1
|
Sable HJK, Paige NB, Nalan PA, Pace RL, Hicks CB, Regan SL, Williams MT, Vorhees CV, Lester DB. Phasic dopamine release in two different rat models of attention-deficit/hyperactivity disorder: Spontaneously hypertensive rats (SHR) versus Lphn3 knockout rats. Neuroscience 2025; 567:150-162. [PMID: 39756609 PMCID: PMC11789927 DOI: 10.1016/j.neuroscience.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences. The SHRs displayed decreased DA release in the NAcc compared to their control strain (i.e., WKY rats), with no differences in the mPFC, leading a much lower NAcc-to-PFC DA release ratio in SHRs compared to controls suggesting an imbalance in DA transmission between these regions. The Lphn3 KO rats were considered hypodopaminergic based on the reduced summed DA release in the mPFC and NAcc compared to WT controls, although differences were not observed when examining each site independently. Lphn3 KOs displayed increased DA half-life in the mPFC compared with Lphn3 WT rats, an indication of decreased DAT reuptake, with no differences in the NAcc. DAT blockade by nomifensine had a similar effect on DA release in the NAcc of SHRs and WKYs, but increased DA release in the NAcc of Lphn3 KOs to a greater extent than in WTs. These results suggest that the efficacy of pharmacotherapies used to treat externalizing disorders such as ADHD and/or SUD, likely differ between SHRs and Lphn3 KO rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Samantha L Regan
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Michael T Williams
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Charles V Vorhees
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | | |
Collapse
|
2
|
Genetic association study between Astrotactin-2 (ASTN2) rs10817999 gene polymorphism and attention deficit hyperactivity disorder in Korean children. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Cervantes-Henríquez ML, Acosta-López JE, Martinez AF, Arcos-Burgos M, Puentes-Rozo PJ, Vélez JI. Machine Learning Prediction of ADHD Severity: Association and Linkage to ADGRL3, DRD4, and SNAP25. J Atten Disord 2022; 26:587-605. [PMID: 34009035 DOI: 10.1177/10870547211015426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate whether single nucleotide polymorphisms (SNPs) in the ADGRL3, DRD4, and SNAP25 genes are associated with and predict ADHD severity in families from a Caribbean community. METHOD ADHD severity was derived using latent class cluster analysis of DSM-IV symptomatology. Family-based association tests were conducted to detect associations between SNPs and ADHD severity latent phenotypes. Machine learning algorithms were used to build predictive models of ADHD severity based on demographic and genetic data. RESULTS Individuals with ADHD exhibited two seemingly independent latent class severity configurations. SNPs harbored in DRD4, SNAP25, and ADGRL3 showed evidence of linkage and association to symptoms severity and a potential pleiotropic effect on distinct domains of ADHD severity. Predictive models discriminate severe from non-severe ADHD in specific symptom domains. CONCLUSION This study supports the role of DRD4, SNAP25, and ADGRL3 genes in outlining ADHD severity, and a new prediction framework with potential clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Pedro J Puentes-Rozo
- Universidad Simón Bolívar, Barranquilla, Colombia
- Universidad del Atlántico, Barranquilla, Colombia
| | | |
Collapse
|
4
|
Sable HJK, Lester DB, Potter JL, Nolen HG, Cruthird DM, Estes LM, Johnson AD, Regan SL, Williams MT, Vorhees CV. An assessment of executive function in two different rat models of attention-deficit hyperactivity disorder: Spontaneously hypertensive versus Lphn3 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12767. [PMID: 34427038 PMCID: PMC10114166 DOI: 10.1111/gbb.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.
Collapse
Affiliation(s)
- Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Deranda B. Lester
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Joshua L. Potter
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | | | - Lauren M. Estes
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Alyssa D. Johnson
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Henriquez-Henriquez M, Acosta MT, Martinez AF, Vélez JI, Lopera F, Pineda D, Palacio JD, Quiroga T, Worgall TS, Deckelbaum RJ, Mastronardi C, Molina BSG, Arcos-Burgos M, Muenke M. Mutations in sphingolipid metabolism genes are associated with ADHD. Transl Psychiatry 2020; 10:231. [PMID: 32661301 PMCID: PMC7359313 DOI: 10.1038/s41398-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder in children, with genetic factors accounting for 75-80% of the phenotypic variance. Recent studies have suggested that ADHD patients might present with atypical central myelination that can persist into adulthood. Given the essential role of sphingolipids in myelin formation and maintenance, we explored genetic variation in sphingolipid metabolism genes for association with ADHD risk. Whole-exome genotyping was performed in three independent cohorts from disparate regions of the world, for a total of 1520 genotyped subjects. Cohort 1 (MTA (Multimodal Treatment study of children with ADHD) sample, 371 subjects) was analyzed as the discovery cohort, while cohorts 2 (Paisa sample, 298 subjects) and 3 (US sample, 851 subjects) were used for replication. A set of 58 genes was manually curated based on their roles in sphingolipid metabolism. A targeted exploration for association between ADHD and 137 markers encoding for common and rare potentially functional allelic variants in this set of genes was performed in the screening cohort. Single- and multi-locus additive, dominant and recessive linear mixed-effect models were used. During discovery, we found statistically significant associations between ADHD and variants in eight genes (GALC, CERS6, SMPD1, SMPDL3B, CERS2, FADS3, ELOVL5, and CERK). Successful local replication for associations with variants in GALC, SMPD1, and CERS6 was demonstrated in both replication cohorts. Variants rs35785620, rs143078230, rs398607, and rs1805078, associated with ADHD in the discovery or replication cohorts, correspond to missense mutations with predicted deleterious effects. Expression quantitative trait loci analysis revealed an association between rs398607 and increased GALC expression in the cerebellum.
Collapse
Affiliation(s)
- Marcela Henriquez-Henriquez
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- ELSA Clinical Laboratories (IntegraMedica, part of Bupa), Santiago de Chile, Chile
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - David Pineda
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Teresa Quiroga
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard J Deckelbaum
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claudio Mastronardi
- Neuroscience Group (NeurUROS), Institute of Translational Medicine, School of Medicine and Health Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry, Psychology, and Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Me´dicas, Facultad de Medicina, Universidad de Antioquia, Medelli´n, Colombia.
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
7
|
Arcos-Burgos M, Vélez JI, Martinez AF, Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Richarte V, Roncero C, Cormand B, Fernández-Castillo N, Casas M, Lopera F, Pineda DA, Palacio JD, Acosta-López JE, Cervantes-Henriquez ML, Sánchez-Rojas MG, Puentes-Rozo PJ, Molina BSG, Boden MT, Wallis D, Lidbury B, Newman S, Easteal S, Swanson J, Patel H, Volkow N, Acosta MT, Castellanos FX, de Leon J, Mastronardi CA, Muenke M. ADGRL3 (LPHN3) variants predict substance use disorder. Transl Psychiatry 2019; 9:42. [PMID: 30696812 PMCID: PMC6351584 DOI: 10.1038/s41398-019-0396-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/02/2022] Open
Abstract
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia.
- Instituto de Investigaciones Médicas (IIM), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Jorge I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Universidad del Norte, Barranquilla, Colombia
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Josep A Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Departament of Psychiatry, Hospital Universitari Vall d'Hebron-Public Health Agency, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Noelia Fernández-Castillo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Lopera
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - David A Pineda
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Johan E Acosta-López
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha L Cervantes-Henriquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Manuel G Sánchez-Rojas
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pedro J Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology, University of Pittsburg, Pittsburg, PA, USA
| | - Margaret T Boden
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Brett Lidbury
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Saul Newman
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Simon Easteal
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - James Swanson
- Department of Psychiatry, Florida International University, Miami, FL, USA
- Child Development Center, University of California at Irvine, Irvine, CA, USA
| | - Hardip Patel
- Genome Discovery Unit, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Nora Volkow
- Office of the Director, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Claudio A Mastronardi
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
- Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Conduct disorder in adolescent females: current state of research and study design of the FemNAT-CD consortium. Eur Child Adolesc Psychiatry 2018; 27:1077-1093. [PMID: 29948230 DOI: 10.1007/s00787-018-1172-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Conduct disorder (CD) is a common and highly impairing psychiatric disorder of childhood and adolescence that frequently leads to poor physical and mental health outcomes in adulthood. The prevalence of CD is substantially higher in males than females, and partly due to this, most research on this condition has used all-male or predominantly male samples. Although the number of females exhibiting CD has increased in recent decades, the majority of studies on neurobiological measures, neurocognitive phenotypes, and treatments for CD have focused on male subjects only, despite strong evidence for sex differences in the aetiology and neurobiology of CD. Here, we selectively review the existing literature on CD and related phenotypes in females, focusing in particular on sex differences in CD symptoms, patterns of psychiatric comorbidity, and callous-unemotional personality traits. We also consider studies investigating the neurobiology of CD in females, with a focus on studies using genetic, structural and functional neuroimaging, psychophysiological, and neuroendocrinological methods. We end the article by providing an overview of the study design of the FemNAT-CD consortium, an interdisciplinary, multi-level and multi-site study that explicitly focuses on CD in females, but which is also investigating sex differences in the causes, developmental course, and neurobiological correlates of CD.
Collapse
|
9
|
Salvatore JE, Dick DM. Genetic influences on conduct disorder. Neurosci Biobehav Rev 2018; 91:91-101. [PMID: 27350097 PMCID: PMC5183514 DOI: 10.1016/j.neubiorev.2016.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/22/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023]
Abstract
Conduct disorder (CD) is a moderately heritable psychiatric disorder of childhood and adolescence characterized by aggression toward people and animals, destruction of property, deceitfulness or theft, and serious violation of rules. Genome-wide scans using linkage and association methods have identified a number of suggestive genomic regions that are pending replication. A small number of candidate genes (e.g., GABRA2, MAOA, SLC6A4, AVPR1A) are associated with CD related phenotypes across independent studies; however, failures to replicate also exist. Studies of gene-environment interplay show that CD genetic predispositions also contribute to selection into higher-risk environments, and that environmental factors can alter the importance of CD genetic factors and differentially methylate CD candidate genes. The field's understanding of CD etiology will benefit from larger, adequately powered studies in gene identification efforts; the incorporation of polygenic approaches in gene-environment interplay studies; attention to the mechanisms of risk from genes to brain to behavior; and the use of genetically informative data to test quasi-causal hypotheses about purported risk factors.
Collapse
Affiliation(s)
- Jessica E Salvatore
- Department of Psychology and the Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VCU PO Box 842018, 806 West Franklin Street, Richmond, VA 23284-2018, USA.
| | - Danielle M Dick
- Department of Psychology, African American Studies, and Human & Molecular Genetics, VCU PO Box 842509, Richmond, VA 23284-2509, USA
| |
Collapse
|
10
|
Abstract
OBJECTIVE Many children diagnosed with attention-deficit/hyperactivity disorder (ADHD) experience co-occurring neurodevelopmental and psychiatric disorders, and those who do often exhibit higher levels of impairment than children with ADHD alone. This study provides a latent class analysis (LCA) approach to categorizing children with ADHD into comorbidity groups, evaluating condition expression and treatment patterns in each group. METHODS Parent-reported data from a large probability-based national sample of children diagnosed with ADHD (2014 National Survey of the Diagnosis and Treatment of ADHD and Tourette Syndrome) were used for an LCA to identify groups of children with similar groupings of neurodevelopmental and psychiatric comorbidities among children with current ADHD (n = 2495). Differences between classes were compared using multivariate logistic regressions. RESULTS LCA placed children who were indicated to have ADHD into 4 classes: (low comorbidity [LCM] [64.5%], predominantly developmental disorders [PDD] [13.7%], predominantly internalizing disorders [PID] [18.5%], and high comorbidity [HCM] [3.3%]). Children belonging to the HCM class were most likely to have a combined ADHD subtype and the highest number of impaired domains. Children belonging to the PDD class were most likely to be receiving school services, whereas children in the PID class were more likely to be taking medication than those belonging to the LCM class who were least likely to receive psychosocial treatments. CONCLUSION Latent classes based on co-occurring psychiatric conditions predicted use of varied treatments. These findings contribute to the characterization of the ADHD phenotype and may help clinicians identify how services could be best organized and coordinated in treating ADHD.
Collapse
|
11
|
Abstract
Oppositional defiant disorder (ODD) is diagnosed broadly on the basis of frequent and persistent angry or irritable mood, argumentativeness/defiance, and vindictiveness. Since its inception in the third Diagnostic and Statistical Manual of Mental Disorders, epidemiological and longitudinal studies have strongly suggested a distinct existence of ODD that is different from other closely related externalizing disorders, with different course and outcome and possibly discrete subtypes. However, several issues, such as symptom threshold, dimensional versus categorical conceptualization, and sex-specific symptoms, are yet to be addressed. Although ODD was found to be highly heritable, no genetic polymorphism has been identified with confidence. There has been a definite genetic overlap with other externalizing disorders. Studies have begun to explore its epigenetics and gene–environment interaction. Neuroimaging findings converge to implicate various parts of the prefrontal cortex, amygdala, and insula. Alteration in cortisol levels has also been demonstrated consistently. Although a range of environmental factors, both familial and extrafamilial, have been studied in the past, current research has combined these with other biological parameters. Psychosocial treatment continues to be time-tested and effective. These include parental management training, school-based training, functional family therapy/brief strategic family therapy, and cognitive behavior therapy. Management of severe aggression and treatment of co-morbid disorders are indications for pharmacotherapy. In line with previous conceptualization of chronic irritability as a bipolar spectrum abnormality, most studies have explored antipsychotics and mood stabilizers in the management of aggression, with limited effects.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh
| | - Anirban Ray
- Department of Psychiatry, Institute of Psychiatry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aniruddha Basu
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh
| |
Collapse
|
12
|
Gao S, Liu X, Liu J, Xiong W, Song X, Wu W, Wei L, Li B. Identification and evolution of latrophilin
receptor gene involved in Tribolium castaneum
devolopment and female fecundity. Genesis 2017; 55. [DOI: 10.1002/dvg.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Xing Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| |
Collapse
|
13
|
Interaction of Depression and Anxiety in the Development of Mixed Anxiety/Depression Disorder. Experimental Studies of the Mechanisms of Comorbidity (review). ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0458-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Jiménez-Figueroa G, Ardila-Duarte C, Pineda DA, Acosta-López JE, Cervantes-Henríquez ML, Pineda-Alhucema W, Cervantes-Gutiérrez J, Quintero-Ibarra M, Sánchez-Rojas M, Vélez JI, Puentes-Rozo PJ. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a Caribbean community. ACTA ACUST UNITED AC 2017; 9:199-211. [PMID: 28238028 DOI: 10.1007/s12402-017-0223-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023]
Abstract
Impairment in inhibitory control has been postulated as an underlying hallmark of attention deficit/hyperactivity disorder (ADHD), which can be utilized as a quantitative trait for genetic studies. Here, we evaluate whether inhibitory control, measured by simple automatized prepotent response (PR) inhibition variables, is a robust discriminant function for the diagnosis of ADHD in children and can be used as an endophenotype for future genetic studies. One hundred fifty-two school children (30.9% female, 67.8% with ADHD) were recruited. The ADHD checklist was used as the screening tool, whilst the DSM-IV Mini International Neuropsychiatry Interview, neurologic interview and neurologic examination, and the WISC III FSIQ test were administered as the gold standard procedure to assert ADHD diagnosis. A Go/No-Go task using a naturalistic and automatized visual signal was administered. A linear multifactor model (MANOVA) was fitted to compare groups including ADHD status, age, and gender as multiple independent factors. Linear discriminant analysis and the receiver operating characteristic curve were used to assess the predictive performance of PR inhibition variables for ADHD diagnosis. We found that four variables of prepotent response reaction time- and prepotent response inhibition established statistically significant differences between children with and without ADHD. Furthermore, these variables generated a strong discriminant function with a total classification capability of 73, 84% specificity, 68% sensitivity, and 90% positive predictive value for ADHD diagnosis, which support reaction times as a candidate endophenotype that could potentially be used in future ADHD genetic research.
Collapse
Affiliation(s)
- Giomar Jiménez-Figueroa
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Carlos Ardila-Duarte
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - David A Pineda
- Neuroscience Research Group, University of Antioquia, Medellín, Colombia
- Neuropsychology and Conduct Research Group, University of Antioquia, Medellín, Colombia
| | - Johan E Acosta-López
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Martha L Cervantes-Henríquez
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Wilmar Pineda-Alhucema
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Jeimys Cervantes-Gutiérrez
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Marisol Quintero-Ibarra
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Manuel Sánchez-Rojas
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia
| | - Jorge I Vélez
- Neuroscience Research Group, University of Antioquia, Medellín, Colombia
- Universidad del Norte, Barranquilla, Colombia
- Genomics and Predictive Medicine Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Pedro J Puentes-Rozo
- Grupo de Neurociencias del Caribe, Laboratorio de Neurociencias Cognitivas, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Calle 54 # 59 -189, Sede 1, Bloque C, Barranquilla, Colombia.
- Grupo de Neurociencias del Caribe, Universidad Simón Bolívar-Universidad del Atlántico, Barranquilla, Colombia.
| |
Collapse
|
15
|
Vaht M, Laas K, Kiive E, Parik J, Veidebaum T, Harro J. A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. J Psychopharmacol 2017; 31:54-61. [PMID: 27353026 DOI: 10.1177/0269881116655979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The neuregulin 1 gene is a susceptibility gene for substance dependence. A functional polymorphism (SNP8NRG243177/rs6994992; C/T) in the promoter region of the brain-specific type IV neuregulin-1 gene ( NRG1) has been associated with psychiatric disorders (e.g. schizophrenia and bipolar disorder) that often present higher odds of smoking, alcohol and illicit drug use. This study assessed the association of the NRG1 genotype with drug use and possible interaction with stressful life events (SLEs). METHODS The database of the Estonian Children Personality Behaviour and Health Study (beginning in 1998) was used. Cohorts of children initially 9 years old ( n=583; followed up at 15 and 18 years) and 15 years old ( n=593; followed up at 18 and 25 years) provided self-reports on alcohol, tobacco and illicit substance use and SLEs. Psychiatric assessment based on DSM-IV was carried out on the older birth cohort at age 25 to assess the lifetime presence of substance use disorders. NRG1 rs6994992 was genotyped in all participants by TaqMan® Pre-Designed SNP Genotyping Assay on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The minor (T) allele frequency was 0.37. RESULTS NRG1 rs6994992 C/C homozygotes, especially those who had experienced more SLEs, were more likely to develop alcohol use disorders by young adulthood, were generally more active consumers of tobacco products, and had more likely used illicit drugs. In T allele carriers, SLEs had a negligible effect on substance use. CONCLUSIONS In humans, NRG1 genotype is associated with substance use, and this relationship is moderated by adverse life events, with a gain-of-function allele being protective.
Collapse
Affiliation(s)
- Mariliis Vaht
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Kariina Laas
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Evelyn Kiive
- 2 Division of Special Education, Department of Education, University of Tartu, Tartu, Estonia
| | - Jüri Parik
- 3 Department of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toomas Veidebaum
- 4 National Institute for Health Development, Estonian Centre of Behavioural and Health Sciences, Tallinn, Estonia
| | - Jaanus Harro
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Lee S, Choi JW, Kim KM, Kim JW, Kim S, Kang T, Kim JI, Lee YS, Kim B, Han DH, Cheong JH, Lee SI, Hyun GJ, Kim BN. The Guideline of Diagnosis and Treatment of Attention-Deficit Hyperactivity Disorder: Developed by ADHD Translational Research Center. Soa Chongsonyon Chongsin Uihak 2016. [DOI: 10.5765/jkacap.2016.27.4.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sumin Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Won Choi
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Min Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Sooyeon Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | | | - Johanna Inhyang Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bongseog Kim
- Department of Psychiatry, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Korea
| | - Soyoung Irene Lee
- Department of Psychiatry, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Korea
| | - Gi Jung Hyun
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, Löhr H, Driever W, Acosta MT, Arcos-Burgos M, Muenke M. An Ultraconserved Brain-Specific Enhancer Within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol Psychiatry 2016; 80:943-954. [PMID: 27692237 PMCID: PMC5108697 DOI: 10.1016/j.biopsych.2016.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic factors predispose individuals to attention-deficit/hyperactivity disorder (ADHD). Previous studies have reported linkage and association to ADHD of gene variants within ADGRL3. In this study, we functionally analyzed noncoding variants in this gene as likely pathological contributors. METHODS In silico, in vitro, and in vivo approaches were used to identify and characterize evolutionary conserved elements within the ADGRL3 linkage region (~207 Kb). Family-based genetic analyses of 838 individuals (372 affected and 466 unaffected patients) identified ADHD-associated single nucleotide polymorphisms harbored in some of these conserved elements. Luciferase assays and zebrafish green fluorescent protein transgenesis tested conserved elements for transcriptional enhancer activity. Electromobility shift assays were used to verify transcription factor-binding disruption by ADHD risk alleles. RESULTS An ultraconserved element was discovered (evolutionary conserved region 47) that functions as a transcriptional enhancer. A three-variant ADHD risk haplotype in evolutionary conserved region 47, formed by rs17226398, rs56038622, and rs2271338, reduced enhancer activity by 40% in neuroblastoma and astrocytoma cells (pBonferroni < .0001). This enhancer also drove green fluorescent protein expression in the zebrafish brain in a tissue-specific manner, sharing aspects of endogenous ADGRL3 expression. The rs2271338 risk allele disrupts binding of YY1 transcription factor, an important factor in the development and function of the central nervous system. Expression quantitative trait loci analysis of postmortem human brain tissues revealed an association between rs2271338 and reduced ADGRL3 expression in the thalamus. CONCLUSIONS These results uncover the first functional evidence of common noncoding variants with potential implications for the pathology of ADHD.
Collapse
|
18
|
Acosta MT, Swanson J, Stehli A, Molina BSG, Martinez AF, Arcos-Burgos M, Muenke M. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol Genet Genomic Med 2016; 4:540-7. [PMID: 27652281 PMCID: PMC5023939 DOI: 10.1002/mgg3.230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background ADHD is the most common neuropsychiatric condition affecting individuals of all ages. Long‐term outcomes of affected individuals and association with severe comorbidities as SUD or conduct disorders are the main concern. Genetic associations have been extensively described. Multiple studies show that intronic variants harbored in the ADGRL3 (LPHN3) gene are associated with ADHD, especially associated with poor outcomes. Methods In this study, we evaluated this association in the Multimodal Treatment Study of children with ADHD (MTA), initiated as a 14‐month randomized clinical trial of 579 children diagnosed with DSM‐IV ADHD‐Combined Type (ADHD‐C), that transitioned to a 16‐year prospective observational follow‐up, and 289 classmates added at the 2‐year assessment to serve as a local normative comparison group (LNCG). Diagnostic evaluations at entry were based on the Diagnostic Interview Schedule for Children‐Parent (DISC‐P), which was repeated at several points over the years. For an add‐on genetic study, blood samples were collected from 232 in the MTA group and 139 in the LNCG. Results For the 205 MTA participants, 14.6% retained the DISC‐P diagnosis of ADHD‐C in adolescence. For 127 LNCG participants, 88.2% remained undiagnosed by the DISC‐P. We genotyped 15 polymorphic SNP markers harbored in the ADGRL3 gene, and compared allele frequencies for the 30 cases with continued diagnosis of ADHD‐C in adolescence to the other participants. Replication of the association of rs2345039 ADGRL3 variant was observed (P value = 0.004, FDR corrected = 0.03; Odds ratio = 2.25, upper CI 1.28–3.97). Conclusion The detection of susceptibility conferred by ADGRL3 variants in the extreme phenotype of continued diagnosis of ADHD‐C from childhood to adolescence provides additional support that the association of ADGRL3 and ADHD is not spurious. Exploring genetic effects in longitudinal cohorts, in which refined, age‐dependent phenotypes are documented, is crucial to understand the natural history of ADHD.
Collapse
Affiliation(s)
- Maria T Acosta
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland; Department of Pediatric and NeurologyGeorge Washington UniversityChildren's National Medical CenterWashingtonDistrict of Columbia
| | - James Swanson
- Department of PsychiatryFlorida International UniversityMiamiFlorida; Department of PediatricsUniversity of California at IrvineIrvineCalifornia
| | - Annamarie Stehli
- Department of Pediatrics University of California at Irvine Irvine California
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology University of Pittsburgh Pittsburgh Pennsylvania
| | | | - Ariel F Martinez
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Genome Biology Department John Curtin School of Medical Research ANU College of Medicine, Biology and Environment The Australian National University Canberra ACT Australia
| | - Maximilian Muenke
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| |
Collapse
|
19
|
Brevik EJ, van Donkelaar MMJ, Weber H, Sánchez‐Mora C, Jacob C, Rivero O, Kittel‐Schneider S, Garcia‐Martínez I, Aebi M, van Hulzen K, Cormand B, Ramos‐Quiroga JA, Lesch K, Reif A, Ribasés M, Franke B, Posserud M, Johansson S, Lundervold AJ, Haavik J, Zayats T, IMAGE Consortium. Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2016; 171:733-47. [PMID: 27021288 PMCID: PMC5071721 DOI: 10.1002/ajmg.b.32434] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/09/2016] [Indexed: 12/03/2022]
Abstract
Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P < 5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erlend J. Brevik
- Division of PsychiatryHaukeland University HospitalBergenNorway
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Marjolein M. J. van Donkelaar
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of FrankfurtFrankfurtGermany
| | - Cristina Sánchez‐Mora
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
| | - Christian Jacob
- Department of Psychiatry and PsychotherapyKlinik NürtingenNürtingenGermany
| | - Olga Rivero
- Division of Molecular PsychiatryCenter of Mental Health, University of WürzburgWürzburgGermany
| | - Sarah Kittel‐Schneider
- Division of Molecular PsychiatryCenter of Mental Health, University of WürzburgWürzburgGermany
| | - Iris Garcia‐Martínez
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
| | - Marcel Aebi
- Department of Forensic PsychiatryChild and Youth Forensic Service, University Hospital of PsychiatryZurichSwitzerland
- Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
| | - Kimm van Hulzen
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Bru Cormand
- Facultat de Biologia, Departament de GenèticaUniversitat de BarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB)CataloniaSpain
| | - Josep A. Ramos‐Quiroga
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of Psychiatry and Legal MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Klaus‐Peter Lesch
- Department of Psychiatry and PsychotherapyKlinik NürtingenNürtingenGermany
- Department of Translational NeuroscienceSchool for Mental Health and Neuroscience (MHeNS), Maastricht UniversityMaastrichtThe Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of FrankfurtFrankfurtGermany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Maj‐Britt Posserud
- Division of PsychiatryHaukeland University HospitalBergenNorway
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
| | - Stefan Johansson
- Center for Medical Genetics and Molecular MedicineHaukeland University HospitalBergenNorway
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Astri J. Lundervold
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Jan Haavik
- Division of PsychiatryHaukeland University HospitalBergenNorway
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
| | - Tetyana Zayats
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
| | | |
Collapse
|
20
|
Freitag CM, Lempp T, Nguyen TT, Jacob CP, Weissflog L, Romanos M, Renner TJ, Walitza S, Warnke A, Rujescu D, Lesch KP, Reif A. The role of ASTN2 variants in childhood and adult ADHD, comorbid disorders and associated personality traits. J Neural Transm (Vienna) 2016; 123:849-58. [DOI: 10.1007/s00702-016-1553-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
|
21
|
Rodgers S, Müller M, Rössler W, Castelao E, Preisig M, Ajdacic-Gross V. Externalizing disorders and substance use: empirically derived subtypes in a population-based sample of adults. Soc Psychiatry Psychiatr Epidemiol 2015; 50:7-17. [PMID: 24907047 DOI: 10.1007/s00127-014-0898-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/25/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Attention-deficit/hyperactivity disorder (ADHD), conduct disorder (CD), and oppositional defiant disorder (ODD) are common externalizing disorders of childhood. The common effects of these disorders on substance abuse need further investigation. The current study investigated the joint clusters of childhood/adolescence ADHD, CD, and ODD, and their influence on substance abuse/dependence in a population-based sample of adults. METHODS The data were drawn from the PsyCoLaus study (n = 3,720) conducted in Lausanne, Switzerland. The population-based sample included 238 subjects meeting criteria for ADHD/ODD/CD diagnoses before the age of 15. Latent class analyses (LCA) were performed to derive comorbidity subtypes, which were subsequently characterized with respect to psychosocial correlates and substance use. RESULTS The best fit in LCAs was achieved with three latent classes: an ADHD subtype (35.7 %); an externalizing multimorbid subtype (33.6 %) involving ODD, ADHD, and CD; and a third subtype with CD (30.7 %). The CD subtype showed the highest association with substance use. Apart from this, the externalizing multimorbid subtype was also significantly linked to substance use. The ADHD subtype had only elevated frequencies for alcohol dependence in comparison with subjects that had no history of ADHD, ODD, and CD during childhood or adolescence. Finally, important interactions between subtypes and sex were observed with regard to substance use. CONCLUSIONS This study provides evidence showing that subtyping the externalizing disorders, ADHD, ODD and CD, along their comorbidity patterns leads to important differences regarding substance use. This could have implications for the etiology, prevention, and treatment of substance use disorders.
Collapse
Affiliation(s)
- Stephanie Rodgers
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital of Psychiatry, PO Box 1930, CH-8021, Zurich, Switzerland,
| | | | | | | | | | | |
Collapse
|
22
|
Knopik VS, Bidwell LC, Flessner C, Nugent N, Swenson L, Bucholz KK, Madden PAF, Heath AC. DSM-IV defined conduct disorder and oppositional defiant disorder: an investigation of shared liability in female twins. Psychol Med 2014; 44:1053-64. [PMID: 23795654 PMCID: PMC4024101 DOI: 10.1017/s0033291713001396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DSM-IV specifies a hierarchal diagnostic structure such that an oppositional defiant disorder (ODD) diagnosis is applied only if criteria are not met for conduct disorder (CD). Genetic studies of ODD and CD support a combination of shared genetic and environmental influences but largely ignore the imposed diagnostic structure. METHOD We examined whether ODD and CD share an underlying etiology while accounting for DSM-IV diagnostic specifications. Data from 1446 female twin pairs, aged 11-19 years, were fitted to two-stage models adhering to the DSM-IV diagnostic hierarchy. RESULTS The models suggested that DSM-IV ODD-CD covariation is attributed largely to shared genetic influences. CONCLUSIONS This is the first study, to our knowledge, to examine genetic and environmental overlap among these disorders while maintaining a DSM-IV hierarchical structure. The findings reflect primarily shared genetic influences and specific (i.e. uncorrelated) shared/familial environmental effects on these DSM-IV-defined behaviors. These results have implications for how best to define CD and ODD for future genetically informed analyses.
Collapse
Affiliation(s)
- V S Knopik
- Division of Behavioral Genetics, Rhode Island Hospital and Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - L C Bidwell
- Division of Behavioral Genetics, Rhode Island Hospital and Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - C Flessner
- Division of Behavioral Genetics, Rhode Island Hospital and Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - N Nugent
- Division of Behavioral Genetics, Rhode Island Hospital and Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - K K Bucholz
- Midwest Alcoholism Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - P A F Madden
- Midwest Alcoholism Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - A C Heath
- Midwest Alcoholism Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
23
|
Field LL, Shumansky K, Ryan J, Truong D, Swiergala E, Kaplan BJ. Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. GENES, BRAIN, AND BEHAVIOR 2013; 12:56-69. [PMID: 23190410 DOI: 10.1111/gbb.12003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/05/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
Abstract
Analysis of genetic linkage to dyslexia was performed using 133,165 array-based SNPs genotyped in 718 persons from 101 dyslexia-affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention-deficit hyperactivity disorder (ADHD, which highly co-occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1-3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome-wide significance, although a borderline significant SNP (P = 6 × 10(-7)) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.
Collapse
MESH Headings
- Adolescent
- Attention Deficit Disorder with Hyperactivity/genetics
- Autistic Disorder/genetics
- Case-Control Studies
- Child
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 7
- Dyslexia/genetics
- Female
- Fibroblast Growth Factors/genetics
- Genetic Association Studies
- Genetic Loci
- Genetic Predisposition to Disease
- Genome, Human
- Humans
- Male
- Pedigree
- Physical Chromosome Mapping
- Polymorphism, Single Nucleotide
- RNA-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, Peptide/genetics
- Transcriptome
Collapse
Affiliation(s)
- L L Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Walsh KS, Vélez JI, Kardel PG, Imas DM, Muenke M, Packer RJ, Castellanos FX, Acosta MT. Symptomatology of autism spectrum disorder in a population with neurofibromatosis type 1. Dev Med Child Neurol 2013; 55:131-138. [PMID: 23163951 DOI: 10.1111/dmcn.12038] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM Difficulties in neurocognition and social interaction are the most prominent causes of morbidity and long-term disability in children with neurofibromatosis type 1 (NF1). Symptoms of attention-deficit-hyperactivity disorder (ADHD) have also been extensively recognized in NF1. However, systematic evaluation of symptoms of autism spectrum disorder (ASD) in children with NF1 has been limited. METHOD We present a retrospective, cross-sectional study of the prevalence of symptoms of ASD and ADHD and their relationship in a consecutive series of 66 patients from our NF1 clinic. The Social Responsiveness Scale and the Vanderbilt ADHD Diagnostic Parent Rating Scale were used to assess symptoms of ASD and ADHD. RESULTS Sixty-six participants (42 males, 24 females) were included in this study. Mean age at assessment was 10 years 11 months (SD 5 y 4 mo). Forty percent of our NF1 sample had raised symptom levels reaching clinical significance on the Social Responsiveness Scale (T ≥ 60), and 14% reached levels consistent with those seen in children with ASDs (T ≥ 75). These raised levels were not explained by NF1 disease severity or externalizing/internalizing behavioral disorders. There was a statistically significant relationship between symptoms of ADHD and ASD (χ(2) =9.11, df=1, p=0.003, φ=0.56). Particularly salient were the relationships between attention and hyperactivity deficits, with impairments in social awareness and social motivation. INTERPRETATION We found that symptoms of ASD in our NF1 population were raised, consistent with previous reports. Further characterization of the specific ASD symptoms and their impact on daily function is fundamental to the development and implementation of effective interventions in this population, which will probably include a combination of medical and behavioral approaches.
Collapse
Affiliation(s)
- Karin S Walsh
- The Jennifer and Daniel Gilbert Neurofibromatosis Institute, Washington, DC., Center for Neuroscience and Behavioral Medicine at Children's National Medical Center, Washington, DC
| | - Jorge I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Peter G Kardel
- The Jennifer and Daniel Gilbert Neurofibromatosis Institute, Washington, DC., Center for Neuroscience and Behavioral Medicine at Children's National Medical Center, Washington, DC
| | - Daniel M Imas
- The Jennifer and Daniel Gilbert Neurofibromatosis Institute, Washington, DC., Center for Neuroscience and Behavioral Medicine at Children's National Medical Center, Washington, DC
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Roger J Packer
- The Jennifer and Daniel Gilbert Neurofibromatosis Institute, Washington, DC., Center for Neuroscience and Behavioral Medicine at Children's National Medical Center, Washington, DC
| | - Francisco X Castellanos
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, NYU Langone Medical Center, New York, NY., Nathan Kline Institute, Orangeburg, NY, USA
| | - Maria T Acosta
- The Jennifer and Daniel Gilbert Neurofibromatosis Institute, Washington, DC., Center for Neuroscience and Behavioral Medicine at Children's National Medical Center, Washington, DC., Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Wang KS. Relationship between attention deficit hyperactivity disorder and alcohol dependence: a genetic view. INTERNATIONAL JOURNAL OF HIGH RISK BEHAVIORS & ADDICTION 2013; 1:192-3. [PMID: 24971261 PMCID: PMC4070128 DOI: 10.5812/ijhrba.9629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, USA
- Corresponding author: Ke-Sheng Wang, Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Lamb Hall, TN 37614-1700, P. O. Box: 70259, Johnson City, USA, Tel.: +1-4234394481; Fax: +1-4234394606, E-mail:
| |
Collapse
|
26
|
GWAS reveals new recessive loci associated with non-syndromic facial clefting. Eur J Med Genet 2012; 55:510-4. [PMID: 22750566 DOI: 10.1016/j.ejmg.2012.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 06/09/2012] [Indexed: 01/31/2023]
Abstract
We have applied a GWAS to 40 consanguineous families segregating cases of non-syndromic cleft lip with or without cleft palate (NS CL/P) (a total of 160 affected and unaffected individuals) in order to trace potential recessive loci that confer susceptibility to this common facial malformation. Pedigree-based association test (PBAT) analyses reported nominal evidence of association and linkage over SNP markers located at 11q25 (rs4937877, P = 2.7 × 10(-6)), 19p12 (rs4324267, P = 1.6 × 10(-5)), 5q14.1 (rs4588572, P-value = 3.36 × 10(-5)), and 15q21.1 (rs4774497, P = 1.08 × 10(-4)). Using the Versatile Gene-Based Association Study to complement the PBAT results, we found clusters of markers located at chromosomes 19p12, 11q25, and 8p23.2 overcome the threshold for GWAS significance (P < 1 × 10(-7)). From this study, new recessive loci implicated in NS CL/P include: B3GAT1, GLB1L2, ZNF431, ZNF714, and CSMD1, even though the functional association with the genesis of NS CL/P remains to be elucidated. These results emphasize the importance of using homogeneous populations, phenotypes, and family structures for GWAS combined with gene-based association analyses, and should encourage. other researchers to evaluate these genes on independent patient samples affected by NS CL/P.
Collapse
|
27
|
Wallis D, Hill DS, Mendez IA, Abbott LC, Finnell RH, Wellman PJ, Setlow B. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res 2012; 1463:85-92. [PMID: 22575564 DOI: 10.1016/j.brainres.2012.04.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 02/05/2023]
Abstract
The LPHN3 gene has been associated with both attention deficit-hyperactivity disorder (ADHD) and addiction, suggesting that it may play a role in the etiology of these disorders. Unfortunately, almost nothing is known about the normal functions of this gene, which has hampered understanding of its potential pathogenic role. To begin to characterize such normal functions, we utilized a gene-trap embryonic stem cell line to generate mice mutant for the Lphn3 gene. We evaluated differential gene expression in whole mouse brain between mutant and wild type male littermates at postnatal day 0 using TaqMan gene expression assays. Most notably, we found changes in dopamine and serotonin receptors and transporters (Dat1, Drd4, 5Htt, 5Ht2a), changes in neurotransmitter metabolism genes (Th, Gad1), as well as changes in neural developmental genes (Nurr, Ncam). When mice were examined at 4-6 weeks of age, null mutants showed increased levels of dopamine and serotonin in the dorsal striatum. Finally, null mutant mice had a hyperactive phenotype in the open field test, independent of sex, and were more sensitive to the locomotor stimulant effects of cocaine. Considered together, these results suggest that Lphn3 plays a role in development and/or regulation of monoamine signaling. Given the central role for monoamines in ADHD and addiction, it seems likely that the influence of LPHN3 genotype on these disorders is mediated through alterations in monoamine signaling.
Collapse
Affiliation(s)
- Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-3474, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Arcos-Burgos M, Vélez JI, Solomon BD, Muenke M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum Genet 2012; 131:917-29. [PMID: 22492058 PMCID: PMC3351604 DOI: 10.1007/s00439-012-1164-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
Here we summarize evidence obtained by our group during the last two decades, and contrasted it with a review of related data from the available literature to show that behavioral syndromes involving attention deficit/hyperactivity disorder (ADHD), externalizing disorders, and substance-use disorder (SUD) share similar signs and symptoms (i.e., have a biological basis as common syndromes), physiopathological and psychopathological mechanisms, and genetic factors. Furthermore, we will show that the same genetic variants harbored in different genes are associated with different syndromes and that non-linear interactions between genetic variants (epistasis) best explain phenotype severity, long-term outcome, and response to treatment. These data have been depicted in our studies by extended pedigrees, where ADHD, externalizing symptoms, and SUD segregate and co-segregate. Finally, we applied here a new formal network analysis using the set of significantly replicated genes that have been shown to be either associated and/or linked to ADHD, disruptive behaviors, and SUD in order to detect significantly enriched gene categories for protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity. We found that networks related to pathways involved in axon guidance, regulation of synaptic transmission, and regulation of transmission of nerve impulse are overrepresented. In summary, we provide compiled evidence of complex networks of genotypes underlying a wide phenotype that involves SUD and externalizing disorders.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
The severity of attention-deficit/hyperactivity disorder (ADHD) symptoms is a major predictor of long-term ADHD outcome. To investigate if two-locus interactions might predict ADHD severity, we studied a sample of 1341 individuals from families clustering ADHD, using the Vanderbilt Assessment Scale for Parents. Latent class cluster analysis was used to construct symptom profiles and classify ADHD severity. Single nucleotide polymorphisms (SNPs) spanning ADHD-linked chromosomal regions on chromosomes 4, 5, 10, 11, 12 and 17 were genotyped. SNPs associated with ADHD severity were identified and potential two-locus genetic interactions were tested. We found that SNPs within the LPHN3 gene interact with SNPs spanning the 11q region that contains DRD2 and NCAM1 not only to increase the risk of developing ADHD but also to increase ADHD severity. All these genes are identified to have a major role in shaping both brain development and function. These findings demonstrate that genetic interactions may predict the severity of ADHD, which in turn may predict long-term ADHD outcome.
Collapse
|
30
|
Martel MM, Gremillion M, Roberts B, von Eye A, Nigg JT. The structure of childhood disruptive behaviors. Psychol Assess 2010; 22:816-26. [PMID: 21133546 PMCID: PMC4307591 DOI: 10.1037/a0020975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) frequently co-occur. Comorbidity of these 2 childhood disruptive behavior domains has not been satisfactorily explained at either a structural or etiological level. The current study evaluated a bifactor model, which allows for a "g" factor in addition to distinct component factors, in relation to other models to improve understanding of the structural relationship between ADHD and ODD. Participants were 548 children (321 boys, 227 girls) between the ages of 6 years and 18 years who participated in a comprehensive diagnostic assessment incorporating parent and teacher ratings of symptoms. Of these 548 children, 153 children were diagnosed with ADHD (without ODD), 114 children were diagnosed with ADHD + ODD, 26 children were diagnosed with ODD (without ADHD), and 239 children were classified as non-ADHD/ODD comparison children (including subthreshold cases). ADHD symptoms were assessed via parent report on a diagnostic interview and via parent and teacher report on the ADHD Rating Scale. ODD symptoms were assessed via teacher report. A bifactor model of disruptive behavior, comprising a "g" factor and the specific factors of ADHD and ODD, exhibited best fit, compared to 1-factor, 2-factor, 3-factor, and 2nd-order factor models of disruptive behaviors. It is concluded that a bifactor model of childhood disruptive behaviors is superior to existing models and may help explain common patterns of comorbidity between ADHD and ODD.
Collapse
Affiliation(s)
- Michelle M Martel
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
31
|
Developmental comorbidity in attention-deficit/hyperactivity disorder. ACTA ACUST UNITED AC 2010; 2:267-89. [PMID: 21432612 DOI: 10.1007/s12402-010-0040-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/12/2010] [Indexed: 12/14/2022]
|
32
|
Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Bosch R, Richarte V, Palomar G, Gastaminza X, Bielsa A, Arcos-Burgos M, Muenke M, Castellanos FX, Cormand B, Bayés M, Casas M. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. GENES BRAIN AND BEHAVIOR 2010; 10:149-57. [PMID: 21040458 DOI: 10.1111/j.1601-183x.2010.00649.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable developmental disorder characterized by a persistent impairing pattern of inattention and/or hyperactivity-impulsivity. Using families from a genetic isolate, the Paisa population from Colombia, and five independent datasets from four different populations (United States, Germany, Norway and Spain), a highly consistent association was recently reported between ADHD and the latrophilin 3 (LPHN3) gene, a brain-specific member of the LPHN subfamily of G-protein-coupled receptors that is expressed in ADHD-related regions, such as amygdala, caudate nucleus, cerebellum and cerebral cortex. To replicate the association between LPHN3 and ADHD in adults, we undertook a case-control association study in 334 adult patients with ADHD and 334 controls with 43 single nucleotide polymorphisms (SNPs) covering the LPNH3 gene. Single- and multiple-marker analyses showed additional evidence of association between LPHN3 and combined type ADHD in adulthood [P = 0.0019; df = 1; odds ratio (OR) = 1.82 (1.25-2.70) and P = 5.1e-05; df = 1; OR = 2.25 (1.52-3.34), respectively]. These results further support the LPHN3 contribution to combined type ADHD, and specifically to the persistent form of the disorder, and point at this new neuronal pathway as a common susceptibility factor for ADHD throughout the lifespan.
Collapse
Affiliation(s)
- M Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 2010; 15:1053-66. [PMID: 20157310 DOI: 10.1038/mp.2010.6] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) has a very high heritability (0.8), suggesting that about 80% of phenotypic variance is due to genetic factors. We used the integration of statistical and functional approaches to discover a novel gene that contributes to ADHD. For our statistical approach, we started with a linkage study based on large multigenerational families in a population isolate, followed by fine mapping of targeted regions using a family-based design. Family- and population-based association studies in five samples from disparate regions of the world were used for replication. Brain imaging studies were performed to evaluate gene function. The linkage study discovered a genome region harbored in the Latrophilin 3 gene (LPHN3). In the world-wide samples (total n=6360, with 2627 ADHD cases and 2531 controls) statistical association of LPHN3 and ADHD was confirmed. Functional studies revealed that LPHN3 variants are expressed in key brain regions related to attention and activity, affect metabolism in neural circuits implicated in ADHD, and are associated with response to stimulant medication. Linkage and replicated association of ADHD with a novel non-candidate gene (LPHN3) provide new insights into the genetics, neurobiology, and treatment of ADHD.
Collapse
|
34
|
Arcos-Burgos M, Muenke M. Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. ACTA ACUST UNITED AC 2010; 2:139-47. [PMID: 21432600 DOI: 10.1007/s12402-010-0030-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/29/2010] [Indexed: 12/14/2022]
Abstract
During the past 15 years, an impressive amount of genetic information has become available in the research field of psychiatry, particularly as it relates to attention-deficit/hyperactivity disorder (ADHD). However, the classical clinical approach to ADHD has minimally affected and not significantly been improved by this genetic revolution. It is difficult to predict how long it will take for genetic findings to alter the way clinicians treat patients with ADHD. New medications or treatment protocols may take years to become routine clinical practice. However, when taken together, recent successes in genomics, pharmacogenomics, and genetic epidemiology have the potential (1) to prevent comorbid consequences of ADHD, (2) to individualize therapies for patients with ADHD, and (3) to define new epidemiological policies to aid with the impact of ADHD on society. Here, we present an overview of how genetic research may affect and improve the quality of life of patients with ADHD: as an example, we use the discovery of LPHN3, a new gene in which variants have recently been shown to be associated with ADHD.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
35
|
Cerdá M, Sagdeo A, Johnson J, Galea S. Genetic and environmental influences on psychiatric comorbidity: a systematic review. J Affect Disord 2010; 126:14-38. [PMID: 20004978 PMCID: PMC2888715 DOI: 10.1016/j.jad.2009.11.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this review is to systematically appraise the peer-reviewed literature about the genetic and environmental determinants of psychiatric comorbidity, focusing on four of the most prevalent types of psychopathology: anxiety disorders, depression, conduct disorder and substance abuse. METHODS We summarize existing empirical research on the relative contribution that genetic, nonshared and shared environmental factors make to the covariance between disorders, and evidence about specific genes and environmental characteristics that are associated with comorbidity. RESULTS Ninety-four articles met the inclusion criteria and were assessed. Genetic factors play a particularly strong role in comorbidity between major depression and generalized anxiety disorder or posttraumatic stress disorder, while the non-shared environments make an important contribution to comorbidity in affective disorders. Genetic and non-shared environmental factors also make a moderate-to-strong contribution to the relationship between CD and SA. A range of candidate genes, such as 5HTTLPR, MAOA, and DRD1-DRD4, as well as others implicated in the central nervous system, has been implicated in psychiatric comorbidity. Pivotal social factors include childhood adversity/life events, family and peer social connections, and socioeconomic and academic difficulties. LIMITATIONS Methodological concerns include the use of clinical case-control samples, the focus on a restricted set of individual-level environmental risk factors, and restricted follow-up times. CONCLUSIONS Given the significant mental health burden associated with comorbid disorders, population-based research on modifiable risk factors for psychiatric comorbidity is vital for the design of effective preventive and clinical interventions.
Collapse
Affiliation(s)
- M Cerdá
- Center for Urban Epidemiologic Studies, New York Academy of Medicine, New York, NY, 10029, USA.
| | | | | | | |
Collapse
|
36
|
Identifying Loci for the Overlap Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-wide QTL Linkage Approach. J Am Acad Child Adolesc Psychiatry 2010. [PMID: 20610137 DOI: 10.1097/00004583-201007000-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Anney RJL, Asherson P, Banaschewski T, Buschgens CJM, Fliers EA, Gill M, Minderaa RB, Poustka L, Sergeant JA, Buitelaar JK, Franke B, Ebstein RP, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sonuga-Barke EJS, Steinhausen HC, Faraone SV, Hartman CA, Hoekstra PJ. Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adolesc Psychiatry 2010; 49:675-85. [PMID: 20610137 PMCID: PMC2929476 DOI: 10.1016/j.jaac.2010.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. METHOD Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and subscale scores of the Social Communication Questionnaire (SCQ) were used as quantitative traits for multipoint regression-based linkage analyses on 5,407 autosomal single-nucleotide polymorphisms applying MERLIN-regress software, both without and with inclusion of ADHD symptom scores as covariates. RESULTS The analyses without ADHD symptom scores as covariates resulted in three suggestive linkage signals, i.e., on chromosomes 15q24, 16p13, and 18p11. Inclusion of ADHD symptom scores as covariates resulted in additional suggestive loci on chromosomes 7q36 and 12q24, whereas the LOD score of the locus on chromosome 15q decreased below the threshold for suggestive linkage. The loci on 7q, 16p, and 18p were found for the SCQ restricted and repetitive subscale, that on 15q was found for the SCQ communication subscale, and that on 12q for the SCQ total score. CONCLUSIONS Our findings suggest that QTLs identified in this study are ASD specific, although the 15q QTL potentially has pleiotropic effects for ADHD and ASD. This study confirms that genetic factors influence ASD traits along a continuum of severity, as loci potentially underlying ASD symptoms in children with ADHD were identified even though subjects with autism had been excluded from the IMAGE sample, and supports the hypothesis that differential genetic factors underlie the three ASD dimensions.
Collapse
MESH Headings
- Adolescent
- Attention Deficit Disorder with Hyperactivity/diagnosis
- Attention Deficit Disorder with Hyperactivity/genetics
- Attention Deficit Disorder with Hyperactivity/psychology
- Child
- Child Development Disorders, Pervasive/diagnosis
- Child Development Disorders, Pervasive/genetics
- Child Development Disorders, Pervasive/psychology
- Chromosome Aberrations
- Chromosome Mapping
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 18/genetics
- Communication
- Comorbidity
- Female
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Genome-Wide Association Study
- Humans
- Lod Score
- Male
- Personality Assessment/statistics & numerical data
- Polymorphism, Single Nucleotide/genetics
- Psychometrics/statistics & numerical data
- Quantitative Trait Loci/genetics
- Social Behavior
Collapse
|
38
|
Rommelse NNJ, Franke B, Geurts HM, Hartman CA, Buitelaar JK. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 2010; 19:281-295. [PMID: 20148275 PMCID: PMC2839489 DOI: 10.1007/s00787-010-0092-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/08/2010] [Indexed: 01/17/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20-50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis.
Collapse
Affiliation(s)
- Nanda N J Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Reinier Postlaan 10, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Elia J, Arcos-Burgos M, Bolton KL, Ambrosini PJ, Berrettini W, Muenke M. ADHD latent class clusters: DSM-IV subtypes and comorbidity. Psychiatry Res 2009; 170:192-8. [PMID: 19900717 PMCID: PMC4131943 DOI: 10.1016/j.psychres.2008.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 08/22/2008] [Accepted: 10/13/2008] [Indexed: 10/20/2022]
Abstract
ADHD (Attention Deficit Hyperactivity Disorder) has a complex, heterogeneous phenotype only partially captured by Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. In this report, latent class analyses (LCA) are used to identify ADHD phenotypes using K-SADS-IVR (Schedule for Affective Disorders & Schizophrenia for School Age Children-IV-Revised) symptoms and symptom severity data from a clinical sample of 500 ADHD subjects, ages 6-18, participating in an ADHD genetic study. Results show that LCA identified six separate ADHD clusters, some corresponding to specific DSM-IV subtypes while others included several subtypes. DSM-IV comorbid anxiety and mood disorders were generally similar across all clusters, and subjects without comorbidity did not aggregate within any one cluster. Age and gender composition also varied. These results support findings from population-based LCA studies. The six clusters provide additional homogenous groups that can be used to define ADHD phenotypes in genetic association studies. The limited age ranges aggregating in the different clusters may prove to be a particular advantage in genetic studies where candidate gene expression may vary during developmental phases. DSM-IV comorbid mood and anxiety disorders also do not appear to increase cluster heterogeneity; however, longitudinal studies that cover period of risk are needed to support this finding.
Collapse
Affiliation(s)
- Josephine Elia
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | - Kelly L. Bolton
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, United States
| | - Paul J. Ambrosini
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Wade Berrettini
- The University of Pennsylvania, Philadelphia, PA, United States
| | - Maximilian Muenke
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, United States
| |
Collapse
|
40
|
Coghill D, Banaschewski T. The genetics of attention-deficit/hyperactivity disorder. Expert Rev Neurother 2009; 9:1547-65. [PMID: 19831843 DOI: 10.1586/ern.09.78] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder that almost certainly represents the common outcome of multiple causal pathways and it is now generally accepted that genetic factors make a significant contribution to these pathways. Behavioral studies suggest a heritability of approximately 0.76. While molecular genetic approaches have identified a range of potential candidate genes, it is now clear that the genetics of ADHD are characterized by a number of genes each of which makes a small but significant contribution to the overall risk. Several genome-wide linkage studies have been conducted and, although there are considerable differences in findings between studies, several regions have been supported across several studies (bin 16.4, 5p13, 11q22-25, 17p11). The contribution of several candidate genes has been supported by meta-analyses (DRD4, DRD5, DAT1, HTR1B and SNAP25). Genome-wide association scans are starting to appear but have not yet had sufficient power to produce conclusive results. Gene-environment interactions, which are as yet relatively understudied, are likely to be of importance in fully understanding the role of genes in ADHD and will be discussed.
Collapse
Affiliation(s)
- David Coghill
- Centre for Neuroscience, Division of Medical Sciences, University of Dundee, Centre for Child Health, 19 Dudhope Terrace, Dundee, DD3 6HH, UK.
| | | |
Collapse
|
41
|
Barnett R, Maruff P, Vance A. Neurocognitive function in attention-deficit-hyperactivity disorder with and without comorbid disruptive behaviour disorders. Aust N Z J Psychiatry 2009; 43:722-30. [PMID: 19629793 DOI: 10.1080/00048670903001927] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the present study was to examine the effect of comorbid oppositional defiant disorder (ODD) and conduct disorder (CD) on (i) symptom levels in attention-deficit-hyperactivity disorder (ADHD) and (ii) the relationship between neurocognitive impairment and ADHD symptom severity. METHOD A total of 200 6-12-year-old children with DSM-IV ADHD, combined type (ADHD-CT) were identified in a specialist ADHD clinic in metropolitan Melbourne. From this initial group, 23 were identified with ADHD without ODD/CD (ADHD alone), 22 had ADHD and ODD and 20 had ADHD and CD. All the children were medication naive. Twenty-five healthy control children were also recruited from local primary schools. The four groups did not differ in age, gender or full-scale IQ. A cross-sectional study of parent- and teacher-reported ADHD and externalizing symptoms, spatial span, spatial working memory, visuospatial memory, spatial recognition, spatial planning and behavioural inhibition was completed. RESULTS Parent-reported externalizing symptoms were higher in the ADHD + CD and ADHD + ODD groups compared to the ADHD alone group. There were no differences in neurocognitive function between children with ADHD-CT with and without ODD or CD. All the ADHD groups, however, performed worse than the healthy control group. Further, worse spatial span, spatial working memory and delayed matching to sample performance were associated with increased teacher-reported ADHD symptoms in the ADHD alone group. Also, worse spatial working memory performance was associated with increased teacher-reported ADHD symptoms in the ADHD + CD group. CONCLUSIONS ADHD symptom severity is associated with the magnitude of impairment in executive functions in children with ADHD alone, but these relationships can be obscured by the presence of comorbid disruptive disorders. Children with ADHD + CD may demonstrate similar associations to children with ADHD alone, suggesting a similar underlying dysfunction. ADHD + ODD, however, may be better understood as a maladaptive response to the abnormal behaviours and neurocognitive functions in ADHD.
Collapse
Affiliation(s)
- Rebecca Barnett
- Academic Child Psychiatry Unit, Royal Children's Hospital, University of Melbourne, Vic, Australia
| | | | | |
Collapse
|
42
|
Eme RF. Attention-deficit/hyperactivity disorder and correctional health care. JOURNAL OF CORRECTIONAL HEALTH CARE 2009; 15:5-18. [PMID: 19477807 DOI: 10.1177/1078345808326617] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two thirds of all felons released from state prisons are rearrested within 3 years. This appalling recidivism rate explains the intense and growing interest on the topic of desistance from crime. Yet, inexplicably, one of the major factors affecting desistance from crime and the recidivism rate has received scant attention. That factor is attention-deficit/hyperactivity disorder (ADHD). This article establishes the widespread prevalence of ADHD in the prison system and the critical importance of identifying and treating ADHD as an essential component for any best practice models for preventing crime and reducing recidivism. It also examines the major mechanisms whereby ADHD increases the risk for crime and recidivism.
Collapse
Affiliation(s)
- Robert F Eme
- American School of Professional Psychology, Argosy University, Schaumburg, Illinois 60173, USA.
| |
Collapse
|
43
|
Hofvander B, Ossowski D, Lundström S, Anckarsäter H. Continuity of aggressive antisocial behavior from childhood to adulthood: The question of phenotype definition. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2009; 32:224-234. [PMID: 19428109 DOI: 10.1016/j.ijlp.2009.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aiming to clarify the adult phenotype of antisocial personality disorder (ASPD), the empirical literature on its childhood background among the disruptive behaviour disorders, such as attention deficit/hyperactivity disorder (AD/HD), oppositional defiant disorder (ODD), conduct disorder (CD), or hyperkinetic conduct disorder (HKCD), was reviewed according to the Robins and Guze criteria for nosological validity. At least half of hyperactive children develop ODD and about a third CD (i.e. AD/HD+CD or HKCD) before puberty. About half of children with this combined problem constellation develop antisocial personality disorder (ASPD) in adulthood. Family and adoption/twin studies indicate that AD/HD and CD share a high heritability and that, in addition, there may be specific environmental effects for criminal behaviours. "Zones of rarity" delineating the disorders from each other, or from the normal variation, have not been identified. Neurophysiology, brain imaging, neurochemistry, neurocognition, or molecular genetics have not provided "external validity" for any of the diagnostic categories used today. Deficient mental functions, such as inattention, poor executive functions, poor verbal learning, and impaired social interaction (empathy), seem to form unspecific susceptibility factors. As none of today's proposed syndromes (e.g. AD/HD or psychopathy) seems to describe a natural category, a dimensional behavioural phenotype reflecting aggressive antisocial behaviours assessed by numbers of behaviours, the severity of their consequences and how early is their age at onset, which will be closely related to childhood hyperactivity, would bring conceptual clarity, and may form the basis for further probing into mental, cognitive, biological and treatment-related co-varying features.
Collapse
|
44
|
Qian QJ, Liu J, Wang YF, Yang L, Guan LL, Faraone SV. Attention Deficit Hyperactivity Disorder comorbid oppositional defiant disorder and its predominately inattentive type: evidence for an association with COMT but not MAOA in a Chinese sample. Behav Brain Funct 2009; 5:8. [PMID: 19228412 PMCID: PMC2661318 DOI: 10.1186/1744-9081-5-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/19/2009] [Indexed: 11/10/2022] Open
Abstract
Background There are three childhood disruptive behavior disorders (DBDs), attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD). The most common comorbid disorder in ADHD is ODD. DSM-IV describes three ADHD subtypes: predominantly inattentive type (ADHD-IA), predominantly hyperactive-impulsive type (ADHD-HI), and combined type (ADHD-C). Prior work suggests that specific candidate genes are associated with specific subtypes of ADHD in China. Our previous association studies between ADHD and functional polymorphisms of COMT and MAOA, consistently showed the low transcriptional activity alleles were preferentially transmitted to ADHD-IA boys. Thus, the goal of the present study is to test the hypothesis that COMT Val158Met and MAOA-uVNTR jointly contribute to the ODD phenotype among Chinese ADHD boys. Methods 171 Chinese boys between 6 and 17.5 years old (mean = 10.3, SD = 2.6) with complete COMT val158met and MAOA-uVNTR genotyping information were studied. We used logistic regression with genotypes as independent variables and the binary phenotype as the dependent variable. We used p < 0.05 as the level of nominal statistical significance. Bonferroni correction procedures were used to adjust for multiple comparisons. Results Our results highlight the potential etiologic role of COMT in the ADHD with comorbid ODD and its predominately inattentive type in male Chinese subjects. ADHD with comorbid ODD was associated with homozygosity of the high-activity Val allele, while the predominantly inattentive ADHD subtype was associated with the low-activity Met allele. We found no evidence of association between the MAOA-uVNTR variant and ADHD with comorbid ODD or the ADHD-IA subtype. Conclusion Our study of attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominately inattentive type highlights the potential etiologic role of COMT for ADHD children in China. But we failed to observe an interaction between COMT and MAOA, which suggests that epistasis between COMT and MAOA genes does not influence the phenotype of ADHD-IA with comorbid ODD in a clinical sample of Chinese male subjects. To confirm our findings further studies with a larger number of subjects and healthy controls are needed.
Collapse
Affiliation(s)
- Qiu-Jin Qian
- Institute of Mental Health, Peking University, Beijing, 10083, China .
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Rommelse NN, Arias-Vásquez A, Altink ME, Buschgens CJ, Fliers E, Asherson P, Faraone SV, Buitelaar JK, Sergeant JA, Oosterlaan J, Franke B. Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am J Hum Genet 2008; 83:99-105. [PMID: 18599010 DOI: 10.1016/j.ajhg.2008.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/24/2008] [Accepted: 06/02/2008] [Indexed: 02/01/2023] Open
Abstract
ADHD linkage findings have not all been consistently replicated, suggesting that other approaches to linkage analysis in ADHD might be necessary, such as the use of (quantitative) endophenotypes (heritable traits associated with an increased risk for ADHD). Genome-wide linkage analyses were performed in the Dutch subsample of the International Multi-Center ADHD Genetics (IMAGE) study comprising 238 DSM-IV combined-type ADHD probands and their 112 affected and 195 nonaffected siblings. Eight candidate neuropsychological ADHD endophenotypes with heritabilities > 0.2 were used as quantitative traits. In addition, an overall component score of neuropsychological functioning was used. A total of 5407 autosomal single-nucleotide polymorphisms (SNPs) were used to run multipoint regression-based linkage analyses. Two significant genome-wide linkage signals were found, one for Motor Timing on chromosome 2q21.1 (LOD score: 3.944) and one for Digit Span on 13q12.11 (LOD score: 3.959). Ten suggestive linkage signals were found (LOD scores > or = 2) on chromosomes 2p, 2q, 3p, 4q, 8q, 12p, 12q, 14q, and 17q. The suggestive linkage signal for the component score that was found at 2q14.3 (LOD score: 2.878) overlapped with the region significantly linked to Motor Timing. Endophenotype approaches may increase power to detect susceptibility loci in ADHD and possibly in other complex disorders.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the considerable advances in consolidating the empirical evidence on several key topics in the genetics of attention deficit hyperactivity disorder, namely the quantitative genetic studies of the nature of attention deficit hyperactivity disorder and its comorbidities, the molecular genetic studies that show modest but consistent effects of specific genotypes, and the growing recognition of genotype by environment interaction. Such interactions are studied to explain what happens when individuals with a susceptible genotype are exposed to a particular environment. RECENT FINDINGS There have been a significant number of twin studies that have examined different models of the symptomatology of attention deficit hyperactivity disorder and how these symptoms are reported. Similarly, molecular genetic research is complicated by very different outcome measures, and study across the whole field is made more problematic by genotype by environment interaction effects. One of the most interesting areas of development is that of psychopharmacogenetics. SUMMARY Two key developments have been integrative models of the genetics of attention deficit hyperactivity disorder and brain structure, which may have implications for future attention deficit hyperactivity disorder subtyping, and collaboration. This is not just within attention deficit hyperactivity disorder as in the IMAGE study, but also across disciplines.
Collapse
|
48
|
Acosta MT, Castellanos FX, Bolton KL, Balog JZ, Eagen P, Nee L, Jones J, Palacio L, Sarampote C, Russell HF, Berg K, Arcos-Burgos M, Muenke M. Latent class subtyping of attention-deficit/hyperactivity disorder and comorbid conditions. J Am Acad Child Adolesc Psychiatry 2008; 47:797-807. [PMID: 18520958 PMCID: PMC2774844 DOI: 10.1097/chi.0b013e318173f70b] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Genetic studies of attention-deficit/hyperactivity disorder (ADHD) generally use discrete DSM-IV subtypes to define diagnostic status. To improve correspondence between phenotypic variance and putative susceptibility genes, multivariate classification methods such as latent class analysis (LCA) have been proposed. The aim of this study was to perform LCA in a sample of 1,010 individuals from a nationwide recruitment of unilineal nuclear families with at least one child with ADHD and another child either affected or clearly unaffected. METHOD LCA models containing one through 10 classes were fitted to data derived from all DSM-IV symptoms for ADHD, oppositional defiant disorder, and conduct disorder (CD), as well as seven items that screen for anxiety and depression from the National Initiative for Children's Healthcare Quality Vanderbilt Assessment Scale for Parents. RESULTS We replicated six to eight statistically significantly distinct clusters, similar to those described in other cross-cultural studies, mostly stable when comorbidities are included. For all age groups, anxiety and depression are strongly related to Inattentive and Combined types. Externalizing symptoms, especially CD, are strongly associated with the Combined type of ADHD. Oppositional defiant disorder symptoms in young children are associated with either conduct disorder or anxiety-related symptoms. CONCLUSIONS Methods such as LCA allow inclusion of information about comorbidities to be quantitatively incorporated into genetic studies. LCA also permits incorporation of milder but still impairing phenotypes than are allowed using the DSM-IV. Such methods may be essential for analyses of large multicenter datasets and relevant for future clinical classifications. This population-based ADHD classification may help resolve the contradictory results presented in molecular genetic studies.
Collapse
Affiliation(s)
- Maria T Acosta
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - F Xavier Castellanos
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Kelly L Bolton
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Joan Z Balog
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Patricia Eagen
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Linda Nee
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Janet Jones
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Luis Palacio
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Christopher Sarampote
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Heather F Russell
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Kate Berg
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Mauricio Arcos-Burgos
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center
| | - Maximilian Muenke
- Drs. Acosta, Palacio, Sarampote, Russell, Berg, Arcos-Burgos, and Muenke, Ms. Bolton, Ms. Balog, Ms. Eagen, Ms. Nee, and Ms. Jones are with the National Human Genome Research Institute, National Institutes of Health, Bethesda, MA: and Dr. Castellanos is with the New York University Child Study Center.
| |
Collapse
|
49
|
Romanos M, Freitag C, Jacob C, Craig DW, Dempfle A, Nguyen TT, Halperin R, Walitza S, Renner TJ, Seitz C, Romanos J, Palmason H, Reif A, Heine M, Windemuth-Kieselbach C, Vogler C, Sigmund J, Warnke A, Schäfer H, Meyer J, Stephan DA, Lesch KP. Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol Psychiatry 2008; 13:522-30. [PMID: 18301393 DOI: 10.1038/mp.2008.12] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous genome-wide linkage studies applied the affected sib-pair design; one investigated extended pedigrees of a genetic isolate. Here, results of a genome-wide high-density linkage scan of attention-deficit/hyperactivity disorder (ADHD) using an array-based genotyping of approximately 50 K single nucleotide polymorphism (SNPs) markers are presented. We investigated eight extended pedigrees of German origin that were non-related, not part of a genetic isolate and ascertained on the basis of clinical referral. Two parametric analyses maximizing LOD scores (MOD) and a non-parametric analysis for both a broad and a narrow phenotype approach were conducted. Novel linkage loci across all families were detected at 2q35, 5q13.1, 6q22-23 and 14q12, within individual families at 18q11.2-12.3. Further linkage regions at 7q21.11, 9q22 and 16q24.1 in all families, and at 1q25.1, 1q25.3, 9q31.1-33.1, 9q33, 12p13.33, 15q11.2-13.3 and 16p12.3-12.2 in individual families replicate previous findings. High-resolution linkage mapping points to several novel candidate genes characterized by dense expression in the brain and potential impact on disorder-relevant synaptic transmission. Our study provides further evidence for common gene effects throughout different populations despite the complex multifactorial etiology of ADHD.
Collapse
Affiliation(s)
- M Romanos
- ADHD Clinical Research Program, Department of Child and Adolescent Psychiatry and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dowson JH. Characteristics of adults with attention-deficit/hyperactivity disorder and past conduct disorder. Acta Psychiatr Scand 2008; 117:299-305. [PMID: 18241309 DOI: 10.1111/j.1600-0447.2008.01153.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE DSM-IV Attention-deficit/hyperactivity disorder (ADHD) comorbid with DSM-IV conduct disorder (CD) in childhood/adolescence has been proposed as a 'distinct subtype'. The present study investigated subsequent psychopathological characteristics of this proposed subtype in adults. METHOD Questionnaires were completed by 71 adults (mean age 29.6 years) with ADHD and their informants. RESULTS The 39 subjects with a history of past CD, when compared with the remaining subjects, were associated with significantly increased ratings of aspects of ADHD-related impulsivity, with features of all three DSM-IV 'Clusters' of personality disorders (PDs) (in particular of 'Cluster B' PDs) and with other psychopathology. Also, there were significant correlations between the number of endorsed past CD criteria and various self-ratings of psychopathology. CONCLUSION The results indicate the psychopathological characteristics of adults with a history of the proposed 'ADHD with CD' subtype. The findings are relevant to future studies of ADHD subtypes in adults.
Collapse
Affiliation(s)
- J H Dowson
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|