of hepatic enzymes AST and ALT. Conversely, in the groups receiving treatment with either or both GA and CONPs, the liver function enzymes exhibited a decline in their activity. In addition, in the hepatotoxicity models, the levels of hepatic MDA were significantly increased, accompanied by a reduction of hepatic TAC. While administration of GA, CONPs or their combination to cisplatin-injected rats resulted in a noteworthy reduction in MDA level. Conversely, the hepatic TAC level increased compared to the group that received cisplatin. The hepatic tissue architecture in rats exposed to cisplatin was found to undergo significant alterations. Furthermore, the cisplatin induced overexpression of NF-kB, TNF-α, and TGF-β. The hepatic histopathological changes observed in rats induced with cisplatin were significantly attenuated after pre-treatment with GA, CONPs, and their combination. GA, CONPs, and their co-administration resulted in reducing the levels of NF-κB, TNF-α and TGF-β compared to the group received cisplatin. DISCUSSION AND CONCLUSION In summary, GA and CONPs synthesized by gamma-irradiation resulted in a noteworthy reduction of liver damage caused by cisplatin exposure. Their potent antioxidant and immunoprotective properties were cited as the cause of this phenomenon.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Assmaa Fathi Abdel-Khalek
- Internal Medicine Unit, Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Jee YM, Lee JY, Ryu T. Chronic Inflammation and Immune Dysregulation in Metabolic-Dysfunction-Associated Steatotic Liver Disease Progression: From Steatosis to Hepatocellular Carcinoma. Biomedicines 2025; 13:1260. [PMID: 40427086 PMCID: PMC12109540 DOI: 10.3390/biomedicines13051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Metabolic-dysfunction-associated steatotic liver disease (MASLD) progresses from hepatic steatosis to hepatocellular carcinoma (HCC) as a result of systemic immunometabolic dysfunction. This review summarizes the key roles of the innate and adaptive immune mechanisms driving hepatic injury, fibrogenesis, and carcinogenesis in MASLD. Methods: A comprehensive literature review was performed using PubMed to identify relevant published studies. Eligible articles included original research and clinical studies addressing immunological and metabolic mechanisms in MASLD, as well as emerging therapeutic strategies. Results: We highlight the roles of cytokine networks, the gut-liver axis, and immune cell reprogramming. Emerging therapeutic strategies, including cytokine inhibitors, anti-fibrotic agents, metabolic modulators, and nutraceuticals, offer several indications for attenuating MASLD progression and reducing the prevalence of extrahepatic manifestations. Conclusions: Given the heterogeneity of MASLD, personalized combination-based approaches targeting both inflammation and metabolic stress are essential for effective disease management and the prevention of systemic complications.
Collapse
Affiliation(s)
- Young-Min Jee
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
- Department of Family Medicine, Graduate School of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Yoon Lee
- Department of Neurology, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
- Department of Translational Medicine, Graduate School of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
3
|
Ciftel S, Ciftel S, Altuner D, Huseynova G, Yucel N, Mendil AS, Sarigul C, Suleyman H, Bulut S. Effects of adenosine triphosphate, thiamine pyrophosphate, melatonin, and liv-52 on subacute pyrazinamide proliferation hepatotoxicity in rats. BMC Pharmacol Toxicol 2025; 26:67. [PMID: 40128909 PMCID: PMC11931754 DOI: 10.1186/s40360-025-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hepatotoxicity of pyrazinamide, an antituberculosis drug, limits its therapeutic use and oxidative stress has been implicated in this toxicity. This study investigated the protective effects of adenosine triphosphate (ATP), thiamine pyrophosphate (TPP), melatonin, and Liv-52, which have previously been shown antioxidant activities, on pyrazinamide-induced hepatotoxicity. METHODS 36 albino Wistar male rats were divided into randomized six groups; healthy (HG), pyrazinamide (PZG), ATP + pyrazinamide (APZG), TPP + pyrazinamide (TPZG), melatonin + pyrazinamide (MPZG) and Liv-52 + pyrazinamide (LPZG) groups. ATP 4 mg/kg and TPP 25 mg/kg were administered intraperitoneally (IP). Melatonin 10 mg/kg and Liv-52 20 mg/kg were given orally. One hour after administration of ATP, TPP, melatonin, and Liv-52, 250 mg/kg pyrazinamide was applied orally to all rats except HG group. The treatment was repeated (1 × 1) for 4 weeks. Then, blood samples were taken for determination of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Immediately after, the rats were euthanized with thiopental sodium (50 mg/kg, IP), and the livers were removed. The tissues were analyzed for malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) also hydropic degeneration, necrosis, and apoptosis (caspase 3) were examined.One-Way ANOVA was used in biochemical analyses and Tukey test was used as post-hoc. For histopathological and immunohistochemical analysis, the Kruskal-Wallis test was used and Dunn's test as a post-hoc. RESULTS Pyrazinamide increased MDA land decreased tGSH, SOD, and CAT levels in liver tissues (p < 0.001). It also increased serum ALT and AST activities and caused severe hydropic degeneration and necrosis in liver tissue (p < 0.001). ATP, TPP, melatonin, and Liv-52 significantly prevented the biochemical and histopathological changes induced by pyrazinamide (p < 0.05). On the other hand, Liv-52 was more successful than other potential protectors in protecting liver tissue from pyrazinamide damage (p < 0.05). CONCLUSIONS ATP, TPP, melatonin, and Liv-52 can be used to protect liver tissue from pyrazinamide-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Sedat Ciftel
- Division of Gastroenterology, Erzurum City Hospital, Erzurum, Turkey
| | - Serpil Ciftel
- Department of Endocrinology, Faculty of Medicine, Health Science University, Erzurum, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulbaniz Huseynova
- Department of Pharmacology, Azerbaijan Medical University named after Nariman Narimanov, Baku, Azerbaijan
| | - Nurinisa Yucel
- Pharmacy Services Program, Vocational School of Health Services, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary, Erciyes University, Kayseri, Turkey
| | - Cengiz Sarigul
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
4
|
Kruse LD, Holte C, Zapotoczny B, Struck EC, Schürstedt J, Hübner W, Huser T, Szafranska K. Hydrogen peroxide damage to rat liver sinusoidal endothelial cells is prevented by n-acetyl-cysteine but not GSH. Hepatol Commun 2025; 9:e0617. [PMID: 40163767 PMCID: PMC11737494 DOI: 10.1097/hc9.0000000000000617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are prevalent in the liver during intoxication, infection, inflammation, and aging. Changes in liver sinusoidal endothelial cells (LSEC) are associated with various liver diseases. METHODS Isolated rat LSEC were studied under oxidative stress induced by H2O2 at different concentrations (0.5-1000 µM) and exposure times (10-120 min). LSEC functions were tested in a dose-dependent and time-dependent manner. RESULTS (1) Cell viability, reducing potential, and scavenging function decreased as H2O2 concentration and exposure time increased; (2) intracellular ROS levels rose with higher H2O2 concentrations; (3) fenestrations exhibited a dynamic response, initially closing but partially reopening at H2O2 concentrations above 100 µM after about 1 hour; (4) scavenging function was affected after just 10 minutes of exposure, with the impact being irreversible and primarily affecting degradation rather than receptor-mediated uptake; (5) the tubulin network was disrupted in high H2O2 concentration while the actin cytoskeleton appears to remain largely intact. Finally, we found that reducing agents and thiol donors such as n-acetyl cysteine and glutathione (GSH) could protect cells from ROS-induced damage but could not reverse existing damage as pretreatment with n-acetyl cysteine, but not GSH, reduced the negative effects of ROS exposure. CONCLUSIONS The results suggest that LSEC does not store an excess amount of GSH but rather can readily produce it in the occurrence of oxidative stress conditions. Moreover, the observed thresholds in dose-dependent and time-dependent changes, as well as the treatments with n-acetyl cysteine/GSH, confirm the existence of a ROS-depleting system in LSEC.
Collapse
Affiliation(s)
- Larissa D. Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Christopher Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | | | - Eike C. Struck
- Translational Vascular Research Group, Department of Clinical Medicine, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Jasmin Schürstedt
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Thomas Huser
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Arroyave-Ospina JC, Martínez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants (Basel) 2025; 14:175. [PMID: 40002362 PMCID: PMC11851918 DOI: 10.3390/antiox14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. METHODS Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. RESULTS CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. CONCLUSIONS CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
Collapse
Affiliation(s)
- Johanna C. Arroyave-Ospina
- Department of Fisiología y Bioquímica and Grupo de Gastrohepatología, Facultad de Medicina Universidad de Antioquia, Medellín 050010, Colombia
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Magnolia Martínez
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Victoria Palasantzas
- Department of Genetics and Department of Pediatrics, University Medical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands;
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| |
Collapse
|
6
|
Chen G, Xin Y, Hammour MM, Braun B, Ehnert S, Springer F, Vosough M, Menger MM, Kumar A, Nüssler AK, Aspera-Werz RH. Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening. Arch Toxicol 2025; 99:333-356. [PMID: 39503877 PMCID: PMC11742461 DOI: 10.1007/s00204-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.
Collapse
Affiliation(s)
- Guanqiao Chen
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Yuxuan Xin
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian M Menger
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Andani FM, Talebi-Garakani E, Ashabi G, Ganbarirad M, Hashemnia M, Sharifi M, Ghasemi M. Exercise-activated hepatic autophagy combined with silymarin is associated with suppression of apoptosis in rats subjected to dexamethasone induced- fatty liver damage. Mol Biol Rep 2024; 51:928. [PMID: 39172304 DOI: 10.1007/s11033-024-09844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
AIM There is a need for effective treatments for non-alcoholic fatty liver disease (NAFLD) that are economically inexpensive, and have few side effects. The present study aimed to investigate exercise training and silymarin on hepatocyte death factors in rats with liver damage. METHODS Forty-nine male Wistar rats were assigned to seven groups: sedentary control, fatty liver control (DEX), fatty liver + high-intensity interval training (HIIT), fatty liver + HIIT + silymarin (HIIT + SILY), fatty liver + continuous training (CT), fatty liver + CT + silymarin (CT + SILY), and fatty liver + silymarin (SILY). A subcutaneous injection of dexamethasone for 7 days was used to induce fatty liver in rats. Masson's trichrome and hematoxylin-eosin staining were done to evaluate hepatic injury. The hepatocyte apoptosis was determined by TUNEL assay. Real-Time PCR was conducted to evaluate the gene expressions of caspase-9, adenosine monophosphate-activated protein kinase (AMPKα1), mitofusin 2 (Mfn2), and damage-regulated autophagy modulator (DRAM). Liver tissue changes and serum levels of liver enzymes were also evaluated. RESULTS Liver apoptosis was decreased in the CT, HIIT, HIIT + SILY and CT + SILY groups compared to the DEX group. Both continuous and high-intensity training models produced beneficial alterations in liver morphology and hepatic injuries that were significant in exercise training + silymarin group. This impact was accompanied by increased AMPKα1 and DRAM gene expression and decreased caspase-9 and Mfn2 gene expression. Liver enzyme levels were high in the DEX group and treatment with silymarin significantly reduced it. CONCLUSION Silymarin supplementation combined with interval or continuous training substantially improves DEX-induced hepatic steatosis and hepatocyte injury mostly through suppressing liver apoptosis and upregulating autophagy, which may provide a novel perspective for NAFLD treatment.
Collapse
Affiliation(s)
- Fatemeh Mokhtari Andani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Talebi-Garakani
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Mazandaran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ganbarirad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Wang F, Zhou L, Mu D, Zhang H, Zhang G, Huang X, Xiong P. Current research on ecotoxicity of metal-based nanoparticles: from exposure pathways, ecotoxicological effects to toxicity mechanisms. Front Public Health 2024; 12:1390099. [PMID: 39076413 PMCID: PMC11284070 DOI: 10.3389/fpubh.2024.1390099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Metal-based nanoparticles have garnered significant usage across industries, spanning catalysis, optoelectronics, and drug delivery, owing to their diverse applications. However, their potential ecological toxicity remains a crucial area of research interest. This paper offers a comprehensive review of recent advancements in studying the ecotoxicity of these nanoparticles, encompassing exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it delves into the challenges and future prospects in this research domain. While some progress has been made in addressing this issue, there is still a need for more comprehensive assessments to fully understand the implications of metal-based nanoparticles on the environment and human well-being.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu, China
| | - Li Zhou
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehong Mu
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, China
| | - Xiangming Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peizheng Xiong
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Kaur B, Bakshi RK, Siwatch S. A Narrative Review of Oxidative Stress and Liver Disease in Pregnancy: The Role of Antioxidants. Cureus 2024; 16:e64714. [PMID: 39156333 PMCID: PMC11327959 DOI: 10.7759/cureus.64714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Pregnancy brings numerous physiological changes to the body of the pregnant woman. Liver diseases in pregnancy contribute to increased oxidative stress, disrupting the delicate balance between reactive oxygen species and antioxidant defence. Antioxidant supplementation may have potential benefits in addressing pregnancy-related liver disorders, such as HELLP (haemolysis, elevated liver enzymes, low platelet count) and preeclampsia-associated liver dysfunction in pregnancy. The purpose of this narrative review is to review the evidence regarding oxidative stress in liver disorders during pregnancy and the role of antioxidants in alleviating oxidative stress and its effect on maternal and foetal outcomes. A narrative review study design involved a comprehensive search across three scientific databases: PubMed, Embase, and MEDLINE, published in the last 20 years. The searches were performed up to January 2024. Thirty-two studies were included in the narrative review. The most studied antioxidants were vitamins (vitamin C and E) for their role in clinical treatment, prophylaxis, and clearing surrogate oxidative stress markers. The majority of studies were on preeclampsia. Though the existing literature is not robust, available evidence suggests that antioxidant supplementation may have potential benefits in addressing pregnancy-related liver disorders, such as HELLP and preeclampsia-associated liver dysfunction in pregnancy. However, there is a need to establish consistent protocols, ethical standards, and well-designed clinical trials to clarify the timing and dosage of antioxidants in pregnancy. Antioxidants may alleviate the oxidative stress in various liver disorders during pregnancy, which still needs to be studied further for their clinical relevance.
Collapse
Affiliation(s)
- Bandhanjot Kaur
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Ravleen K Bakshi
- Department of Health Research, Division of Reproductive Biology, Maternal, and Child Health, Indian Council of Medical Research, Ministry of Health and Family Welfare, New Delhi, IND
| | - Sujata Siwatch
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| |
Collapse
|
10
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Xie W, Deng L, Qian R, Huang X, Liu W, Tang S. Curculigoside Attenuates Endoplasmic Reticulum Stress-Induced Epithelial Cell and Fibroblast Senescence by Regulating the SIRT1-P300 Signaling Pathway. Antioxidants (Basel) 2024; 13:420. [PMID: 38671868 PMCID: PMC11047561 DOI: 10.3390/antiox13040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The senescence of alveolar epithelial cells (AECs) and fibroblasts plays a pivotal role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a condition lacking specific therapeutic interventions. Curculigoside (CCG), a prominent bioactive constituent of Curculigo, exhibits anti-osteoporotic and antioxidant activities. Our investigation aimed to elucidate the anti-senescence and anti-fibrotic effects of CCG in experimental pulmonary fibrosis and delineate its underlying molecular mechanisms. Our findings demonstrate that CCG attenuates bleomycin-induced pulmonary fibrosis and lung senescence in murine models, concomitantly ameliorating lung function impairment. Immunofluorescence staining for senescence marker p21, alongside SPC or α-SMA, suggested that CCG's mitigation of lung senescence correlates closely with the deceleration of senescence in AECs and fibroblasts. In vitro, CCG mitigated H2O2-induced senescence in AECs and the natural senescence of primary mouse fibroblasts. Mechanistically, CCG can upregulate SIRT1 expression, downregulating P300 expression, enhancing Trim72 expression to facilitate P300 ubiquitination and degradation, reducing the acetylation levels of antioxidant enzymes, and upregulating their expression levels. These actions collectively inhibited endoplasmic reticulum stress (ERS) and alleviated senescence. Furthermore, the anti-senescence effects and mechanisms of CCG were validated in a D-galactose (D-gal)-induced progeroid model. This study provides novel insights into the mechanisms underlying the action of CCG in cellular senescence and chronic diseases, offering potential avenues for the development of innovative drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Weixi Xie
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
- The School of Nursing, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
12
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|