1
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
2
|
Li R, Zhang H, Li Y, Yao X, Dong X, Xu Y, Li Y. Efficacy and safety of immunotherapy plus chemotherapy in advanced or metastatic pulmonary large-cell neuroendocrine carcinoma. Discov Oncol 2025; 16:316. [PMID: 40085398 PMCID: PMC11909377 DOI: 10.1007/s12672-025-02071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Patients with advanced pulmonary large-cell neuroendocrine carcinoma (LCNEC) have a progressive clinical course and poor prognosis, and effective treatment options remain limited. This study assessed the efficacy and safety of immunotherapy plus chemotherapy for advanced LCNEC. METHODS We retrospectively collected medical records of patients with advanced LCNEC who attended Shandong Cancer Hospital from January 2018 to December 2022. Patients were divided into two groups based on their previous treatment regimen: immunotherapy plus chemotherapy and chemotherapy alone. Kaplan-Meier survival curves and Cox regression models were used to evaluate the clinical efficacy of different treatment regimens. RESULTS The median follow-up was 29.33 months (95% confidence interval [CI]: 24.04-not reached). The median overall survival (OS) was 15.01 months (95% CI: 11.99-26.31) and 7.19 months (95% CI: 5.15-10.57) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively (P = 0.001). Following propensity score matching, the median OS was 17.41 months (95% CI: 11.99-29.20) and 5.88 months (95% CI: 4.50-11.53) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively. The median progression-free survival was 6.70 months (95% CI: 5.48-13.27) and 3.12 months (95% CI: 2.52-4.20) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively. We also found that increasing age may contribute to poorer prognosis in patients with advanced LCNEC (P < 0.05). CONCLUSIONS Immunotherapy plus chemotherapy significantly improved OS compared with chemotherapy in LCNEC, with a tolerable safety profile without life-threatening adverse events. Immunotherapy plus chemotherapy may be an effective treatment option for patients with advanced LCNEC.
Collapse
Affiliation(s)
- Ruyue Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Huanle Zhang
- Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, China
| | - Ying Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiujing Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xue Dong
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
3
|
King Z, Desai SR, Frank DA, Shastri A. STAT signaling in the pathogenesis and therapy of acute myeloid leukemia and myelodysplastic syndromes. Neoplasia 2025; 61:101137. [PMID: 39933227 PMCID: PMC11869857 DOI: 10.1016/j.neo.2025.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent complex hematopoietic malignancies characterized by ineffective hematopoiesis and dysregulated myeloid differentiation. Recent research has underscored the critical role of aberrant STAT signaling pathways, particularly involving STAT3 and STAT5, in the pathogenesis of these disorders. Aberrant activation of STAT proteins has been implicated as a mediator of oncogenesis in several malignancies. In this review, we discuss the role of STAT proteins in both regulated and dysregulated hematopoiesis, the consequences of dysregulation in acute myeloid leukemia and myelodysplastic syndromes, therapeutic strategies, and recent advancements in STAT-targeted therapy. By integrating findings from recent preclinical and clinical studies, this review provides insights into the evolving landscape of STAT-targeted therapies, highlighting the promise of these approaches in enhancing treatment efficacy and improving patient outcomes in high-risk hematologic malignancies.
Collapse
MESH Headings
- Humans
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction
- STAT Transcription Factors/metabolism
- Animals
- Molecular Targeted Therapy
- Disease Susceptibility
Collapse
Affiliation(s)
- Zoe King
- Department of Pediatric Hematology and Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Aditi Shastri
- Department of Oncology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Liu Z, Sun T, Zhang Z, Piao C, Kong C, Zhang X. METTL14-mediated m6A modification of ZFP14 inhibits clear cell renal cell carcinoma progression via promoting STAT3 ubiquitination. Clin Transl Med 2025; 15:e70232. [PMID: 39936533 DOI: 10.1002/ctm2.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Therapeutic options for advanced clear cell renal cell carcinoma (ccRCC) are currently inadequate. Earlier research has shown that the enzyme methyltransferase-like 14 (METTL14) can suppress ccRCC development through the modification of N6-methyladenosine (m6A). This study further explored its complex biological functions and underlying molecular mechanisms. Here, we identified zinc finger protein 14 (ZFP14) as a novel target of METTL14-mediated m6A, and its under-expression was associated with ccRCC tumourigenesis and progression. Detailed investigations revealed that METTL14 interacted directly with the 3' untranslated region of ZFP14 mRNA, promoting m6A modification at two specific sites. These modifications were recognised by the protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), which stabilised and enhanced the expression of ZFP14 mRNA. Functionally, the METTL14/ZFP14 axis suppressed in vitro growth, migration and invasiveness and in vivo proliferation and metastasis of ccRCC cells. ZFP14 potentially regulated numbers of transcripts, among which matrix metalloproteinase 1/3 (MMP1/3) were validated to be under-expressed by ZFP14. Crucially, ZFP14 interacted with the signal transducer and activator of transcription 3 (STAT3), augmenting its K48-linked ubiquitination and destabilising it via the proteasome pathway. Moreover, ZFP14 repressed ccRCC cell in vivo growth and metastasis as well as decreasing MMP1/3 levels by under-expressing STAT3. These observations confirmed that ZFP14 served as both a novel target for METTL14-mediated m6A modification and a significant tumour suppressor in ccRCC, shedding light on the cellular and molecular operations in ccRCC and opening up possibilities for novel therapeutic strategies. KEY POINTS: ZFP14 under-expression is associated with ccRCC tumourigenesis and progression. METTL14-mediated m6A enhances ZFP14 mRNA stability and expression with IGF2BP2 as the reader in ccRCC. ZFP14 promotes the degradation of STAT3 by enhancing its K48-linked ubiquitination, inhibiting ccRCC progression.
Collapse
Affiliation(s)
- Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Xiaotong Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
5
|
Bialas P, Kobayashi T, Hellsten R, Krzyzanowska A, Persson M, Marginean F, Trudel D, Garraway IP, Trock BJ, Taimen P, Saad F, Mirtti T, Knudsen B, De Marzo AM, Bjartell A. pSTAT3 Expression is Increased in Advanced Prostate Cancer in Post-Initiation of Androgen Deprivation Therapy. Prostate 2025; 85:252-264. [PMID: 39523927 PMCID: PMC11720397 DOI: 10.1002/pros.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) plays a role in carcinogenesis and is involved in processes, such as proliferation, differentiation, drug resistance and immunosuppression. STAT3 can be activated by phosphorylation of tyrosine at position 705 (pSTAT3Tyr705) or serine at 727 (pSTAT3Ser727). High expression levels of pSTAT3 are implicated in advanced stages of prostate cancer (PCa) and are known to interact with the androgen receptor signaling pathway. However, not much is known about how androgen deprivation therapy (ADT) in advanced disease affects pSTAT3 expression. The aim of this study was to determine the influence of ADT on pSTAT3 expression in PCa tissue. METHODS The study cohort came from a PCa tissue microarray resource containing prostate specimens from patients before and post-initiation of ADT. Tissue samples from 111 patients were immunostained for pSTAT3Tyr705 and pSTAT3Ser727. H-score was used to evaluate the intensity and the percentage of pSTAT3 expression in malignant epithelial and stromal compartments. Univariate and multivariable Cox regression analyses were used to assess pSTAT3Tyr705 and pSTAT3Ser727 as biomarkers of oncological outcome in patients undergoing ADT. RESULTS Post-ADT PCa samples demonstrated increased nuclear and cytoplasmic levels of pSTAT3Ser727 in the stroma compared to pre-ADT samples, whereas pSTAT3Tyr705 expression was increased significantly in both stromal and malignant epithelial compartments except for stromal cytoplasm. High cytoplasmic pSTAT3Ser727 in stromal compartments correlated with reduced overall survival, shorter time to castration-resistant PCa development, and decreased metastasis-free survival. An increase in nuclear and cytoplasmic pSTAT3Ser727 expression within the stromal compartment of post-ADT samples corresponded to a shorter time to CRPC development, which was not observed for pSTAT3Tyr705. Multivariable survival analysis using Cox's regression identified that high cytoplasmic pSTAT3Ser727 expression in the stroma of post-ADT samples and pT3 or pT4-stage were associated with worse overall survival and 5-year metastasis-free survival (MFS). CONCLUSIONS This study presents novel insights into the impact of ADT on the expression levels of pSTAT3Tyr705 and pSTAT3Ser727 in PCa. Cytoplasmic pSTAT3Ser727 status of cancer-associated stromal cells in post-ADT samples may serve as an independent prognostic marker for OS and 5-year MFS, identifying prostate cancer patients prone to developing resistance to ADT.
Collapse
Affiliation(s)
- Piotr Bialas
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
- Chair and Department of Cell BiologyPoznan University of Medical SciencesPoznanPoland
| | - Tamae Kobayashi
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Rebecka Hellsten
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Margareta Persson
- Department of Laboratory Medicine, Translational Cancer ResearchLund UniversityLundSweden
| | - Felicia Marginean
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de MontréalMontrealQuebecCanada
- Department of Pathology and Cellular BiologyUniversité de MontréalMontrealQuebecCanada
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at University of CaliforniaLos AngelesCaliforniaUSA
- Division of UrologyGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| | - Bruce J. Trock
- Department of Urology and Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer CentreUniversity of TurkuTurkuFinland
- Department of PathologyTurku University HospitalTurkuFinland
| | - Fred Saad
- Department of SurgeryUniversité de MontréalMontrealQuebecCanada
| | - Tuomas Mirtti
- HUS Diagnostic Center, Department of PathologyHUS Helsinki University HospitalHelsinkiFinland
- Medicum and Research Program In Systems OncologyFaculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Beatrice Knudsen
- Digital and Computational PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Angelo M. De Marzo
- Department of Urology and Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
- Department of UrologySkåne University HospitalMalmöSweden
| |
Collapse
|
6
|
Liu ZY, Zhang YW, Zhuang HX, Ou YJ, Jiang QY, Li PF, He YM, Ren Y, Mao XL. Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer. Acta Pharmacol Sin 2025; 46:184-195. [PMID: 39198663 PMCID: PMC11697133 DOI: 10.1038/s41401-024-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zi-Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Xia Zhuang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Jie Ou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Yun Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping-Fei Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xin-Liang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
8
|
Chen B, Chen Q, Lu M, Zou E, Lin G, Yao J, Wang L, Gan Y, Chen B, Chen G, Wu L. Hypocrellin A against intrahepatic Cholangiocarcinoma via multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156022. [PMID: 39284270 DOI: 10.1016/j.phymed.2024.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive and highly lethal cancer with an increasing incidence worldwide that lacks effective treatment regimens. Hypocrellin A (HA), a natural small compound isolated from S. bambusicola, has multiple biomedical activities, including antitumor activity. PURPOSE We intended to investigate the therapeutic effects of HA on ICC and its potential mechanisms. METHODS RBE and HuccT1 cell lines were utilized for in vitro experiments. CCK8 assay, colony formation analysis, RTCA, and immunofluorescence staining of ki67 were employed to evaluate the suppression effects of HA on proliferation. The inhibitory effects of HA on cell migration and invasion were evaluate through transwell and wound healing assays, and Hoechst 33,258 staining was performed to evaluate apoptosis. Additionally, we performed transcriptome sequencing and molecular docking for targeting identification, and immunoblotting and immunofluorescence of key molecules for validation. Two in vivo models, HuccT1 xenografts, and the primary ICC model (KRAS/P19/SB) established via hydrodynamic tail-vein injection were implemented. Multiplex immunohistochemistry (mIHC) was used to illustrate the multi-target inhibitory effects of HA. RESULTS The IC50 values of HA against RBE and HuccT1 cells were 4.612 μM and 10.01 μM for 24 h, as determined through the CCK8 assay. Our results confirmed that HA significantly repressed the proliferation, migration, invasion, and promoted the apoptosis of ICC cells at low concentrations. Moreover, HA exerted its anti-cancer effects through multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. This inhibitory effect was rescued by Recilisib, an activator of the PI3K-AKT-mTOR pathway. Bioinformatics analysis of a multi-center RNA-Seq cohort (n = 90) demonstrated significant associations between these target pathways and the occurrence and poor prognosis of ICC. Animal studies suggested that HA strongly inhibited tumor growth in xenograft ICC models, and repressed the tumor number and size in the liver of primary ICC models by suppressing these three crucial pathways. CONCLUSION HA, a novel natural small molecule, demonstrated promising therapeutic efficacy against ICC through its multi-target inhibitory effects on the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. Moreover, it exhibited notable therapeutic benefits in a primary ICC model (KRAS/P19/SB), positioning it as a novel therapeutic agent for ICC.
Collapse
Affiliation(s)
- Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengmeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Enguang Zou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiangqiao Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lushuang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuqian Gan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bicheng Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery & Translation, Wenzhou, Zhejiang 325035, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery & Translation, Wenzhou, Zhejiang 325035, China.
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery & Translation, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Xu R, Zhou H, Bai L, McEachern D, Wu D, Acharyya RK, Wang M, Tošović J, Yang CY, Chinnaswamy K, Meagher JL, Stuckey JA, Liu C, Wang M, Wen B, Sun D, Wang S. Discovery of SD-436: A Potent, Highly Selective and Efficacious STAT3 PROTAC Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression. J Med Chem 2024; 67:20495-20513. [PMID: 39509603 DOI: 10.1021/acs.jmedchem.4c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
STAT3 is an attractive therapeutic target for cancer and other human diseases. We have previously reported the discovery of potent, selective, and efficacious PROTAC STAT3 degraders SD-36 and SD-91. In this study, we have designed and synthesized a novel series of STAT3 degraders using a new, high-affinity STAT3 ligand with excellent chemical stability and cereblon ligands. Our efforts led to the discovery of SD-436, a highly potent and selective STAT3 degrader. A single intravenous administration of SD-436 at 5 mg/kg effectively induces rapid, complete, and durable depletion of STAT3 in mouse native and xenograft tumor tissues. SD-436 achieves complete and long-lasting tumor regression even with a weekly dosing schedule in leukemia and lymphoma xenograft models in mice. SD-436 represents a promising STAT3 degrader for advanced preclinical development as a new therapy for the treatment of human cancers and other human diseases.
Collapse
Affiliation(s)
- Renqi Xu
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Haibin Zhou
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cai Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Zhu M, Chen X, Zhang Y, Chen Y, Wu J, Duan X. Intestinal probiotic-based nanoparticles for cytotoxic siRNA delivery in immunotherapy against cancer. Int J Pharm 2024; 665:124689. [PMID: 39278289 DOI: 10.1016/j.ijpharm.2024.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Immunogene therapy has emerged as strategy against cancer by introducing immune-stimulating components into gene therapy. However, there is still a need for an ideal platform to achieve both immune stimulation and efficient gene delivery. Lactobacillus reuteri has potential immunomodulatory activity owing to its unique antigenicity, which is potentially relevant to cancer progression. Here, we designed a novel non-viral siRNA vector (DMPLAC) by encapsulating Lactobacillus reuteri lysate in DMP. DMPLAC can promote maturation and activation of immune cells, increase infiltration of APC and cytotoxic T cells in tumor microenvironment, and exhibit tumor suppressive effects. Loading of siRNA targeting Stat3, DMPLAC/siStat3 further inhibits tumor in multiple models. We designed a strategy that combines immune activation with Stat3 silencing, triggering an immune response and tumor killing. This dual-functional design provides a new choice in development of effective immunogene therapy.
Collapse
Affiliation(s)
- Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueyang Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yang Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
13
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
14
|
Shang Z, Fan Y, Xi S, Zhang S, Shen W, Tao L, Xu C, Tan J, Fan M, Ma H, Lai Y, Sun D, Cheng H. Arenobufagin enhances T-cell anti-tumor immunity in colorectal cancer by modulating HSP90β accessibility. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155497. [PMID: 38640855 DOI: 10.1016/j.phymed.2024.155497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90β-STAT3-PD-L1 axis activity. METHODS We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90β (HSP90β) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90β's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90β-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.
Collapse
Affiliation(s)
- Zhihao Shang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yiping Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
| | - Songyang Xi
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000, China
| | - Shang Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lihuiping Tao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hongyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
15
|
Kuo MY, Dai WC, Chang JL, Chang JS, Lee TM, Chang CC. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3356-3366. [PMID: 38444163 DOI: 10.1002/tox.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Li Chang
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|