1
|
Lu J, Zhang X, Su K, Luo H, Liu C, Yang Y, He B, Wang C, Zhao Z, Liu X, Wang X, Meng P, Lv D, Wang C, Kelley KW, Wang L, Cui B, Liu Q, Peng F. Olanzapine suppresses mPFC activity-norepinephrine releasing to alleviate CLOCK-enhanced cancer stemness under chronic stress. Cell Commun Signal 2024; 22:375. [PMID: 39054537 PMCID: PMC11270788 DOI: 10.1186/s12964-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.
Collapse
Affiliation(s)
- Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xianxian Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Peixuan Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ling Wang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Osacka J, Szelle Cernackova A, Horvathova L, Majercikova Z, Pirnik Z, Kiss A. Clozapine impact on c-Fos expression in mild stress preconditioned male rats exposed to a novelty stressor. J Neurosci Res 2018; 96:1786-1797. [DOI: 10.1002/jnr.24280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
| | - Alena Szelle Cernackova
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
- Faculty of Medicine, Institute of Physiology; Comenius University in Bratislava; Bratislava Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
| | - Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
| | - Zdeno Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
- Department of Human and Clinical Pharmacology; University of Veterinary Medicine; Košice Slovakia
| | - Alexander Kiss
- Institute of Experimental Endocrinology, Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
3
|
Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration. Psychopharmacology (Berl) 2017; 234:749-760. [PMID: 28013353 DOI: 10.1007/s00213-016-4511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/11/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. OBJECTIVE We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. METHODS Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). RESULTS Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. CONCLUSIONS The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.
Collapse
|
4
|
Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology (Berl) 2016; 233:163-86. [PMID: 26676983 PMCID: PMC4703498 DOI: 10.1007/s00213-015-4151-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA.
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
- Department of Neuroscience, Tufts University, 145 Harrison Avenue, Boston, MA, 02111, USA
| |
Collapse
|
5
|
Oliveira JF, Dias NS, Correia M, Gama-Pereira F, Sardinha VM, Lima A, Oliveira AF, Jacinto LR, Ferreira DS, Silva AM, Reis JS, Cerqueira JJ, Sousa N. Chronic stress disrupts neural coherence between cortico-limbic structures. Front Neural Circuits 2013; 7:10. [PMID: 23390414 PMCID: PMC3565161 DOI: 10.3389/fncir.2013.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/16/2013] [Indexed: 11/13/2022] Open
Abstract
Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.
Collapse
Affiliation(s)
- João Filipe Oliveira
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kurumaji A, Nishikawa T. An anxiogenic drug, FG 7142, induced an increase in mRNA of Btg2 and Adamts1 in the hippocampus of adult mice. Behav Brain Funct 2012; 8:43. [PMID: 22913326 PMCID: PMC3541064 DOI: 10.1186/1744-9081-8-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 01/03/2023] Open
Abstract
Background Anxiety and stress-related disorders are among the most common psychiatric disorders. The hippocampus is a crucial brain area involved in the neural circuits of the pathophysiology of anxiety and stress-related disorders, and GABA is one of most important neurotransmitters related to these disorders. An anxiogenic drug and a pharmacological stressor, FG7142 (N-methyl-ß-carboline-3-carboxamide), produces anxiety in humans and experimental animals, acting at the benzodiazepine sites of the GABAA receptors as a partial inverse agonist. This drug as well as immobilization stress produced an increased mRNA in a number of genes, e.g., Btg2 and Adamsts1, in the cortex of rodents. The present study was carried out to clarify the effect of the anxiogenic drug on the gene expressions in the hippocampus and to obtain a new insight into the GABAergic system involved in the pathophysiology of the disorders. Method We examined the effects of FG7142 on the gene expression of Btg2 and Adamts1 in the hippocampus of mice using a quantitative RT-PCR method as well as an in situ hybridization method. Results The intraperitoneal administration of FG7142 at a dose of 20 mg/kg, but not 10 mg/kg, induced a statistically significant increase in the hippocampal mRNA of both genes in adult mice (postnatal days 56), being blocked by co-administrations of flumazenil (twice of 10 mg/kg, i.p.), an antagonist at the benzodiazepine binding site, while FG7142 failed to produce any change in the gene expressions in infant mice (postnatal days 8). In addition, the in situ hybridization experiment demonstrated an upregulation of the gene expressions restricted to the dentate gyrus of the hippocampus in adult mice. Conclusions The present study suggests a functional coupling between the GABAergic system and the transcriptional regulation of the two genes (Btg2 and Adamsts1) in the hippocampus of adult mice, which may play a role in the brain function related to anxiety and stress such as memory of fear.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | |
Collapse
|
7
|
Dynamic regulation of dopamine and serotonin responses to salient stimuli during chronic haloperidol treatment. Int J Neuropsychopharmacol 2011; 14:1327-39. [PMID: 21281560 DOI: 10.1017/s1461145711000010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Antipsychotic drugs are the clinical standard for the treatment of schizophrenia. Although these drugs work initially, many compliant patients relapse due to treatment failure. The known biomarkers can not sufficiently explain antipsychotic treatment failure. We, therefore, enquired how the dynamic responses of the neurotransmitters, dopamine and serotonin, change in relation to treatment action and failure. Rats received either short-term (2-6 d) or long-term (12-14 d) treatment with haloperidol, which resembled human D2 receptor occupancy, using osmotic mini-pumps. Dopamine and serotonin basal levels and responses to novelty, appetitive food, and to an aversive tail pinch were measured in the prefrontal cortex, nucleus accumbens and caudate putamen using in-vivo microdialysis, and the behaviour was recorded. Subsequently, we used in-vivo voltammetry to measure dopamine overflow in the nucleus accumbens. Haloperidol decreased dopamine, but not serotonin baseline levels in a time-dependent way. Salient stimuli induced dopamine and serotonin responses. Short-term haloperidol treatment attenuated the mesolimbic dopamine responses to aversive stimulation, while the responses to appetitive stimulation were largely preserved. After long-term treatment, the initial response adaptations were reversed. Similar changes were also observed at the behavioural level. In-vivo voltammetry showed that nucleus accumbens dopamine adaptations and their reversal were mediated by changes in extracellular dopamine release. Chronic haloperidol treatment, which resembles human D2 receptor occupancy, modulates dopamine and behavioural responses to aversive and appetitive stimulation depending on the duration of treatment. Specific changes in dopamine response dynamics and their reversal may be a functional substrate of antipsychotic action and failure respectively.
Collapse
|
8
|
Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 2011; 36:2054-61. [PMID: 21677652 PMCID: PMC3158322 DOI: 10.1038/npp.2011.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enduring cognitive deficits exist in schizophrenic patients, long-term abusers of phencyclidine (PCP), as well as in animal PCP models of schizophrenia. It has been suggested that cognitive performance and memory processes are coupled with remodeling of pyramidal dendritic spine synapses in prefrontal cortex (PFC), and that reduced spine density and number of spine synapses in the medial PFC of PCP-treated rats may potentially underlie, at least partially, the cognitive dysfunction previously observed in this animal model. The present data show that the decrease in number of asymmetric (excitatory) spine synapses in layer II/III of PFC, previously noted at 1-week post PCP treatment also occurs, to a lesser degree, in layer V. The decrease in the number of spine synapses in layer II/III was sustained and persisted for at least 4 weeks, paralleling the observed cognitive deficits. Both acute and chronic treatment with the atypical antipsychotic drug, olanzapine, starting at 1 week after PCP treatment at doses that restore cognitive function, reversed the asymmetric spine synapse loss in PFC of PCP-treated rats. Olanzapine had no significant effect on spine synapse number in saline-treated controls. These studies demonstrate that the effect of PCP on asymmetric spine synapse number in PFC lasts at least 4 weeks in this model. This spine synapse loss in PFC is reversed by acute treatment with olanzapine, and this reversal is maintained by chronic oral treatment, paralleling the time course of the restoration of the dopamine deficit, and normalization of cognitive function produced by olanzapine.
Collapse
|
9
|
Corrigan FM, Fisher JJ, Nutt DJ. Autonomic dysregulation and the Window of Tolerance model of the effects of complex emotional trauma. J Psychopharmacol 2011; 25:17-25. [PMID: 20093318 DOI: 10.1177/0269881109354930] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper reviews the Window of Tolerance model of the long-term effects of the severe emotional trauma associated with childhood abuse, a model which can also be applied to adult trauma of sufficient severity to cause post-traumatic stress disorder, chronic dysthymic disorders and chronic anxiety disorders. Dysfunctional behaviours such as deliberate self-harm and substance abuse are seen as efforts to regulate an autonomic nervous system which is readily triggered into extreme states by reminders of the original traumatic events. While midbrain areas such as the periaqueductal gray mediate instant defence responses to traumatic events and their memory triggers it is proposed that ascending monoaminergic tracts are implicated in longer-term changes in mood and arousal. An imbalance of ascending dopaminergic tracts may drive rapid fluctuations in level of arousal and in the associated mood, drive and motivation. Animal models of depression frequently use traumatic experiences of pain, isolation or social defeat to induce changes in mesolimbic and mesocortical dopamine systems which may alter prefrontal cortical control of midbrain defence responses. A focus on the pharmacology of the Window of Tolerance could provide advances in drug treatments for promoting emotional regulation in those who are suffering from the chronic sequelae of traumatic experiences.
Collapse
Affiliation(s)
- F M Corrigan
- Argyll & Bute Hospital, Lochgilphead, Argyll, UK.
| | | | | |
Collapse
|
10
|
Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain Cogn 2009; 72:73-85. [PMID: 19616355 DOI: 10.1016/j.bandc.2009.06.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2009] [Indexed: 12/17/2022]
Abstract
Developmental differences in hypothalamic-pituitary-adrenal (HPA) axis responsiveness to stressors and ongoing development of glucocorticoid-sensitive brain regions in adolescence suggest that similar to the neonatal period of ontogeny, adolescence may also be a sensitive period for programming effects of stressors on the central nervous system. Although research on this period of life is scarce compared to early life and adulthood, the available research indicates that effects of stress exposure during adolescence differ from, and may be longer-lasting than, effects of the same stress exposure in adulthood. Research progress in animal models in this field is reviewed including HPA function and the enduring effects of stress exposures in adolescence on sensitivity to drugs of abuse, learning and memory, and emotional behaviour in adulthood. The effects of adolescent stress depend on a number of factors, including the age, gender, the duration of stress exposure, the type of stressor, and the time between stress exposure and testing.
Collapse
|
11
|
Kurumaji A, Ito T, Ishii S, Nishikawa T. Effects of FG7142 and immobilization stress on the gene expression in the neocortex of mice. Neurosci Res 2008; 62:155-9. [PMID: 18771696 DOI: 10.1016/j.neures.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 12/17/2022]
Abstract
Several psychiatric disorders are often precipitated or exacerbated by exposure to stressors. FG7142 (N-methyl-beta-carboline-3-carboxamide), a partial inverse agonist of benzodiazepine receptors, mimics the physiological (an increased release in the adrenal steroid hormone) and neurochemical (an enhanced neurotransmission of monoamines) changes induced by stressful stimuli. We examined the effects of FG7142 and immobilization stress on the gene expression of the mouse neocortex in order to obtain a new insight into the molecular stress-responsive system. The effect of FG7142 (20 mg/kg, i.p.) on the gene expression of the brain area was examined using a DNA microarray method. The genes showing a significant change in expression were investigated in further experiments using the quantitative RT-PCR method. There was an increase in the mRNA of seven genes in the neocortex of mice 1h after treatment with FG7142. In addition, there was an increase in the mRNAs of five of the seven genes (Fos, Cyr61, Btg2, Adamts1, and Gem) in the neocortex of mice exposed to the stress for 1h. The up-regulation of these five genes by both FG7142 and immobilization stress indicates that these genes may be involved in the stress-responsive system. Dysfunctions of the system may be associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyou-ku, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
12
|
McCormick CM, Merrick A, Secen J, Helmreich DL. Social instability in adolescence alters the central and peripheral hypothalamic-pituitary-adrenal responses to a repeated homotypic stressor in male and female rats. J Neuroendocrinol 2007; 19:116-26. [PMID: 17214874 DOI: 10.1111/j.1365-2826.2006.01515.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There has been little research on effects of chronic stressors on neuroendocrine function in adolescence despite increasing evidence of enduring effects of stressors during this period on behaviour in adulthood. We previously reported that social stress (SS: daily 1 h isolation and new cage partner for 16 days) in adolescence altered locomotor responses to psychostimulants in adulthood. Here, we investigated neuroendocrine responses over the duration of the procedure that may underlie the enduring effects of SS. SS rats were compared to rats undergoing daily isolation only (ISO) and controls (CTL) to determine responses to acute and repeated isolation with and without social instability. At 30 days of age (first isolation), higher plasma corticosterone and corticotrophin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (CeA) were found in males caged with a new partner (SS) after isolation than those returned to their original partner (ISO). On day 45, SS males and females showed less habituation (higher bioactive levels of corticosterone based on plasma corticosterone and corticosteroid binding globulin levels) to the 16th episode of isolation than did ISO. SS and ISO had higher baseline expression of CRH mRNA in the PVN on day 45 than did CTL, and only CTL had increased levels after isolation. CRH mRNA expression in the CeA increased to a first isolation in CTL and to a 16th isolation in SS but not in ISO males. Modest differences in social interactions were observed between SS and ISO when returned to their cages after isolation. The results suggest that mild social stressors in adolescence impede neuroendocrine adaptation to homotypic stressors. The resultant increase in exposure to glucocorticoids over adolescence may alter ongoing brain development and increase vulnerability to psychopathology.
Collapse
Affiliation(s)
- C M McCormick
- Neuroscience Program, Brock University, St Catharines, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Wang Q, Tang XN, Wang L, Yenari MA, Ying W, Goh BC, Lee HS, Wilder-Smith EP, Wong PT. Effects of high dose of simvastatin on levels of dopamine and its reuptake in prefrontal cortex and striatum among SD rats. Neurosci Lett 2006; 408:189-93. [PMID: 16996211 DOI: 10.1016/j.neulet.2006.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 08/31/2006] [Accepted: 09/02/2006] [Indexed: 11/16/2022]
Abstract
Statins are increasingly being used for the treatment of a variety of conditions beyond their original indication for cholesterol lowering. We previously reported that simvastatin increased dopamine receptors in the rat prefrontal cortex [Q. Wang, W.L. Ting, H. Yang, P.T. Wong, High doses of simvastatin upregulate dopamine D(1) and D(2) receptor expression in the rat prefrontal cortex: possible involvement of endothelial nitric oxide synthase, Br. J. Pharmacol. 144 (2005) 933-939] and restored its downregulation in a model of Parkinson's disease (PD) [Q. Wang, P.H. Wang, C. McLachlan, P.T. Wong, Simvastatin reverses the downregulation of dopamine D1 and D2 receptor expression in the prefrontal cortex of 6-hydroxydopamine-induced Parkinsonian rats, Brain Res. 1045 (2005) 229-233]. Here we explore the effects of simvastatin treatment on tissue dopamine content and reuptake. Sprague-Dawley rats were given simvastatin (1 and 10 mg kg(-1)day(-1), p.o.) for 4 weeks. Brain tissue from prefrontal cortex and striatum were taken out for dopamine content and its reuptake. Using high-performance liquid chromatographic-mass spectrometer (HPLC-MS), simvastatin (10 mg kg(-1)day(-1)) was found to increase dopamine content by 110% in the striatum but decreased by 76% in the prefrontal cortex compared with the saline treated group. Dopamine (DA) reuptake was unchanged in both brain regions. These results suggest that chronic treatment with high dose of simvastatin may affect DA tissue level in prefrontal cortex and striatum without changing on DA reuptake. This may have important clinical implications in psychiatric and striatal dopaminergic disorders.
Collapse
Affiliation(s)
- Qing Wang
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Elman I, Borsook D, Lukas SE. Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents. Neuropsychopharmacology 2006; 31:2091-120. [PMID: 16541087 DOI: 10.1038/sj.npp.1301051] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obesity is highly prevalent among patients with schizophrenia and is associated with detrimental health consequences. Although excessive consumption of fast food and pharmacotherapy with such second-generation antipsychotic agents (SGAs) as clozapine and olanzapine has been implicated in the schizophrenia/obesity comorbidity, the pathophysiology of this link remains unclear. Here, we propose a mechanism based on brain reward function, a relevant etiologic factor in both schizophrenia and overeating. A comprehensive literature search on neurobiology of schizophrenia and of eating behavior was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) energy homeostasis, (2) food reward and hedonics, (3) reward function in schizophrenia, and (4) metabolic effects of the SGAs. A mesolimbic hyperdopaminergic state may render motivational/incentive reward system insensitive to low salience/palatability food. This, together with poor cognitive control from hypofunctional prefrontal cortex and enhanced hedonic impact of food, owing to exaggerated opioidergic drive (clinically manifested as pain insensitivity), may underlie unhealthy eating habits in patients with schizophrenia. Treatment with SGAs purportedly improves dopamine-mediated reward aspects, but at the cost of increased appetite and worsened or at least not improved opiodergic capacity. These effects can further deteriorate eating patterns. Pathophysiological and therapeutic implications of these insights need further validation via prospective clinical trials and neuroimaging studies.
Collapse
Affiliation(s)
- Igor Elman
- Behavioral Psychopharmacology Research Laboratory, Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA.
| | | | | |
Collapse
|