1
|
Jiang Y, Song H, Zhang G, Ling J. The application of medicinal fungi from the subphylum Ascomycota in the treatment of type 2 diabetes. JOURNAL OF FUTURE FOODS 2025; 5:361-371. [DOI: 10.1016/j.jfutfo.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Fan B, Yin L, Wang A', Li F, Han S. PIM1 enhances insulin secretion and inhibits ferroptosis of high glucose-induced pancreatic β-cells through strengthening PINK1/Parkin-mediated mitophagy via inactivating JNK/p38 signaling pathway. Tissue Cell 2025; 93:102722. [PMID: 39813743 DOI: 10.1016/j.tice.2025.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development. METHODS In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model. For gain-of-function experiments, HG-treated INS-1E cells were transfected with Oe-PIM1 to thoroughly discuss the biological role of PIM1 in HG-injured pancreatic β-cells. Furthermore, to probe into whether JNK/p38 signaling involved in the protective role of PIM1 in HG-injured pancreatic β-cells, HG-treated INS-1E cells were pre-treated with a JNK activator anisomycin (0.01 μM) for 1 h for rescue experiments. RESULTS It was verified that HG treatment obviously downregulated PIM1 expression in INS-1E cells. PIM1 overexpression enhanced insulin secretion, inhibited ferroptosis and strengthened PINK1/Parkin-mediated mitophagy of HG-treated INS-1E cells. PIM1 overexpression inactivated JNK/p38 signaling pathway in HG-treated INS-1E cells. Activation of JNK/p38 signaling pathway partially abolished the strengthening effects of PIM1 overexpression on PINK1/Parkin-mediated mitophagy in HG-treated INS-1E cells. Upregulation of PIM1 strengthened PINK1/Parkin-mediated mitophagy in HG-injured pancreatic β-cells via inactivating JNK/p38 signaling pathway. Besides, activation of JNK/p38 signaling pathway partially abolished the enhancing effects of PIM1 overexpression on insulin secretion and the suppressive effects of PIM1 overexpression on ferroptosis in HG-treated INS-1E cells. Upregulation of PIM1 enhanced insulin secretion and inhibited ferroptosis in HG-injured pancreatic β-cells via inactivating JNK/p38 signaling pathway. CONCLUSION In a word, upregulation of PIM1 may alleviate HG-induced pancreatic β-cell injury through strengthening PINK1/Parkin-mediated mitophagy via inactivating JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Bingjie Fan
- Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China
| | - Lili Yin
- Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China
| | - A 'ni Wang
- Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China
| | - Fei Li
- Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China
| | - Shuguang Han
- Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China.
| |
Collapse
|
3
|
Ren T, Fan X, Wu Q, Wu Y, Sun X, Tong H. Structural insights and therapeutic potential of plant-based pectin as novel therapeutic for type 2 diabetes mellitus: A review. Int J Biol Macromol 2025; 307:141876. [PMID: 40064270 DOI: 10.1016/j.ijbiomac.2025.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge with limited efficacy of current treatments, necessitating alternative therapies. Plant-derived pectin, composed of galacturonic acid and structural domains such as homogalacturonan, has shown promise as an anti-diabetic agent. Pectin exerts its therapeutic effects through multiple mechanisms, including enhancing β-cell function, regulating glucose metabolism, improving insulin sensitivity, inhibiting digestive enzymes, and restoring gut microbiota balance. Its bioactivity is influenced by physicochemical properties like molecular weight, degree of methylation, and structural complexity. This review explores the anti-diabetic potential of pectin, its structure-activity relationships, and mechanisms of action, providing insights for its development as a novel therapeutic agent in T2DM management.
Collapse
Affiliation(s)
- Ting Ren
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Sun
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
4
|
Li X, Zhou D, Liu M, Zeng H, Yu X, Song Y, He Q, Liu X, Zhang H, Shen Z, Zhu Z, Gu M, Hu X, Zhou W. Evaluation of anti-diabetic effects of glimepiride/metformin cocrystal. J Drug Target 2025; 33:397-409. [PMID: 39484922 DOI: 10.1080/1061186x.2024.2424901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Emerging data suggest that cocrystal of two compounds may have a different pharmacological effect from two compounds alone or their physical combination. Glimepiride (Gli) and metformin (Met) are two types of anti-diabetic drugs. Previously, we generated the glimepiride/metformin cocrystal (GM). In this study, we evaluated the anti-diabetic effects of GM and explored the underlying mechanisms. Our result showed that GM reduced the blood glucose and HbA1c levels in db/db mice, and low doses of GM can achieve the hypoglycaemic effect as Gli or Met alone, and high dose of GM was better than Gli and Met alone in improving the pathological changes of liver. In vivo studies showed that GM activated AMPK and STAT3 signalling, downregulated TXNIP expression and upregulated MaFA expression. Moreover, GM promoted the secretion of insulin in pancreas of db/db mice and in high glucose-treated INS-1 and MIN-6 cells. Together, GM possesses slightly better anti-diabetic effects than Met or Gli alone in db/db mice, and the mechanism of GM protecting β-cell dysfunction induced by glucotoxicity may be associated with activation of the AMPK/TXNIP/MaFA pathway.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Huan Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Zeng Zhu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mingyan Gu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiangnan Hu
- Department of Pharmacochemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| |
Collapse
|
5
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
6
|
Chen X, Xie N, Feng L, Huang Y, Wu Y, Zhu H, Tang J, Zhang Y. Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies. Chin Med J (Engl) 2025; 138:15-27. [PMID: 39503316 PMCID: PMC11717531 DOI: 10.1097/cm9.0000000000003230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Oxidative stress due to aberrant metabolism is considered as a crucial contributor to diabetes and its complications. Hyperglycemia and hyperlipemia boost excessive reactive oxygen species generation by elevated mitochondrial respiration, increased nicotinamide adenine dinucleotide phosphate oxidase activity, and enhanced pro-oxidative processes, including protein kinase C pathways, hexosamine, polyol, and advanced glycation endproducts, which exacerbate oxidative stress. Oxidative stress plays a significant role in the onset of diabetes and its associated complications by impairing insulin production, increasing insulin resistance, maintaining hyperglycemic memory, and inducing systemic inflammation. A more profound comprehension of the molecular processes that link oxidative stress to diabetes is crucial to new preventive and therapeutic strategies. Therefore, this review discusses the mechanisms underlying how oxidative stress contributes to diabetes mellitus and its complications. We also summarize the current approaches for prevention and treatment by targeting the oxidative stress pathways in diabetes.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Xie
- Sichuan International Science and Technology Center for Stress Medicine, West China School of Basic Medical Sciences and Forensic Medicine and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lixiang Feng
- Sichuan International Science and Technology Center for Stress Medicine, West China School of Basic Medical Sciences and Forensic Medicine and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujing Huang
- Sichuan International Science and Technology Center for Stress Medicine, West China School of Basic Medical Sciences and Forensic Medicine and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuyao Wu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao 999078, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Chen S, Suo J, Wang Y, Tang C, Ma B, Li J, Hou Y, Yan B, Shen T, Zhang Q, Ma B. Cordycepin alleviates diabetes mellitus-associated hepatic fibrosis by inhibiting SOX9-mediated Wnt/β-catenin signal axis. Bioorg Chem 2024; 153:107812. [PMID: 39260158 DOI: 10.1016/j.bioorg.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Diabetes mellitus can induce liver injury and easily progress to liver fibrosis. However, there is still a lack of effective treatments for diabetes-induced hepatic fibrosis. Cordycepin (COR), a natural nucleoside derived from Cordyceps militaris, has demonstrated remarkable efficacy in treating metabolic diseases and providing hepatoprotective effects. However, its protective effect and underlying mechanism in diabetes-induced liver injury remain unclear. This study utilized a high-fat diet/streptozotocin-induced diabetic mouse model, as well as LX-2 and AML-12 cell models exposed to high glucose and TGF-β1, to explore the protective effects and mechanisms of Cordycepin in liver fibrosis associated with diabetes. The results showed that COR lowered blood glucose levels, enhanced liver function, mitigated fibrosis, and suppressed HSC activation in diabetic mice. Mechanistically, COR attenuated the activation of the Wnt/β-catenin pathway by inhibiting β-catenin nuclear translocation, and β-catenin knockdown further intensified this effect. Meanwhile, COR significantly inhibited SOX9 expression in vivo and in vitro. Knockdown of SOX9 downregulated Wnt3a and β-catenin expression at the protein and gene levels to exacerbate the inhibitory action of COR on HG&TGF-β1-induced HSCs activations. These results indicate SOX9 is involved in the mechanism by which COR deactivates the Wnt/β-catenin pathway in hepatic fibrosis induced by diabetes. Moreover, prolonged half-life time, slower metabolism and higher exposure of COR were observed in diabetes-induced liver injury animal model via pharmacokinetics studies. Altogether, COR holds potential as a therapeutic agent for ameliorating hepatic injury and fibrosis in diabetes by suppressing the activation of the SOX9-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing 210000, PR China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yuyang Hou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Bingrong Yan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Su Y, Fu X, Zhuang P. Untargeted Metabolomics Analysis of Lactic Acid Bacteria Fermented Acanthopanax senticosus with Regard to Regulated Gut Microbiota in Mice. Molecules 2024; 29:4074. [PMID: 39274922 PMCID: PMC11396594 DOI: 10.3390/molecules29174074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Previous studies have shown that Acanthopanax senticosus (AS) has a beneficial preventive and therapeutic effect on colitis. The fermentation of lactic acid bacteria (LAB) can alter the efficacy of AS by modifying or producing new compounds with potential bioactive properties. However, the specific components and mechanisms that enhance the efficacy are still unclear. In the present experiment, untargeted metabolomics was used to analyze the changes in active components before and after LAB fermentation of AS. The aim was to explain the mechanism of AS fermentation in treating colitis using a colitis model in mice. The results indicated that the fermentation of LAB could enhance the levels of total flavonoids and total polyphenols in FAS. Additionally, the beneficial components such as Delphinidin chloride, Diosmetin, Psoralidin, and Catechol significantly increased (p < 0.05). The colitis treatment experiment demonstrated that fermented AS could alleviate symptoms and improve the morphology of colitis in mice by enhancing antioxidant enzymes like CAT, T-SOD, and T-AOC. It also regulated the composition and abundance of intestinal flora species, such as Lactobacillus and Pseudogracilibacillus. The effectiveness of fermented AS was significantly superior to that of unfermented AS (p < 0.05). In conclusion, this study contributes to the application of lactic acid bacteria in AS fermentation and reveals the mechanism of fermentation AS for colitis.
Collapse
Affiliation(s)
- Yuanyuan Su
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Fu Y, Wang Q, Tang Z, Liu G, Guan G, Lyu J. Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis. Nutrients 2024; 16:2859. [PMID: 39275176 PMCID: PMC11396883 DOI: 10.3390/nu16172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. METHODS In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. RESULTS CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. CONCLUSIONS According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
Collapse
Affiliation(s)
- Yifeng Fu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiangfeng Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Tang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guiping Guan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jin Lyu
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| |
Collapse
|
10
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
11
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
12
|
Cheng C, Li W, Ye Y, Zhu Y, Tang M, Hu Z, Su H, Dang C, Wan J, Liu Z, Gong Y, Yao LH. Lactate induces C2C12 myoblasts differentiation by mediating ROS/p38 MAPK signalling pathway. Tissue Cell 2024; 87:102324. [PMID: 38354685 DOI: 10.1016/j.tice.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Lactate serves not merely as an energy substrate for skeletal muscle but also regulates myogenic differentiation, leading to an elevation of reactive oxygen species (ROS) levels. The present study was focused on exploring the effects of lactate and ROS/p38 MAPK in promoting C2C12 myoblasts differentiation. Our results demonstrated that lactate increased C2C12 myoblasts differentiation at a range of physiological concentrations, accompanied by enhanced ROS contents. We used n-acetylcysteine (NAC, a ROS scavenger) pretreatment and found that it delayed lactate-induced C2C12 myoblast differentiation by upregulating Myf5 expression on days 5 and 7 and lowering MyoD and MyoG expression. The finding implies that lactate accompanies ROS-dependent manner to promote C2C12 myoblast differentiation. Additionally, lactate significantly increased p38 MAPK phosphorylation to promote C2C12 cell differentiation, but pretreatment with SB203580 (p38 MAPK inhibitor) reduced lactate-induced C2C12 myoblasts differentiation. whereas lactate pretreatment with NAC inhibited p38 MAPK phosphorylation in C2C12 cells, demonstrating that lactate mediated ROS and regulated the p38 MAPK signalling pathway to promote C2C12 cell differentiation. In conclusion, our results suggest that the promotion of C2C12 myoblasts differentiation by lactate is dependent on ROS and the p38 MAPK signalling pathway. These observations reveal a beneficial role for lactate in increasing myogenesis through ROS-sensitive mechanisms as well as providing new ideas regarding the positive impact of ROS in improving the function of skeletal muscle.
Collapse
Affiliation(s)
- Chunfang Cheng
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wenxi Li
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yuanqian Ye
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yuanjie Zhu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Mengyuan Tang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Zhihong Hu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Hu Su
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Caixia Dang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Juan Wan
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Zhibin Liu
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yanchun Gong
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, PR China.
| | - Li-Hua Yao
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
13
|
Hu J, Jiang J, Xu B, Li Y, Wang B, He S, Ren X, Shi B, Zhang X, Zheng H, Hua B, Liu R. Bioinformatics analyses of infiltrating immune cell participation on pancreatic ductal adenocarcinoma progression and in vivo experiment of the therapeutic effect of Shuangshen granules. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117590. [PMID: 38113986 DOI: 10.1016/j.jep.2023.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen granules (SSG), a nationally patented Chinese medicinal formula, including Panax quinquefolium L., Panax notoginseng (Burkill) F. H. Chen, and Cordyceps sinensis (Berk.) Sacc., has demonstrated remarkable therapeutic effects on pancreatic cancer in clinical treatment for nearly 10 years. Previous pharmacological researches have found that its main components, including ginsenosides and cordycepin have anticancer or preventive effects on pancreatic ductal adenocarcinoma (PDAC), which may be associated with immune metabolism. However, the underlying pharmacological mechanism of SSG in the truncation effect of PDAC progression is still unclear. AIM OF THE STUDY To comprehensively understand the infiltrating immune cells during the different stages of the PDAC development chain and search for immune-related biomarkers that could potentially serve as drug targets through bioinformatic analysis. Meanwhile, the truncation effect of SSG on PDAC progression was also investigated. MATERIALS AND METHODS The gene expression profiles at different PDAC developmental stages, including normal pancreas, pancreatic intraepithelial neoplasia (PanIN), and PDAC, were retrieved from the GEO database. The GEO2R tool was used to identify differentially expressed genes among the three groups. Functional enrichment analysis was performed with the GSEA software and Metascape platform. The CIBERSORT algorithm evaluated immune cell infiltration in the three groups, and immune-related biomarkers were identified. Correlation analysis was employed to examine the association between immune cells and the biomarkers. One of these biomarkers was selected for immunohistochemistry validation in human samples. Lastly, the effectiveness of SSG against PDAC progression and the influence on the selected biomarker were validated in vivo. The underlying pharmacological mechanisms were also explored. RESULTS One dataset was obtained, where the functional enrichment of DEGs primarily involved immune effector processes and cytokine production of immune cells. The differential immune cells reflected during the progression from PanIN to PDAC were B memory cells, monocytes, M2 macrophages, and activated dendritic cells. The upregulation of ACTA2 was closely associated with M2 macrophage regulation. The immunohistochemistry on human samples validated significant differences in ACTA2 expression levels as the PDAC progressed. Moreover, animal experiments revealed that the national patented drug SSG ameliorated the pathological changes, decreased the expression of ACTA2 and its functional protein α-smooth muscle actin during PDAC progression. The underlying pharmacological mechanism was related to the regulation of macrophage polarization and downregulation of TGF-β/Smad signaling pathway. CONCLUSIONS The immunosuppressive environment changes during the PDAC progression. ACTA2 is a potential immuned-target for drug prevention of PDAC, while SSG could be a promising drug candidate.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Ren
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Sun Y, Bai YP, Wang DG, Xing YJ, Zhang T, Wang W, Zhou SM, Cheng JH, Chang WW, Kong X, Yao XM, Guo LQ. Protective effects of metformin on pancreatic β-cell ferroptosis in type 2 diabetes in vivo. Biomed Pharmacother 2023; 168:115835. [PMID: 37924788 DOI: 10.1016/j.biopha.2023.115835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Metformin (Met) is the recommended first-line therapeutic drug for type 2 diabetes mellitus (T2DM) and exerts protective effects on β-cell damage. Ferroptosis, a new form of cell death, is associated with pancreatic islet injury in patients with T2DM. However, the protective effects of Met treatment against β-cell damage through ferroptosis modulation remain under-reported. This study investigated the in vivo effects of Met treatment on pancreatic β-cell ferroptosis using two different diabetic mouse models, namely, low-dose streptozotocin (STZ) and high-fat diet (HFD)-induced diabetic mice and db/db mice. Met treatment significantly restored insulin release, reduced cell mortality, and decreased the overproduction of lipid-related reactive oxygen species in the islets of both STZ/HFD-induced diabetic mice and db/db mice. Administration of the Ras-selective lethal 3 injection significantly attenuated the antiferroptosis effects of Met. Mechanistically, Met treatment alleviated β-cell ferroptosis in T2DM, which was associated with the regulation of the GPX4/ACSL4 axis in the islets. In conclusion, our findings highlight the significance of ferroptosis in T2DM β-cell damage and provide novel insights into the protective effects of Met against islet β cells.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gerontology, Geriatric endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Yu-Jie Xing
- Department of Gerontology, Geriatric endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Teng Zhang
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Wen Wang
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Si-Min Zhou
- Department of Gerontology, Geriatric endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China
| | - Jin-Han Cheng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Wei-Wei Chang
- Department of Epidemiology and Health statistics, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Xiang Kong
- Department of Gerontology, Geriatric endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Central Laboratory of Yijishan Hospital, Wuhu 241001, China.
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China.
| | - Li-Qun Guo
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
15
|
Jing X, Hong F, Xie Y, Xie Y, Shi F, Wang R, Wang L, Chen Z, Liu XA. Dose-dependent action of cordycepin on the microbiome-gut-brain-adipose axis in mice exposed to stress. Biomed Pharmacother 2023; 168:115796. [PMID: 38294969 DOI: 10.1016/j.biopha.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 02/02/2024] Open
Abstract
The high risk for anxiety and depression among individuals with stress has become a growing concern globally. Stress-related mental disorders are often accompanied by symptoms of metabolic dysfunction. Cordycepin is a Chinese herbal medicine commonly used for its metabolism-enhancing effects. We aimed to investigate the dose-dependent effects of cordycepin on psycho-metabolic disorders induced by stress. Our behavioral tests revealed that 12.5 mg/kg cordycepin by oral gavage significantly attenuated the anxiety- and depression-like behaviors induced by stress in mice. At 25 mg/kg, cordycepin restored the reduced weight and cell size of adipose tissues caused by stress. Besides ameliorating the metabolic dysbiosis of gut microbiota due to stress, cordycepin significantly reduced the elevated contents of 5-hydroxyindoleacetic acid in the serum and prefrontal cortex at 12.5 mg/kg and reversed the decrease in adipose induced by stress at 25 mg/kg. Correlation analyses further revealed that 12.5 mg/kg cordycepin reversed stress-induced changes in the intestinal microbiome of NK4A214_group and decreased serum Myristic acid and PC(15:0/18:1(11Z)) and cytokines, such as IFN-γ and IL-1β. 25 mg/kg cordycepin reversed stress-induced changes in the abundances of Prevoteaceae_UCG-001 and Desulfovibrio, increased serum L-alanine level, and decreased serum Inosine-5'-monophosphate level. Cordycepin thereby ameliorated the anxiety- and depression-like behaviors as well as disturbances in the adipose metabolism of mice exposed to stress. Overall, these findings offer evidence indicating that the prominent effects of cordycepin in the brain and adipose tissues are dose dependent, thus highlight the importance of evaluating the precise therapeutic effects of different cordycepin doses on psycho-metabolic diseases.
Collapse
Affiliation(s)
- Xiaoyuan Jing
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Feng Hong
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yinfang Xie
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yutong Xie
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Shi
- Shenzhen Chenlu Biotechnology Co., Ltd, Shenzhen, China
| | - Ruoxi Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|