1
|
Han L, Tian X, Yang X, Li T, Wang S, Bao Y, Meng X. The pathogenesis of hepatocellular carcinoma: ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and Epimedium extract targeted modulation of this pathway to treat hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156666. [PMID: 40121885 DOI: 10.1016/j.phymed.2025.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The pathogenesis of hepatocellular carcinoma (HCC) is characterized by its complexity and diversity, involving processes such as glycolysis, autophagy, and cellular immunity. Notably, the role of ERK/ULK1/NCOA4-mediated inhibition of iron autophagy in HCC pathogenesis has not been previously reported. This study provides a novel elucidation of HCC pathogenesis and identifies the clinical adjuvant therapy drug, Epimedium, as a potential treatment based on this mechanism. The research clarifies the regulatory effects of Epimedium on the ERK/ULK1/NCOA4-mediated inhibition of iron autophagy pathway in the treatment of HCC, thereby offering a scientific foundation for clinical treatment strategies and the development of innovative drugs. PURPOSE The objective of this study is to uncover a new aspect of HCC pathogenesis, ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and to screen for clinical targeted adjuvant therapy drugs based on this mechanism. METHODS A HCC rat model was induced with N-Nitrosodiethylamine (DEN). The physiological status of the HCC rats was assessed through indicators such as body weight and organ index. Liver damage in HCC rats was evaluated using hematoxylin and eosin (HE) staining and biochemical markers. Additionally, untargeted metabolomics was employed to explore the pathogenesis of HCC. UPLC-Q-TOF-MS combined with network pharmacology was employed to elucidate novel mechanisms, predict pathway targets, filtrate active ingredients and analyze the biological processes and signaling pathways modulated by EPME. DEN liver cancer rats were treated with different concentrations of EPME and protein expression levels were assessed by Western blot analysis. Molecular docking techniques were utilized to assess the binding affinity between the core components of EPME and target proteins. A HepG2 liver cancer in vitro model, in combination with inhibitor (SBI-0206965), was employed to verify the modulatory effects of EPME and its active ingredients on the ERK/ULK1/NCOA4 signaling pathway. Microscale thermophoretic (MST) was employed to verify the binding ability of the EPME core components to the ULK1 protein. RESULTS Metabolomics combined with network pharmacology revealed a novel pathogenesis of HCC, which is ERK/ULK1/NCOA4-mediated iron autophagy inhibition. EPME can activate iron autophagy mediated by ERK/ULK1/NCOA4 through active ingredients such as icaritin, astragalin, and emodin, thereby enhancing the survival conditions of HCC-afflicted rats and mitigating liver damage and carcinogenesis, ultimately achieving therapeutic outcomes in HCC treatment. CONCLUSION The ERK/ULK1/NCOA4-mediated iron autophagy inhibition represents a novel therapeutic mechanism for HCC. The clinical adjuvant drug EPME may exert therapeutic effects on HCC by activating ERK/ULK1/NCOA4-mediated iron autophagy.
Collapse
Affiliation(s)
- Liying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xiangmu Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| |
Collapse
|
2
|
Mei S, Deng Z, Meng FY, Guo QQ, Tao HY, Zhang L, Xi C, Zhou Q, Tian XF. Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota. Chin J Integr Med 2025:10.1007/s11655-025-4127-z. [PMID: 40338446 DOI: 10.1007/s11655-025-4127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 05/09/2025]
Abstract
OBJECTIVES To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC). METHODS The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice. RESULTS The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased. CONCLUSION SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Si Mei
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan-Ying Meng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qian-Qian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - He-Yun Tao
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lin Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chang Xi
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qing Zhou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Faculty of International Education, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
3
|
Xun Y, Chen G, Tang G, Zhang C, Zhou S, Fong TL, Chen Y, Xiong R, Wang N, Feng Y. Traditional Chinese medicine and natural products in management of hepatocellular carcinoma: Biological mechanisms and therapeutic potential. Pharmacol Res 2025; 215:107733. [PMID: 40209965 DOI: 10.1016/j.phrs.2025.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC), originating from hepatocytes, is the most common type of primary liver cancer. HCC imposes a significant global health burden with high morbidity and mortality, making it a critical public concern. Surgical interventions, including hepatectomy and liver transplantation, are pivotal in achieving long-term survival for patients with HCC. Additionally, ablation therapy, endovascular interventional therapy, radiotherapy, and systemic anti-tumor therapies are commonly employed. However, these treatment modalities are often associated with considerable challenges, including high postoperative recurrence rates and adverse effects. Traditional Chinese medicine (TCM) and natural products have been utilized for centuries as a complementary approach in managing HCC and its complications, demonstrating favorable clinical outcomes. Various bioactive compounds derived from TCM and natural products have been identified and purified, and their mechanisms of action have been extensively investigated. This review aims to provide a comprehensive and up-to-date evaluation of the clinical efficacy of TCM, natural products and their active constituents in the treatment and management of HCC. Particular emphasis is placed on elucidating the potential molecular mechanisms and therapeutic targets of these agents, including their roles in inhibiting HCC cell proliferation, inducing apoptosis and pyroptosis, suppressing tumor invasion and metastasis, and restraining angiogenesis within HCC tissues.
Collapse
Affiliation(s)
- Yunqing Xun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Shichen Zhou
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Tung-Leong Fong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yue Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ruogu Xiong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
4
|
Chang Q, Mao H, Feng J, Rao L, Tang W, Zhang Z, Hu Z. Sodium butyrate increases USP5-mediated ubiquitination degradation of GPX4 and enhances anti-cancer efficacy of anti-PD-1 antibody. Biochem Pharmacol 2025; 237:116927. [PMID: 40216263 DOI: 10.1016/j.bcp.2025.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC), a prevalent malignancy associated with a dismal prognosis, necessitates the urgent exploration of novel therapeutic avenues. Ferroptosis, an iron-mediated, lipid peroxidation-induced form of regulated cell death (RCD), has emerged as a promising target for cancer therapy. Sodium butyrate (NaBu), a short-chain fatty acid sodium salt, has demonstrated antitumor efficacy against diverse cancers, yet its specific role and mechanisms in HCC treatment remain elusive. Our findings reveal that NaBu not only impedes HCC cell growth and epithelial-mesenchymal transition (EMT) but also triggers ferroptosis by enhancing Fe2+ accumulation, reactive oxygen species (ROS) generation, and malondialdehyde (MDA) production. Notably, these effects are effectively mitigated by Ferrostatin-1 (Fer-1), underscoring the ferroptosis-inducing capacity of NaBu. Mechanistically, NaBu exerts its action by diminishing the level of ubiquitin-specific protease 5 (USP5), which subsequently leads to the ubiquitination and destabilization of glutathione peroxidase 4 (GPX4), a crucial suppressor in ferroptosis. In a preclinical setting, NaBu significantly inhibits tumor xenograft growth in nude mice, highlighting its in vivo efficacy. When paired with an anti-programmed death 1 (PD-1) antibody, NaBu exhibits a potent synergistic antitumor effect, suggesting a potential role in enhancing immunotherapy response. Collectively, our results underscore the potential of NaBu as a novel therapeutic agent for HCC, through its ability to inhibit USP5 and indirectly downregulate GPX4, thereby stimulating ferroptosis.
Collapse
Affiliation(s)
- Qimeng Chang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huarong Mao
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jinfeng Feng
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Longhua Rao
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Weiguo Tang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Ziping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
5
|
Luo Y, Lin W, Xiang S, Shi Y, Fu M, Zhai X, Ling C, Cheng B. Paeoniflorin inhibits chronic restraint stress-induced progression of hepatocellular carcinoma through suppressing norepinephrine-induced activation of hepatic stellate cells via SRC/AKT/ERK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119517. [PMID: 39971013 DOI: 10.1016/j.jep.2025.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (the root of Paeonia lactiflora Pall.) is a well-known Chinese herb medicine used for alleviating depression and anxiety. Paeoniflorin (PF), an active ingredient of Paeoniae Radix Alba, is usually used in emotion and inflammation-related diseases. In recent years, some studies showed that PF may also possess anti-tumor potential. AIM OF THE STUDY This study aimed to explore the effects of PF on chronic restraint stress (CRS)-induced hepatocellular carcinoma (HCC) progression and elucidate the potential molecular mechanisms. MATERIALS AND METHODS ICR male mice bearing H22-Luc orthotopic transplant tumors were subjected to CRS and administrated with PF. To identify the direct target of PF, network pharmacology, RNA sequencing, and molecular docking analyses were employed. CCK8, Western blotting and qRT-PCR assays were performed to explore the molecular mechanisms of PF. RESULTS PF mitigated CRS-induced depression-like behaviors in tumor-bearing mice and suppressed the growth of orthotopically transplanted tumors. PF also decreased the number of c-fos positive neurons in the paraventricular nucleus of hypothalamus in CRS-exposed mice and lowered the serum norepinephrine (NE) level. NE treatment promoted the proliferation and αSMA production of hepatic stellate cells (HSCs), but did not alter the viability and migration of HCC cells. Furthermore, the conditional medium (CM) from NE-treated HSCs enhanced the proliferation and migration of HCC cells. PF not only inhibited NE-induced activation of HSCs, also reduced HSCs-CM induced viability and migration of HCC cells. Network pharmacology and RNA sequencing showed SRC was a potential target of PF in HSCs, which was further validated by molecular docking and cellular thermal shift assay. NE treatment upregulated the phosphorylation of SRC, AKT and ERK1/2 in HSCs, which was inhibited by PF. CONCLUSION The findings of this study support that PF could ameliorate CRS-induced HCC progression by inhibiting CRS-induced HSCs activation through SRC/AKT/ERK signaling pathway. Our work may provide a new prospect for PF in the treatment of HCC with comorbid psychological stress.
Collapse
Affiliation(s)
- Yujun Luo
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Shuang Xiang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Yuanrong Shi
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China; The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
| | - Meihuan Fu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China; The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
| | - Xiaofeng Zhai
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Changquan Ling
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Binbin Cheng
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| |
Collapse
|
6
|
Zhang C, Hu S, Yin C, Wang G, Liu P. STAT3 orchestrates immune dynamics in hepatocellular carcinoma: A pivotal nexus in tumor progression. Crit Rev Oncol Hematol 2025; 207:104620. [PMID: 39818308 DOI: 10.1016/j.critrevonc.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms. Dysregulated STAT3 signaling, activated by various stimuli, including cytokines and growth factors, promotes an immunosuppressive milieu within HCC tumors, fostering tumor survival and proliferation while hindering immune surveillance. Non-coding RNAs and other molecules regulate this process, modulating STAT3 activity and influencing immune cell function. Moreover, therapeutic interventions targeting the STAT3 pathway, alongside advancements in radiotherapy, cancer vaccines, and diabetes-related drugs, offer promising strategies in HCC management. Integrating natural compounds with immunotherapy emerges as a novel approach, leveraging their ability to enhance antitumor immunity and counter immune evasion strategies. Understanding the multifaceted role of STAT3 and its interactions within the immune landscape of HCC is paramount for devising effective therapeutic interventions and improving patient outcomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songbai Hu
- Department of Cancer Center, Yuexi County Hospital, Anqing, Anhui Province 246600, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.
| |
Collapse
|
7
|
Zhi SM, Cui Y, Liu Y, Zhang JT, Li XJ, Sheng B, Chen XX, Yan CL, Li W, Mao JN, Yan HY, Jin W. Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155940. [PMID: 39128303 DOI: 10.1016/j.phymed.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Si-Min Zhi
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao-Long Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian-Nan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hui-Ying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
9
|
Sun J, Ma M, Zhong X, Li J, Yi J, Zhang R, Liu X, Peng L, Sun X, Feng W, Hu R, Huang Q, Lv M, Fan K, Zhou X. Investigating the molecular mechanism of Qizhu anticancer prescription in inhibiting hepatocellular carcinoma based on high-resolution mass spectrometry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117985. [PMID: 38417600 DOI: 10.1016/j.jep.2024.117985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Of all primary liver cancer cases, hepatocellular carcinoma (HCC) accounts for about 90%. Most patients with HCC receive a diagnosis in the medium-to-late stages or with chronic liver disease, have lost the opportunity for radical treatment, such as surgical resection, and their 5-year survival rate is low. Qizhu Anticancer Prescription (QZACP) is an empirical formula composed of traditional Chinese herbs that can clinically relieve HCC symptoms, inhibit the progression of HCC, reduce recurrence rate, and prolong survival; however, its exact mode of action remains unknown. AIM OF THE STUDY This study's purpose was to investigate the mode of action of QZACP in the prevention and treatment of HCC. MATERIALS AND METHODS Initially, drug components in the QZACP decoction were analyzed using high-resolution mass spectrometry. A subcutaneous tumor xenograft model in nude mice was constructed to further analyze the active components of QZACP that had entered tumor tissues through oral administration. Potential targets of QZACP in the prevention and treatment of HCC were identified and then confirmed in vivo via network pharmacology and molecular docking. In addition, regulatory effects of QZACP on HCC cell proliferation and the cell cycle were detected using a CCK-8 assay and flow cytometry. RESULTS High-resolution mass spectrometry revealed that the QZACP decoction contained deacetyl asperulosidic acid methyl ester (DAAME), paeoniflorin, calycosin-7-glucoside, liquiritin, glycyrrhizic acid, astragaloside IV, saikosaponin A, curdione, and atractylenolide II. In nude mice, QZACP could effectively inhibit the growth of subcutaneous tumors, where DAAME, paeoniflorin, liquiritin, and glycyrrhizic acid could enter liver cancer tissues after oral administration. Among these, DAAME was the most highly expressed in HCC tissues and may be an important active component of QZACP for inhibiting HCC. Utilizing network pharmacology, the targets of action of these four drug components were identified. After verification using western blotting, STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2 were identified as targets of QZACP inhibition in HCC. In vitro experiments revealed that QZACP inhibited the proliferation of HCC cells while inducing G0/G1 phase cell cycle arrest. In vivo experiments demonstrated that DAAME significantly inhibited HCC growth. After intersection of the 24 DAAME targets predicted using network pharmacology with the 435 HCC disease targets, only CA9 was identified as a DAAME-HCC crossover target. Molecular docking results revealed that the binding site of DAAME and CA9 had good stereo-complementarity with a docking score of -8.1 kcal/mol. Western blotting and immunohistochemical results also confirmed that DAAME significantly decreased CA9 protein expression in HCC. CONCLUSIONS QZACP inhibits HCC by reducing the expression of STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2. DAAME may be an important active component of QZACP for the prevention and treatment of HCC, inhibiting it by targeting the expression of CA9.
Collapse
Affiliation(s)
- Jialing Sun
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Mengqing Ma
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xin Zhong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Jing Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Jinyu Yi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Renjie Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xingning Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Lanfen Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xinfeng Sun
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Wenxing Feng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Rui Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Qi Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Minling Lv
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Kongli Fan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xiaozhou Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| |
Collapse
|
10
|
He S, Chen H, Yi Y, Hou D, Fu X, Xie J, Zhang J, Liu C, Ru X, Wang J. A novel bioinformatics strategy to uncover the active ingredients and molecular mechanisms of Bai Shao in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1406188. [PMID: 39005933 PMCID: PMC11239447 DOI: 10.3389/fphar.2024.1406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Hantao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Chongbin Liu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|