1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Ryan JE, Fruchtman M, Sparr-Jaswa A, Knehans A, Worster B. Attention Deficit Hyperactivity Disorder, Cannabis Use, and the Endocannabinoid System: A Scoping Review. Dev Psychobiol 2024; 66:e22540. [PMID: 39267530 DOI: 10.1002/dev.22540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
There is emerging evidence that the endocannabinoid system (ECS) plays a significant role in the pathophysiology of many psychiatric disorders, including attention deficit hyperactivity disorder (ADHD). Increasing evidence suggests that a number of neurobiological correlates between endogenous cannabinoid function and cognitive dysfunction are seen in ADHD, making the ECS a possible target for therapeutic interventions. Cannabis use and cannabis use disorder are more prevalent in individuals with ADHD, compared to the general population, and there is growing popular perception that cannabis is therapeutic for ADHD. However, the relationship between cannabis use and ADHD symptomology is poorly understood. Further understanding of the role of the ECS in ADHD pathophysiology and the molecular alterations that may be a target for treatment is needed. To further the science on this emerging area of research, this scoping review describes the preclinical and clinical evidence seeking to understand the relationship between the ECS and ADHD.
Collapse
Affiliation(s)
- Jennie E Ryan
- College of Nursing, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mitchell Fruchtman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrea Sparr-Jaswa
- College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Amy Knehans
- Harrell Health Sciences Library, Penn State University, University Park, Pennsylvania, USA
| | - Brooke Worster
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Wang W, Sun T. Impact of TRPV1 on Pathogenesis and Therapy of Neurodegenerative Diseases. Molecules 2023; 29:181. [PMID: 38202764 PMCID: PMC10779880 DOI: 10.3390/molecules29010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a transmembrane and non-selective cation channel protein, which can be activated by various physical and chemical stimuli. Recent studies have shown the strong pathogenetic associations of TRPV1 with neurodegenerative diseases (NDs), in particular Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) via regulating neuroinflammation. Therapeutic effects of TRPV1 agonists and antagonists on the treatment of AD and PD in animal models also are emerging. We here summarize the current understanding of TRPV1's effects and its agonists and antagonists as a therapeutic means in neurodegenerative diseases, and highlight future treatment strategies using natural TRPV1 agonists. Developing new targets and applying natural products are becoming a promising direction in the treatment of chronic disorders, especially neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China;
| |
Collapse
|
4
|
Xu S, Hao K, Xiong Y, Xu R, Huang H, Wang H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:77. [PMID: 37935716 PMCID: PMC10630396 DOI: 10.1038/s41537-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Early life stress (ELS) is associated with the later development of schizophrenia. In the rodent model, the maternal separation (MS) stress may induce neuronal apoptosis and schizophrenia-like behavior. Although the TRPV1 agonist capsaicin (CAP) has been reported to reduce apoptosis in the central nervous system, its effect in MS models is unclear. Twenty-four hours of MS of Wistar rat pups on postnatal day (PND9) was used as an ELS. Male rats in the adult stage were the subjects of the study. CAP (1 mg/kg/day) intraperitoneal injection pretreatment was undertaken before behavioral tests for 1 week and continued during the tests. Behavioral tests included open field, novel object recognition, Barnes maze test, and pre-pulse inhibition (PPI) test. MS rats showed behavioral deficits and cognitive impairments mimicking symptoms of schizophrenia compared with controls. MS decreased the expression of TRPV1 in the frontal association cortex (FrA) and in the hippocampal CA1, CA3, and dentate gyrus (DG) regions compared with the control group resulting in the increase of pro-apoptotic proteins (BAX, Caspase3, Cleaved-Caspase3) and the decrease of anti-apoptotic proteins (Bcl-2). The number of NeuN++TUNEL+ cells increased in the MS group in the FrA, CA1, CA3, and DG compared with the control group. Neuronal and behavioral impairments of MS were reversed by treatment with CAP. Exposure to ELS may lead to increased neuronal apoptosis and impaired cognitive function with decreased TRPV1 expression in the prefrontal cortex and hippocampus in adulthood. Sustained low-dose administration of CAP improved neuronal apoptosis and cognitive function. Our results provide evidence for future clinical trials of chili peppers or CAP as dietary supplements for the reversal treatment of schizophrenia.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Savchenko A, Targa G, Fesenko Z, Leo D, Gainetdinov RR, Sukhanov I. Dopamine Transporter Deficient Rodents: Perspectives and Limitations for Neuroscience. Biomolecules 2023; 13:806. [PMID: 37238676 PMCID: PMC10216310 DOI: 10.3390/biom13050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The key element of dopamine (DA) neurotransmission is undoubtedly DA transporter (DAT), a transmembrane protein responsible for the synaptic reuptake of the mediator. Changes in DAT's function can be a key mechanism of pathological conditions associated with hyperdopaminergia. The first strain of gene-modified rodents with a lack of DAT were created more than 25 years ago. Such animals are characterized by increased levels of striatal DA, resulting in locomotor hyperactivity, increased levels of motor stereotypes, cognitive deficits, and other behavioral abnormalities. The administration of dopaminergic and pharmacological agents affecting other neurotransmitter systems can mitigate those abnormalities. The main purpose of this review is to systematize and analyze (1) known data on the consequences of changes in DAT expression in experimental animals, (2) results of pharmacological studies in these animals, and (3) to estimate the validity of animals lacking DAT as models for discovering new treatments of DA-related disorders.
Collapse
Affiliation(s)
- Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy Str. 6-8, 197022 St. Petersburg, Russia;
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Zoia Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, Fontanka River Emb. 154, 190121 St. Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy Str. 6-8, 197022 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Fontanka River Emb. 154, 190121 St. Petersburg, Russia
| |
Collapse
|
6
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
8
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
9
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
10
|
Chesney E, Oliver D, McGuire P. Cannabidiol (CBD) as a novel treatment in the early phases of psychosis. Psychopharmacology (Berl) 2022; 239:1179-1190. [PMID: 34255100 PMCID: PMC9110455 DOI: 10.1007/s00213-021-05905-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
The pharmacological interventions available for individuals in the early stages of psychosis are extremely limited. For those at clinical high risk for psychosis, there is no licensed treatment available. For those with first-episode psychosis, all licensed antipsychotic medications act via dopamine D2 receptors. While treatment with antipsychotics is transformative in some patients, in others, it is ineffective. In addition, these medications can often cause adverse effects which make patients reluctant to take them. This is a particular problem in the early phases of psychosis, when patients are being treated for the first time, as unpleasant experiences may colour their future attitude towards treatment. Recent research has suggested that cannabidiol (CBD), a compound found in the Cannabis sativa plant, may have antipsychotic effects and relatively few adverse effects and could therefore be an ideal treatment for the early phases of psychosis, when minimising adverse effects is a clinical priority. In this review, we consider CBD's potential as a treatment in the clinical high risk and first-episode stages of psychosis. First, we describe the limitations of existing treatments at these two stages. We then describe what is known of CBD's mechanisms of action, effectiveness as a treatment for psychosis, adverse effects and acceptability to patients. We discuss how some of the outstanding issues about the utility of CBD in the early phases of psychosis may be resolved through ongoing clinical trials. Finally, we consider the impact of recreational cannabis use and over-the-counter cannabinoids preparations and discuss the potential therapeutic role of other compounds that modulate the endocannabinoid system in psychosis.
Collapse
Affiliation(s)
- Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Dominic Oliver
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Maudsley Biomedical Research Centre, London, UK
| |
Collapse
|
11
|
De Pol M, Kolla NJ. Endocannabinoid markers in autism spectrum disorder: A scoping review of human studies. Psychiatry Res 2021; 306:114256. [PMID: 34775294 DOI: 10.1016/j.psychres.2021.114256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and patterns of restrictive and repetitive behavior. Although the neurological underpinnings of ASD remain elusive, the endocannabinoid system (ECS) may play a role in modulating social behavior in ASD. Preclinical studies have suggested that alterations in the ECS result in ASD-like phenotypes, but currently no reviews have examined ECS abnormalities in human studies. This scoping review investigated any evidence of ECS alterations in humans with ASD. A comprehensive literature search was conducted and five studies were eligible for review. Three studies reported a significant reduction of anandamide in ASD compared to controls. Other alterations included decreased 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide and elevated diacylglycerol lipase and monoacylglycerol lipase. Some discrepant findings were also noted, which included elevated or reduced CB2 receptor in three studies and elevated or reduced N-acyl phosphatidylethanolamine phospholipase D and fatty acid amide hydrolase in two studies. We conclude from this preliminary investigation that the ECS may be altered in humans with ASD. Potential limitations of the reviewed studies include medication use and psychiatric comorbidities. Further research, such as positron emission tomography studies, are necessary to fully understand the relationship between ECS markers and ASD.
Collapse
Affiliation(s)
- Michelle De Pol
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nathan J Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.
| |
Collapse
|
12
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
14
|
Mansell H, Quinn D, Kelly LE, Szafron M, Alcorn J. Pharmacokinetics and Perceptions of Children and Young Adults Using Cannabis for Attention-Deficit/Hyperactivity Disorder and Oppositional Defiant Disorder: Protocol for a Mixed Methods Proof-of-Concept Study. JMIR Res Protoc 2021; 10:e31281. [PMID: 34661540 PMCID: PMC8561403 DOI: 10.2196/31281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Despite the lack of evidence on the use of cannabis for the treatment of attention-deficit/hyperactivity disorder (ADHD), the growing perception that cannabis is safe has led more patients and caregivers to self-medicate. Some psychiatrists now authorize medicinal cannabis for patients with ADHD with features of oppositional defiant disorder (ODD) to curtail the unregulated (ie, self-medicated) use of recreational cannabis or to offer a therapeutic option to those who continue to experience symptoms after exhausting all other treatment options. Objective This protocol aims to explore the perceived effectiveness and pharmacokinetics of cannabis in youth and young adults, who are currently taking it as part of their treatment plan for ADHD with features of ODD, under the supervision of a psychiatrist. Methods Patients between the ages of 12 and 25 years with a diagnosis of ADHD and features of ODD, who are currently taking cannabis herbal extract (at a Δ9-tetrahydrocannabinol [THC]:cannabidiol [CBD] ratio of 1:20) as a treatment adjunct to stimulant pharmacotherapy will be recruited. A sample size of 10-20 individuals is estimated. The study interview will consist of (1) validated symptom rating scales (Swanson, Nolan, and Pelham-IV Questionnaire [SNAP-IV], 90-item; Patient Health Questionnaire, 9-item [PHQ-9]; and Screen for Child Anxiety Related Emotional Disorders [SCARED] tool to measure symptoms of ADHD and ODD, depression, and anxiety, respectively); (2) a semistructured interview to probe the experiences of using cannabis; and (3) a cannabis side effects survey. A cannabis product sample as well as 2 blood samples (a trough level and 2-hour postdose level) will be collected to measure plasma concentrations of cannabinoids and relevant metabolites (THC, CBD, 11-hydroxy-THC, 7-hydroxy-CBD, cannabichromene, and 11-nor-9-carboxy-THB) using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Self-report rating scales (SNAP-IV, SCARED, and PHQ-9) will be scored in accordance with standard protocols and compared to retrospective scores obtained from the participant’s chart. Demographic variables (age, weight, and race), symptom scores, and blood levels (peaks and troughs) of THC, CBD, cannabichromene (CBC), and metabolites will be summarized using descriptive statistics. Relationships between plasma concentrations and symptom scores will be determined using analysis of variance, and multiple regression analysis will be performed to determine associations between plasma concentrations and demographic variables (age, weight, and ethnicity). The qualitative data will be audio-recorded and transcribed and organized into themes. Results The protocol was approved by the Biomedical Research Ethics Board at the University of Saskatchewan (protocol #1726), and recruitment began in May 2021. Conclusions This proof-of-concept study will explore the potential treatment effectiveness of medical cannabis in participants with ADHD and ODD through a mixed methods approach to inform future research in this area. International Registered Report Identifier (IRRID) DERR1-10.2196/31281
Collapse
Affiliation(s)
- Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Declan Quinn
- Division of Child and Adolescent Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lauren E Kelly
- Department of Pediatrics and Child Health and Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michael Szafron
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Berry AJ, Zubko O, Reeves SJ, Howard RJ. Endocannabinoid system alterations in Alzheimer's disease: A systematic review of human studies. Brain Res 2020; 1749:147135. [PMID: 32980333 DOI: 10.1016/j.brainres.2020.147135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Studies investigating alterations of the endocannabinoid system (ECS) in Alzheimer's disease (AD) in humans have reported inconsistent findings so far. We performed a systematic review of studies examining alterations of the ECS specifically within humans with AD or mild cognitive impairment (MCI), including neuroimaging studies, studies of serum and cerebrospinal fluid biomarkers, and post-mortem studies. We attempted to identify reported changes in the expression and activity of: cannabinoid receptors 1 and 2; anandamide (AEA); 2-arachidonoylglycerol (2-AG); monoacylglycerol lipase (MAGL); fatty acid amide hydrolase (FAAH); and transient receptor potential cation channel V1 (TRPV1). Twenty-two studies were identified for inclusion. Mixed findings were reported for most aspects of the ECS in AD, making it difficult to identify a particular profile of ECS alterations characterising AD. The included studies tended to be small, methodologically heterogeneous, and frequently did not control for important potential confounders, such as pathological progression of AD. Eight studies correlated ECS alterations with neuropsychometric performance measures, though studies infrequently examined behavioural and neuropsychiatric correlates. PROSPERO database identifier: CRD42018096249.
Collapse
Affiliation(s)
- Alex J Berry
- Division of Psychiatry, University College London, London, UK.
| | - Olga Zubko
- Division of Psychiatry, University College London, London, UK
| | | | - Robert J Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
16
|
Appiah-Kusi E, Wilson R, Colizzi M, Foglia E, Klamerus E, Caldwell A, Bossong MG, McGuire P, Bhattacharyya S. Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol Med 2020; 50:1862-1871. [PMID: 31422779 DOI: 10.1017/s0033291719001946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis. Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder. We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels. METHOD We compared 33 CHR participants with 58 healthy controls (HC) and collected information about previous exposure to childhood trauma as well as plasma samples to analyse endocannabinoid levels. RESULTS Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to HC and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma. CONCLUSIONS Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- E Appiah-Kusi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - R Wilson
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - M Colizzi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Policlinico 'G. B. Rossi', P.le L.A. Scuro 10, 37134, Verona, Italy
| | - E Foglia
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - E Klamerus
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - A Caldwell
- King's College London, Mass Spectometry Facility, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - M G Bossong
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - P McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - S Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| |
Collapse
|
17
|
Ito Y, Tomizawa M, Suzuki K, Shirakawa Y, Ono H, Adachi K, Suzuki H, Shimomura K, Nabeshima T, Kamijima M. Organophosphate Agent Induces ADHD-Like Behaviors via Inhibition of Brain Endocannabinoid-Hydrolyzing Enzyme(s) in Adolescent Male Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2547-2553. [PMID: 31995978 DOI: 10.1021/acs.jafc.9b08195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anticholinergic organophosphate (OP) agents act on the diverse serine hydrolases, thereby revealing unexpected biological effects. Epidemiological studies indicate a relationship between the OP exposure and development of attention-deficit/hyperactivity disorder (ADHD)-like symptoms, whereas no plausible mechanism for the OP-induced ADHD has been established. The present investigation employs ethyl octylphosphonofluoridate (EOPF) as an OP-probe, which is an extremely potent inhibitor of endocannabinoid (EC, anandamide and 2-arachidonoylglycerol)-hydrolyzing enzymes: that is, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). An ex vivo experiment shows that EOPF treatment decreases FAAH and MAGL activities and conversely increases EC levels in the rat brain. Subsequently, EOPF (treated intraperitoneally once at 0, 1, 2, or 3 mg/kg) clearly induces ADHD-like behaviors (in elevated plus-maze test) in both Wistar and spontaneously hypertensive rats. The EOPF-induced behaviors are reduced by a concomitant administration of cannabinoid receptor inverse agonist SLV-319. Accordingly, the EC system is a feasible target for OP-caused ADHD-like behaviors in adolescent rats.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Kazutaka Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Yuichi Shirakawa
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Hiromasa Ono
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Keishi Adachi
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Himiko Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Kenji Shimomura
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory , Fujita Health University , Nagoya , Aichi 470-1192 , Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| |
Collapse
|
18
|
Abstract
Objective: This review discusses the relationship between cannabis use and psychotic, bipolar, depressive, and anxiety disorders, as well as suicide. It summarizes epidemiological evidence from cross-sectional and long-term prospective studies and considers possible etiological mechanisms. Methods: Systematic reviews and methodologically robust studies in the field (from inception to February 2019) were identified using a comprehensive search of Medline, PsychINFO, and Embase and summarized using a narrative synthesis. Results: Consistent evidence, both from observational and experimental studies, has confirmed the important role of cannabis use in the initiation and persistence of psychotic disorders. The size of the effect is related to the extent of cannabis use, with greater risk for early cannabis use and use of high-potency varieties and synthetic cannabinoids. Accumulating evidence suggests that frequent cannabis use also increases the risk for mania as well as for suicide. However, the effect on depression is less clear and findings on anxiety are contradictory with only a few methodologically robust studies. Furthermore, the relationship with common mental disorders may involve reverse causality, as depression and anxiety are reported to lead to greater cannabis consumption in some studies. Pathogenetic mechanisms focus on the effect of tetrahydrocannabinol (THC, the main psychoactive ingredient of cannabis) interacting with genetic predisposition and perhaps other environmental risk factors. Cannabidiol (CBD), the other important ingredient of traditional cannabis, ameliorates the psychotogenic effects of THC but is absent from the high-potency varieties that are increasingly available. Conclusions: The evidence that heavy use of high-THC/low-CBD types of cannabis increases the risk of psychosis is sufficiently strong to merit public health education. Evidence of similar but smaller effects in mania and suicide is growing, but is not convincing for depression and anxiety. There is much current interest in the possibility that CBD may be therapeutically useful.
Collapse
Affiliation(s)
- Lucia Sideli
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.,Department of Biomedicine, Neurosciences, and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Harriet Quigley
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.,South London and Maudsley NHS Trust Biomedical Research Centre, London, UK
| | - Caterina La Cascia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Robin M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.,Department of Biomedicine, Neurosciences, and Advanced Diagnostic, University of Palermo, Palermo, Italy.,South London and Maudsley NHS Trust Biomedical Research Centre, London, UK
| |
Collapse
|
19
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
20
|
Muguruza C, Morentin B, Meana JJ, Alexander SP, Callado LF. Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. J Psychopharmacol 2019; 33:1132-1140. [PMID: 31237179 DOI: 10.1177/0269881119857205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endocannabinoid system - comprising cannabinoid receptors, endocannabinoid ligands and their synthesis and inactivation enzymes - has been widely implicated in the pathophysiology of schizophrenia. However, little is known regarding the status of the different elements of the endocannabinoid system in the brain of schizophrenic patients. We have previously reported altered endocannabinoid levels in the postmortem brain of subjects with schizophrenia compared with matched controls. AIMS Our aim was to further examine the status of the main elements of the endocannabinoid system in the postmortem prefrontal cortex of the same cohort of subjects. METHODS Gene expression and function of the cannabinoid receptor type-1 (CB1) and the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have been assessed. RESULTS A significant decrease in CB1 mRNA levels in schizophrenia was found, without alteration of FAAH or MAGL mRNA expression. Moreover, positive correlations among mRNA expressions of the three genes studied were found in the prefrontal cortex of controls but not in schizophrenic subjects. No alteration was found in CB1 receptor mediated functional coupling to G-proteins, but a significant increase of FAAH activity was found in schizophrenic subjects compared with controls. 2-arachidonoylglycerol levels and MAGL activity were found to positively correlate in controls but not in schizophrenic subjects. CONCLUSIONS The present findings reveal an imbalance in the expression and function of different elements of the endocannabinoid system in schizophrenia. This outcome highlights the relevance of the endocannabinoid system in the pathophysiology of schizophrenia and emphasises its elements as potential targets in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Stephen Ph Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
21
|
Contarini G, Ferretti V, Papaleo F. Acute Administration of URB597 Fatty Acid Amide Hydrolase Inhibitor Prevents Attentional Impairments by Distractors in Adolescent Mice. Front Pharmacol 2019; 10:787. [PMID: 31379568 PMCID: PMC6658611 DOI: 10.3389/fphar.2019.00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The maturation of attentional control during adolescence might influence later functional outcome or predisposition to psychiatric disorders. During adolescence, the cannabinoid system is particularly sensitive to pharmacological challenges, with potential impact on cognitive functions. Here, we used a recently validated five-choice serial reaction time task protocol to test adolescent C57BL/6J mice. We showed that the pharmacological inhibition (by URB597) of the fatty acid amide hydrolase (FAAH), the major enzyme implicated in anandamide degradation, prevented cognitive disruptions induced by distracting cues in adolescent mice. In particular, these protective effects were indicated by increased accuracy and correct responses and decreased premature responses selectively in the distractor trials. Notably, at the relatively low dose used, we detected no effects in other cognitive, motor, or incentive measures nor long-lasting or rebound effects of FAAH inhibition in cognitive functions. Overall, these data provide initial evidence of selective procognitive effects of FAAH inhibition in measures of attentional control in adolescent mice.
Collapse
Affiliation(s)
- Gabriella Contarini
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Valentina Ferretti
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
22
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
23
|
Abstract
Novel pharmacological treatments are needed for Tourette syndrome. Our goal was to examine the current evidence base and biological rationale for the use of cannabis-derived medications or medications that act on the cannabinoid system in Tourette syndrome. We conducted a comprehensive literature search of PubMed for randomized controlled trials or clinical trials of cannabis-derived medications in Tourette syndrome. Data regarding the population, intervention, safety profile, and outcomes for each trial were extracted and reported and the evidence supporting use of individual cannabis-derived medications was critiqued. There is a strong biological rationale regarding how cannabis-derived medications could affect tic severity. Anecdotal case reports and series have noted that many patients report that their tics improve after using cannabis. However, only two small randomized, placebo-controlled trials of Δ9-tetrahydrocannabinol have been published; these suggested possible benefits of cannabis-derived agents for the treatment of tics. Trials examining other agents active on the cannabinoid system for tic disorders are currently ongoing. Cannabinoid-based treatments are a promising avenue of new research for medications that may help the Tourette syndrome population. However, given the limited research available, the overall efficacy and safety of cannabinoid-based treatments is largely unknown. Further trials are needed to examine dosing, active ingredients, and optimal mode of administration of cannabis-derived compounds, assuming initial trials suggest efficacy. Clinical use for refractory patients should at the very least be restricted to adult populations, given the uncertain efficacy and risk of developmental adverse effects that cannabinoids may have in children. Even in adult populations, cannabis-derived medications are associated with significant issues such as the effects they have on driving safety and the fact that they cause positive urine drug screens that can affect employment.
Collapse
Affiliation(s)
- Bekir B Artukoglu
- Yale University, Yale Child Study Center, PO Box 207900, New Haven, CT, 06520, USA.
| | - Michael H Bloch
- Department of Psychiatry, Yale University, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
24
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
25
|
Hupli AMM. Medical Cannabis for Adult Attention Deficit Hyperactivity Disorder: Sociological Patient Case Report of Cannabinoid Therapeutics in Finland. Med Cannabis Cannabinoids 2018; 1:112-118. [PMID: 34676327 DOI: 10.1159/000495307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
This paper presents a detailed patient case report of a male patient who was diagnosed in adulthood (aged 33) with attention deficit hyperactivity disorder (ADHD) and treated initially with immediate-release methylphenidate (Ritalin® 10 mg twice daily). After experiencing adverse effects from prolonged use of this medication and afterwards other medications that were prescribed as alternatives, the patient discovered that cannabinoid therapeutics (CT) had been experimented inside the EU area to treat patients with ADHD. Subsequently, he was evaluated by a physician in Germany (June 2010) who prescribed CT (Bedrocan®, Bediol®). A Finnish neurologist later confirmed the two prescribed medicines (Bedrocan®, October 2010; Bediol®, May 2011) in the patient's own country of permanent residence (Finland). During a 5-year period of access, Bedrocan®, which mainly contains Δ9-tetrahydrocannabinol (Δ9-THC), was found to be helpful in alleviating the patient's ADHD symptoms, in particular poor tolerance to frustration, outbursts of anger, boredom, and problems related to concentration. The second CT medication, Bediol®, which contains both Δ9-THC and the phytocannabinoid cannabidiol, was found to neutralize the excessive dronabinol effects of Bedrocan® as well as zo offer other medical benefits (e.g., improved sleep). In addition to the case report, this paper also offers a brief review of the literature surrounding the medical benefits of CT for AD(H)D, which includes observational studies, clinical case reports, and one randomized clinical experiment. This paper also briefly discusses the endocannabinoid system in relation to ADHD, although more preclinical and clinical research is warranted to establish the optimal levels of cannabinoids, terpenes, and dosing regimens, which vary between different ADHD patients.
Collapse
|
26
|
The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacology 2018; 146:74-83. [PMID: 30468798 DOI: 10.1016/j.neuropharm.2018.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
The opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs. We observed that the muscarinic agonist oxotremorine decreases cAMP selectively in the MSN subpopulation that also expresses D1 dopamine receptors, an action mediated by the M4 muscarinic receptor. This receptor has a high efficacy on cAMP signaling and can shut down the positive cAMP response induced by dopamine, at acetylcholine concentrations which are consistent with physiological levels. This supports our prediction based on theoretical modeling that acetylcholine could exert a tonic inhibition on striatal cAMP signaling, thus supporting the possibility that a pause in acetylcholine release is required for phasic dopamine to transduce a cAMP signal in D1 MSNs. In vivo experiments with acetylcholinesterase inhibitors donepezil and tacrine, as well as with the positive allosteric modulators of M4 receptor VU0152100 and VU0010010 show that this effect is sufficient to reverse the increased locomotor activity of DAT-knockout mice. This suggests that M4 receptors could be a novel therapeutic target to treat hyperactivity disorders.
Collapse
|
27
|
Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia: Implications for Pharmacological Intervention. CNS Drugs 2018; 32:605-619. [PMID: 30022465 DOI: 10.1007/s40263-018-0539-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The term schizophrenia describes a group of multifaceted psychiatric conditions causing significant impairment of the quality of life of affected patients. Although multiple pharmacological treatment options exist, e.g. first- or second-generation antipsychotics, these therapeutics often cause disturbing side effects, such as extrapyramidal symptoms, prolactin increase, sexual dysfunction and/or metabolic syndrome. Furthermore, cognitive impairments and negative symptoms, two factors significantly influencing the course and outcome, are not sufficiently addressed by the available antipsychotics. Since its discovery, multiple clinical and preclinical studies have linked the endocannabinoid system to schizophrenia. Both the endocannabinoid anandamide and the cannabinoid CB1 receptor are deeply linked to underlying disease processes. Based hereon, clinical trials in schizophrenia have explored cannabidiol, a primary component of Cannabis sativa, and rimonabant, a partial antagonist to the CB1 receptor. While the latter did not reveal positive results, cannabidiol significantly ameliorated psychotic symptoms, which was associated with an increase in anandamide serum levels. However, the exact mechanisms of the antipsychotic effects of cannabidiol are not fully understood, and, furthermore, only a limited number of clinical trials in humans have been concluded to date. Thus, the level of proof of safety and efficacy required to approve the therapeutic use of cannabidiol in schizophrenia is currently lacking. However, cannabidiol is a promising candidate as an effective and mechanistically different antipsychotic treatment with a favourable side-effect profile. We therefore conclude that further studies are urgently needed to clarify the antipsychotic effects and safety profile of cannabidiol, and to fully explore its potential antipsychotic mechanism.
Collapse
|
28
|
Apazoglou K, Farley S, Gorgievski V, Belzeaux R, Lopez JP, Grenier J, Ibrahim EC, El Khoury MA, Tse YC, Mongredien R, Barbé A, de Macedo CEA, Jaworski W, Bochereau A, Orrico A, Isingrini E, Guinaudie C, Mikasova L, Louis F, Gautron S, Groc L, Massaad C, Yildirim F, Vialou V, Dumas S, Marti F, Mechawar N, Morice E, Wong TP, Caboche J, Turecki G, Giros B, Tzavara ET. Antidepressive effects of targeting ELK-1 signal transduction. Nat Med 2018; 24:591-597. [DOI: 10.1038/s41591-018-0011-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
|
29
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
30
|
Seillier A, Giuffrida A. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release. Neuropharmacology 2018; 130:1-9. [DOI: 10.1016/j.neuropharm.2017.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023]
|
31
|
Blockade of TRPV1 Inhibits Methamphetamine-induced Rewarding Effects. Sci Rep 2018; 8:882. [PMID: 29343767 PMCID: PMC5772440 DOI: 10.1038/s41598-018-19207-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022] Open
Abstract
Methamphetamine (MAP) is the most widely used psychostimulant in the world, but the exact mechanisms underlying MAP addiction are not yet fully understood. Recent studies have identified the distribution of TRPV1 in several brain regions that are related to drug addiction, including nucleus accumbens (NAc) and dorsal striatum (DSt). In the present study, we performed conditioned place preference (CPP) and self-administration tests to examine the effects of capsazepine (CPZ) and SB366791 (SB) on MAP reward. We found that both CPZ and SB significantly inhibited MAP-induced CPP and self-administration; in contrast, TRPV1 knock-out (KO) mice did not develop MAP-induced CPP. Real-time RT-PCR, Western blot and quantitative autoradiographic tests showed up-regulation of TRPV1 mRNA and protein expression in the NAc and/or DSt regions of mice exhibiting MAP-induced CPP. In addition, an in vivo microdialysis experiment showed that CPZ dramatically reduced dopamine (DA) levels in the NAc region of MAP-treated mice. Furthermore, attenuated dopamine transporter (DAT) binding levels in the NAc and DSt regions of MAP-induced CPP mice were reversed by CPZ. Together, these data suggest that TRPV1 plays an important role in MAP reward via the modulation of DA release and DAT density, thereby providing a novel therapeutic target for MAP addiction.
Collapse
|
32
|
Jee Kim M, Tanioka M, Woo Um S, Hong SK, Hwan Lee B. Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats. Mol Pain 2018; 14:1744806918814345. [PMID: 30380982 PMCID: PMC6247483 DOI: 10.1177/1744806918814345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motomasa Tanioka
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Woo Um
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University, Daejeon, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
O’Neill A, Bhattacharyya S. Investigating the Role of the Endocannabinoid System in Early Psychosis. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:85-92. [DOI: 10.14218/jerp.2017.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
35
|
Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence. Front Pharmacol 2016; 7:422. [PMID: 27877130 PMCID: PMC5099166 DOI: 10.3389/fphar.2016.00422] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds. The endocannabinoid system has been suggested to represent a potential new target in this indication. While the chronic use of cannabis itself has been considered a risk factor contributing to the development of schizophrenia, triggered by the phytocannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), cannabidiol, the second most important phytocannabinoid, appears to have no psychotomimetic potential. Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys. After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile. As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations. Although, a plethora of mechanisms of action has been suggested, their potential relevance for the antipsychotic effects of cannabidiol still needs to be investigated. The clarification of these mechanisms as well as the establishment of cannabidiol’s antipsychotic efficacy and its hopefully benign side-effect profile remains the subject of a number of previously started clinical trials.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Juliane K Müller
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Bettina Lange
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - F M Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| |
Collapse
|
36
|
Does cannabidiol have a role in the treatment of schizophrenia? Schizophr Res 2016; 176:281-290. [PMID: 27374322 DOI: 10.1016/j.schres.2016.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder which places a significant emotional and economic strain on the individual and society-at-large. Unfortunately, currently available therapeutic strategies do not provide adequate relief and some patients are treatment-resistant. In this regard, cannabidiol (CBD), a non-psychoactive constituent of Cannabis sativa, has shown significant promise as a potential antipsychotic for the treatment of schizophrenia. However, there is still considerable uncertainty about the mechanism of action of CBD as well as the brain regions which are thought to mediate its putative antipsychotic effects. We argue that further research on CBD is required to fast-track its progress to the clinic and in doing so, we may generate novel insights into the neurobiology of schizophrenia.
Collapse
|
37
|
Park HY, Ryu YK, Go J, Son E, Kim KS, Kim MR. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model. Exp Neurobiol 2016; 25:174-84. [PMID: 27574484 PMCID: PMC4999423 DOI: 10.5607/en.2016.25.4.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eunjung Son
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; University of Science and Technology, Daejeon 34113, Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| |
Collapse
|
38
|
Therapeutic Potential of Cannabinoids in Psychosis. Biol Psychiatry 2016; 79:604-12. [PMID: 26852073 DOI: 10.1016/j.biopsych.2015.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022]
Abstract
Over recent years, the interest in the endocannabinoid system (ECS) as a new target for the treatment of schizophrenia has evolved. The ECS represents one of the most relevant neurotransmitter systems in the brain and mainly fulfills a homeostatic role in terms of neurotransmission but also with respect to inflammatory processes. Two main approaches to the modulation of endocannabinoid functioning have been chosen so far. First, the selective blockade or inverse agonism of the type 1 cannabinoid receptor has been tested for the improvement of acute psychotic symptoms, as well as for the improvement of cognitive functions in schizophrenia. This was not effective in either case. Second, the modulation of endocannabinoid levels by use of the phytocannabinoid cannabidiol and selective fatty acid amide hydrolase inhibitors has been proposed, and the antipsychotic properties of cannabidiol are currently being investigated in humans. Unfortunately, for most of these trials that have focused on psychopathological and cognitive effects of cannabidiol, no published data are available. However, there is first evidence that cannabidiol may ameliorate psychotic symptoms with a superior side-effect profile compared with established antipsychotics. In conclusion, several clinical trials targeting the ECS in acute schizophrenia have either been completed or are underway. Although publicly available results are currently limited, preliminary data indicate that selected compounds modulating the ECS may be effective in acute schizophrenia. Nevertheless, so far, sample sizes of patients investigated are not sufficient to come to a final judgment, and no maintenance studies are available to ensure long-term efficacy and safety.
Collapse
|
39
|
Appiah-Kusi E, Leyden E, Parmar S, Mondelli V, McGuire P, Bhattacharyya S. Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids. Psychol Med 2016; 46:27-45. [PMID: 26370602 DOI: 10.1017/s0033291715001786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this article is to summarize current evidence regarding alterations in the neuroendocrine stress response system and endocannabinoid system and their relationship in psychotic disorders such as schizophrenia. Exposure to stress is linked to the development of a number of psychiatric disorders including psychosis. However, the precise role of stress in the development of psychosis and the possible mechanisms that might underlie this are not well understood. Recently the cannabinoid hypothesis of schizophrenia has emerged as a potential line of enquiry. Endocannabinoid levels are increased in patients with psychosis compared with healthy volunteers; furthermore, they increase in response to stress, which suggests another potential mechanism for how stress might be a causal factor in the development of psychosis. However, research regarding the links between stress and the endocannabinoid system is in its infancy. Evidence summarized here points to an alteration in the baseline tone and reactivity of the hypothalamic-pituitary-adrenal (HPA) axis as well as in various components of the endocannabinoid system in patients with psychosis. Moreover, the precise nature of the inter-relationship between these two systems is unclear in man, especially their biological relevance in the context of psychosis. Future studies need to simultaneously investigate HPA axis and endocannabinoid alterations both at baseline and following experimental perturbation in healthy individuals and those with psychosis to understand how they interact with each other in health and disease and obtain mechanistic insight as to their relevance to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- E Appiah-Kusi
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - E Leyden
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - S Parmar
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - V Mondelli
- Department of Psychological Medicine,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 92,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - P McGuire
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - S Bhattacharyya
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| |
Collapse
|
40
|
Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proc Natl Acad Sci U S A 2015; 112:7587-92. [PMID: 26023184 DOI: 10.1073/pnas.1424951112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and β are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/β in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.
Collapse
|
41
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
42
|
Heng LJ, Huang B, Guo H, Ma LT, Yuan WX, Song J, Wang P, Xu GZ, Gao GD. Blocking TRPV1 in nucleus accumbens inhibits persistent morphine conditioned place preference expression in rats. PLoS One 2014; 9:e104546. [PMID: 25118895 PMCID: PMC4131889 DOI: 10.1371/journal.pone.0104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023] Open
Abstract
The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target-specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction.
Collapse
Affiliation(s)
- Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Bo Huang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Heng Guo
- Department of Neurosurgery, PLA Chengdu General Hospital, Chengdu, Sichuan, China
| | - Lian-Ting Ma
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Wei-Xin Yuan
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Guo-Zheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
- * E-mail: (GDG); (GZX)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (GDG); (GZX)
| |
Collapse
|
43
|
Laricchiuta D, Musella A, Rossi S, Centonze D. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Front Behav Neurosci 2014; 8:183. [PMID: 24904335 PMCID: PMC4032909 DOI: 10.3389/fnbeh.2014.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/04/2014] [Indexed: 01/23/2023] Open
Abstract
Rewarding effects have been related to enhanced dopamine (DA) release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty) and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597) or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, Università "Sapienza" di Roma Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Silvia Rossi
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Diego Centonze
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| |
Collapse
|
44
|
Almeida V, Peres FF, Levin R, Suiama MA, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC. Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr Res 2014; 153:150-9. [PMID: 24556469 DOI: 10.1016/j.schres.2014.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mariana B Calzavara
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil.
| |
Collapse
|
45
|
Hochkogler CM, Rohm B, Hojdar K, Pignitter M, Widder S, Ley JP, Krammer GE, Somoza V. The capsaicin analog nonivamide decreases total energy intake from a standardized breakfast and enhances plasma serotonin levels in moderately overweight men after administered in an oral glucose tolerance test: A randomized, crossover trial. Mol Nutr Food Res 2014; 58:1282-90. [DOI: 10.1002/mnfr.201300821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Christina M. Hochkogler
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Karin Hojdar
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | | | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
46
|
The effects of juvenile capsaicin desensitization in rats: Behavioral impairments. Physiol Behav 2014; 125:38-44. [DOI: 10.1016/j.physbeh.2013.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/19/2013] [Indexed: 01/30/2023]
|
47
|
Rohm B, Holik AK, Somoza MM, Pignitter M, Zaunschirm M, Ley JP, Krammer GE, Somoza V. Nonivamide, a capsaicin analog, increases dopamine and serotonin release in SH-SY5Y cells via a TRPV1-independent pathway. Mol Nutr Food Res 2013; 57:2008-18. [DOI: 10.1002/mnfr.201200846] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/04/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Ann-Katrin Holik
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | - Mark M. Somoza
- Department of Inorganic Chemistry; University of Vienna; Vienna Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | - Mathias Zaunschirm
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
48
|
Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr Res 2013; 148:145-50. [PMID: 23800614 DOI: 10.1016/j.schres.2013.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/14/2013] [Accepted: 06/02/2013] [Indexed: 11/24/2022]
Abstract
Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia.
Collapse
|
49
|
Barth V, Need AB, Tzavara ET, Giros B, Overshiner C, Gleason SD, Wade M, Johansson AM, Perry K, Nomikos GG, Witkin JM. In vivo occupancy of dopamine D3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J Pharmacol Exp Ther 2013; 344:501-10. [PMID: 23197772 DOI: 10.1124/jpet.112.198895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine D(3) receptors have eluded definitive linkage to neurologic and psychiatric disorders since their cloning over 20 years ago. We report a new method that does not employ a radiolabel for simultaneously defining in vivo receptor occupancy of D(3) and D(2) receptors in rat brain after systemic dosing using the tracer epidepride (N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2,3-dimethoxybenzamide). Decreases in epidepride binding in lobule 9 of cerebellum (rich in D(3) receptors) were compared with nonspecific binding in the lateral cerebellum. The in vivo occupancy of the dopamine D(3) receptors was dose dependently increased by SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide) and U99194 (2,3-dihydro-5,6-dimethoxy- N,N-dipropyl-1H-inden-2-amine). Both antagonists increased extracellular levels of acetylcholine (ACh) in the medial prefrontal cortex of rats and modified brain-tissue levels of ACh and choline. Consistent with these findings, the D(3) receptor antagonists enhanced the acquisition of learning of rats either alone or in the presence of the norepinephrine uptake blocker reboxetine as with the attention-deficit-hyperactivity disorder (ADHD) drug methylphenidate. Like reboxetine, the D(3) receptor antagonists also prevented deficits induced by scopolamine in object recognition memory of rats. Mice in which the dopamine transporter (DAT) has been deleted exhibit hyperactivity that is normalized by compounds that are effective in the treatment of ADHD. Both D(3) receptor antagonists decreased the hyperactivity of DAT(-/-) mice without affecting the activity of wild type controls. The present findings indicate that dopamine D(3) receptor antagonists engender cognition-enhancing and hyperactivity-dampening effects. Thus, D(3) receptor blockade could be considered as a novel treatment approach for cognitive deficits and hyperactivity syndromes, including those observed in ADHD.
Collapse
Affiliation(s)
- V Barth
- Psychiatric Drug Discovery, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
New insights on endocannabinoid transmission in psychomotor disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:51-8. [PMID: 22521335 PMCID: PMC3389227 DOI: 10.1016/j.pnpbp.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022]
Abstract
The endocannabinoids are lipid signaling molecules that bind to cannabinoid CB(1) and CB(2) receptors and other metabotropic and ionotropic receptors. Anandamide and 2-arachidonoyl glycerol, the two best-characterized examples, are released on demand in a stimulus-dependent manner by cleavage of membrane phospholipid precursors. Together with their receptors and metabolic enzymes, the endocannabinoids play a key role in modulating neurotransmission and synaptic plasticity in the basal ganglia and other brain areas involved in the control of motor functions and motivational aspects of behavior. This mini-review provides an update on the contribution of the endocannabinoid system to the regulation of psychomotor behaviors and its possible involvement in the pathophysiology of Parkinson's disease and schizophrenia.
Collapse
|