1
|
An L, Hong S, Turon T, Pavletic A, Johnson CS, Derbyshire JA, Shen J. In vivo GABA detection by single-pulse editing with one shot. Magn Reson Med 2025; 94:4-14. [PMID: 39789842 PMCID: PMC12021314 DOI: 10.1002/mrm.30423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Two-shot γ-aminobutyric acid (GABA) difference editing techniques have been used widely to detect the GABA H4 resonance at 3.01 ppm. Here, we introduce a single-shot method for detecting the full GABA H2 resonance signal, which avoids contamination from the coedited M3.00 macromolecules. METHODS Density matrix simulation was conducted to optimize the pulse-sequence timing, aiming to reduce the interfering glutamate H4 signal and minimize the correlation between glutamate and GABA arising from spectral overlap. The optimized sequence was used to acquire MR spectroscopy data from a 14-mL voxel in the anterior cingulate cortex of 6 healthy participants. 1H-MRS experiments following the oral administration of [U-13C]glucose were also conducted. RESULTS The GABA H2 peak was consistently observed in all participants. The GABA/creatine ratios in the participants were determined to be 0.07 ± 0.01 with Cramer-Rao lower bounds of 8.0% ± 2.2%. Spectra acquired following [U-13C]glucose intake demonstrated the feasibility of using GABA H2 as a highly sensitive reporter for GABA C2. CONCLUSION The proposed single-shot GABA editing method effectively minimizes interference from the glutamate H4 signal in the detection of the full GABA H2 signal, which resonates at a spectral region with much reduced macromolecule contamination.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungtak Hong
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tara Turon
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Pavletic
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher S Johnson
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Derbyshire
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Scalabrini A, Poletti S, Vai B, Paolini M, Gao Y, Hu YT, Liu DY, Song XM, Tan ZL, Mucci C, Colombo C, Benedetti F, Northoff G. Abnormally slow dynamics in occipital cortex of depression. J Affect Disord 2025; 374:523-530. [PMID: 39818334 DOI: 10.1016/j.jad.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
AIM Major depressive disorder (MDD) is characterized by altered activity in various higher-order regions like the anterior cingulate and prefrontal cortex. While some findings also show changes in lower-order sensory regions like the occipital cortex in MDD, the latter's exact neural and temporal, e.g., dynamic characterization and symptom severity remains yet unclear. METHODS We conducted resting state fMRI in MDD (N = 49) and healthy controls to investigate the global activity representation of the brain's spontaneous activity in occipital cortex including lower-order (V1) and higher-order (hMT+) regions in the hierarchy of the visual cortex. We further explored (i) these regions' functional connectivity to higher-order prefrontal and subcortical regions, (ii) global signal correlation differences between MDD and controls in different frequency bands, and (iii) their power spectrum's correlation (using median frequency/MF) with symptom severity. RESULTS Our findings in MDD show: (i) abnormally high functional connectivity of the occipital cortex to both subcortical and higher-order cortical regions; (ii) occipital global signal correlation is reduced mainly in the faster infraslow frequency range (slow 3: 0.073 to 0.198 Hz) as distinguished from the slower ones (slow 5 and 4: 0.01 to 0.027 Hz, and 0.027 to 0.073 Hz); (iii) the reduced neural dynamics in occipital cortex (MF) correlate with the severity of both overall depressive symptoms and psychomotor retardation scores. CONCLUSIONS MDD shows reduced global activity with abnormally slow neural dynamics in occipital cortex that is functionally connected with higher-order regions like the anterior cingulate cortex. The slow dynamics in occipital cortex relates to overall symptom severity and psychomotor retardation.
Collapse
Affiliation(s)
- Andrea Scalabrini
- University of Bergamo, Department of Human and Social Sciences, Bergamo, Italy.
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy.
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Ting Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Clara Mucci
- University of Bergamo, Department of Human and Social Sciences, Bergamo, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Gong M, Han S, Shen Y, Li Y, Liu JS, Tao DD. Decoding tinnitus progression: neurochemical shifts in the anterior cingulate cortex revealed by magnetic resonance spectroscopy. Front Neurosci 2025; 19:1551106. [PMID: 40084135 PMCID: PMC11903401 DOI: 10.3389/fnins.2025.1551106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Background Tinnitus persists as a significant public health challenge with elusive neurochemical underpinnings. Emerging evidence implicates dysregulated excitatory-inhibitory neurotransmission in the anterior cingulate cortex (ACC), a limbic-auditory hub governing tinnitus salience. This study investigates dynamic ACC neurochemical changes during tinnitus progression. Methods Using single-voxel magnetic resonance spectroscopy (MRS), GABA+/creatine (Cr) and Glx (glutamate+glutamine)/Cr ratios were measured in the ACC of 16 recent-onset (RO; <6 months), 22 chronic (CH; ≥6 months) tinnitus patients, and 26 healthy controls (HC). Tinnitus severity was assessed via tinnitometry and Tinnitus Functional Index (TFI). Results RO patients exhibited significantly reduced ACC GABA+/Cr compared to CH and HC groups (p < 0.05), while CH and HC showed no differences. GABA+/Cr positively correlated with tinnitus duration across patients (r = 0.364, p = 0.025). Although Glx/Cr did not differ between groups, elevated Glx/Cr associated with higher tinnitus pitch-matching frequencies (r = 0.421, p = 0.008) and emotional distress (TFI-E; r = 0.370, p = 0.022), though these findings did not survive multiple comparison correction. Conclusion Early tinnitus is characterized by ACC GABAergic deficits, while chronicity features normalized GABA+/Cr levels-suggesting compensatory neuroplastic restoration of inhibition over time. Glutamatergic activity may modulate perceptual and emotional dimensions of tinnitus. These phase-specific ACC neurochemical shifts highlight potential therapeutic targets for arresting tinnitus progression. Longitudinal studies are warranted to validate temporal dynamics.
Collapse
Affiliation(s)
- Mengfang Gong
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongcong Shen
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-Sheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Duo-Duo Tao
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Bi Y, Huang N, Xu D, Wu S, Meng Q, Chen H, Li X, Chen R. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135808. [PMID: 39288524 DOI: 10.1016/j.jhazmat.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
There is a correlation between long-term manganese (Mn) exposure and the Parkinson's-like disease (PD), with depression as an early symptom of PD. However, the direct relationship between Mn exposure and depression, and the mechanisms involved, remain unclear. We found that Mn exposure led to depressive-like behavior and mild cognitive impairment in mice, with Mn primarily accumulating in the cornu ammonis 3 (CA3) area of the hippocampus. Mice displayed a reduction in neuronal dendritic spines and damage to astrocytes specifically in the CA3 area. Spatial metabolomics revealed that Mn downregulated glutamic acid decarboxylase 1 (GAD1) expression in astrocytes, disrupting the Glutamine-Glutamate-γ-aminobutyric acid (GlnGluGABA) metabolic cycle in the hippocampus, leading to neurotoxicity. We established an in vitro astrocyte Gad1 overexpression (OEX) model and found that the cultured medium from Gad1 OEX astrocytes reversed neuronal synaptic damage and the expression of gamma-aminobutyric acid (GABA) related receptors. Using the astrocyte Gad1 OEX mouse model, results showed that OEX of Gad1 ameliorated depressive-like behavior and cognitive dysfunction in mice. These findings provide new insight into the important role of GAD1 mediated GlnGluGABA metabolism disorder in Mn exposure induced depressive-like behavior. This study offers a novel sight to understanding abnormal emotional states following central nervous system damage induced by Mn exposure.
Collapse
Affiliation(s)
- Yujie Bi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nannan Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Duo Xu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| |
Collapse
|
5
|
Braga JD, Komaru T, Umino M, Nagao T, Matsubara K, Egusa A, Yanaka N, Nishimura T, Kumrungsee T. Histidine-containing dipeptide deficiency links to hyperactivity and depression-like behaviors in old female mice. Biochem Biophys Res Commun 2024; 729:150361. [PMID: 38972141 DOI: 10.1016/j.bbrc.2024.150361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Takumi Komaru
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Ai Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Toshihide Nishimura
- Department of Food Nutrition, Kagawa Nutrition University, Saitama, 350-0214, Japan
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
6
|
Tatti E, Cinti A, Serbina A, Luciani A, D'Urso G, Cacciola A, Quartarone A, Ghilardi MF. Resting-State EEG Alterations of Practice-Related Spectral Activity and Connectivity Patterns in Depression. Biomedicines 2024; 12:2054. [PMID: 39335567 PMCID: PMC11428598 DOI: 10.3390/biomedicines12092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Depression presents with altered energy regulation and neural plasticity. Previous electroencephalography (EEG) studies showed that practice in learning tasks increases power in beta range (13-30 Hz) in healthy subjects but not in those with impaired plasticity. Here, we ascertain whether depression presents with alterations of spectral activity and connectivity before and after a learning task. METHODS We used publicly available resting-state EEG recordings (64 electrodes) from 122 subjects. Based on Beck Depression Inventory (BDI) scores, they were assigned to either a high BDI (hBDI, BDI > 13, N = 46) or a control (CTL, BDI < 7, N = 75) group. We analyzed spectral activity, theta-beta, and theta-gamma phase-amplitude coupling (PAC) of EEG recorded at rest before and after a learning task. RESULTS At baseline, compared to CTL, hBDI exhibited greater power in beta over fronto-parietal regions and in gamma over the right parieto-occipital area. At post task, power increased in all frequency ranges only in CTL. Theta-beta and theta-gamma PAC were greater in hBDI at baseline but not after the task. CONCLUSIONS The lack of substantial post-task growth of beta power in depressed subjects likely represents power saturation due to greater baseline values. We speculate that inhibitory/excitatory imbalance, altered plasticity mechanisms, and energy dysregulation present in depression may contribute to this phenomenon.
Collapse
Affiliation(s)
- Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
| | - Alessandra Cinti
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology & Clinical Neurophysiology, Department of Medicine, Surgery & Neuroscience, University of Siena, 53100 Siena, Italy
| | - Anna Serbina
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Department of Psychology, City College of New York, City University of New York, New York, NY 10031, USA
| | - Adalgisa Luciani
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Giordano D'Urso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences & Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | | | - Maria Felice Ghilardi
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
| |
Collapse
|
7
|
Taniguchi K, Kaneko N, Wada M, Moriyama S, Nakajima S, Mimura M, Noda Y. Neurophysiological profiles of patients with bipolar disorders as probed with transcranial magnetic stimulation: A systematic review. Neuropsychopharmacol Rep 2024; 44:572-584. [PMID: 38932486 PMCID: PMC11544454 DOI: 10.1002/npr2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
AIM Bipolar disorder (BD) has a significant impact on global health, yet its neurophysiological basis remains poorly understood. Conventional treatments have limitations, highlighting the need for a better understanding of the neurophysiology of BD for early diagnosis and novel therapeutic strategies. DESIGN Employing a systematic review approach of the PRISMA guidelines, this study assessed the usefulness and validity of transcranial magnetic stimulation (TMS) neurophysiology in patients with BD. METHODS Databases searched included PubMed, MEDLINE, Embase, and PsycINFO, covering studies from January 1985 to January 2024. RESULTS Out of 6597 articles screened, nine studies met the inclusion criteria, providing neurophysiological insights into the pathophysiological basis of BD using TMS-electromyography and TMS-electroencephalography methods. Findings revealed significant neurophysiological impairments in patients with BD compared to healthy controls, specifically in cortical inhibition and excitability. In particular, short-interval cortical inhibition (SICI) was consistently diminished in BD across the studies, which suggests a fundamental impairment of cortical inhibitory function in BD. This systematic review corroborates the potential utility of TMS neurophysiology in elucidating the pathophysiological basis of BD. Specifically, the reduced cortical inhibition in the SICI paradigm observed in patients with BD suggests gamma-aminobutyric acid (GABA)-A receptor-mediated dysfunction, but results from other TMS paradigms have been inconsistent. Thus, complex neurophysiological processes may be involved in the pathological basis underlying BD. This study demonstrated that BD has a neural basis involving impaired GABAergic function, and it is highly expected that further research on TMS neurophysiology will further elucidate the pathophysiological basis of BD.
Collapse
Affiliation(s)
- Keita Taniguchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Naotsugu Kaneko
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Masataka Wada
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Sotaro Moriyama
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | | | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
8
|
Hwang HH, Choi KM, Im CH, Yang C, Kim S, Lee SH. Comparative analysis of resting-state EEG-based multiscale entropy between schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111048. [PMID: 38825306 DOI: 10.1016/j.pnpbp.2024.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Studies that use nonlinear methods to identify abnormal brain dynamics in patients with psychiatric disorders are limited. This study investigated brain dynamics based on EEG using multiscale entropy (MSE) analysis in patients with schizophrenia (SZ) and bipolar disorder (BD). METHODS The eyes-closed resting-state EEG data were collected from 51 patients with SZ, 51 patients with BD, and 51 healthy controls (HCs). Patients with BD were further categorized into type I (n = 23) and type II (n = 16), and then compared with patients with SZ. A sample entropy-based MSE was evaluated from the bilateral frontal, central, and parieto-occipital regions using 30-s artifact-free EEG data for each individual. Correlation analyses of MSE values and psychiatric symptoms were performed. RESULTS For patients with SZ, higher MSE values were observed at higher-scale factors (i.e., 41-70) across all regions compared with both HCs and patients with BD. Furthermore, there were positive correlations between the MSE values in the left frontal and parieto-occipital regions and PANSS scores. For patients with BD, higher MSE values were observed at middle-scale factors (i.e., 13-40) in the bilateral frontal and central regions compared with HCs. Patients with BD type I exhibited higher MSE values at higher-scale factors across all regions compared with those with BD type II. In BD type I, positive correlations were found between MSE values in all left regions and YMRS scores. CONCLUSIONS Patients with psychiatric disorders exhibited group-dependent MSE characteristics. These results suggest that MSE features may be useful biomarkers that reflect pathophysiological characteristics.
Collapse
Affiliation(s)
- Hyeon-Ho Hwang
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea; Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Kang-Min Choi
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea.
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-Gu, Goyang 10370, Republic of Korea.
| |
Collapse
|
9
|
Saccaro LF, Tassone M, Tozzi F, Rutigliano G. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2024; 355:265-282. [PMID: 38554884 DOI: 10.1016/j.jad.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Matteo Tassone
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy; Institute of Clinical Sciences, Imperial College London, MRI Steiner Unit, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Argyropoulos GD, Christidi F, Karavasilis E, Bede P, Velonakis G, Antoniou A, Seimenis I, Kelekis N, Smyrnis N, Papakonstantinou O, Efstathopoulos E, Ferentinos P. A Magnetic Resonance Spectroscopy Study on Polarity Subphenotypes in Bipolar Disorder. Diagnostics (Basel) 2024; 14:1170. [PMID: 38893696 PMCID: PMC11172378 DOI: 10.3390/diagnostics14111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes.
Collapse
Affiliation(s)
- Georgios D. Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Foteini Christidi
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
- Department of Neurology, St James’s Hospital, D08 W9RT Dublin, Ireland
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Ioannis Seimenis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| |
Collapse
|
11
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Zheng R, Bu C, Chen Y, Wei Y, Zhou B, Jiang Y, Zhu C, Wang K, Wang C, Li S, Han S, Zhang Y, Cheng J. Decreased intrinsic neural timescale in treatment-naïve adolescent depression. J Affect Disord 2024; 348:389-397. [PMID: 38160888 DOI: 10.1016/j.jad.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is mainly characterized by its core dysfunction in higher-order brain cortices involved in emotional and cognitive processes, whose neurobiological basis remains unclear. In this study, we applied a relatively new developed resting-state functional magnetic resonance imaging (rs-fMRI) method of intrinsic neural timescale (INT), which reflects how long neural information is stored in a local brain area and reflects an ability of information integration, to investigate the local intrinsic neural dynamics using univariate and multivariate analyses in adolescent depression. METHOD Based on the rs-fMRI data of sixty-six treatment-naïve adolescents with MDD and fifty-two well-matched healthy controls (HCs), we calculated an INT by assessing the magnitude of autocorrelation of the resting-state brain activity, and then compared the difference of INT between the two groups. Correlation between abnormal INT and clinical features was performed. We also utilized multivariate pattern analysis to determine whether INT could differentiate MDD patients from HCs at the individual level. RESULT Compared with HCs, patients with MDD showed shorter INT widely distributed in cortical and partial subcortical regions. Interestingly, the decreased INT in the left hippocampus was related to disease severity of MDD. Furthermore, INT can distinguish MDD patients from HCs with the most discriminative regions located in the dorsolateral prefrontal cortex, angular, middle occipital gyrus, and cerebellar posterior lobe. CONCLUSION Our research aids in advancing understanding the brain abnormalities of treatment-naïve adolescents with MDD from the perspective of the local neural dynamics, highlighting the significant role of INT in understanding neurophysiological mechanisms. This study shows that the altered intrinsic timescales of local neural signals widely distributed in higher-order brain cortices regions may be the neurodynamic basis of cognitive and emotional disturbances in MDD patients, and provides preliminary support for the suggestion that these could be used to aid the identification of MDD patients in clinical practice.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Chunxiao Bu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Chendi Zhu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Henan University of Chinese Medicine, PR China
| | - Kefan Wang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| |
Collapse
|
13
|
Craven AR, Dwyer G, Ersland L, Kazimierczak K, Noeske R, Sandøy LB, Johnsen E, Hugdahl K. GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task. NMR IN BIOMEDICINE 2024; 37:e5065. [PMID: 37897259 DOI: 10.1002/nbm.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
A recurring issue in functional neuroimaging is how to link task-driven haemodynamic blood oxygen level dependent functional MRI (BOLD-fMRI) responses to underlying neurochemistry at the synaptic level. Glutamate and γ-aminobutyric acid (GABA), the major excitatory and inhibitory neurotransmitters respectively, are typically measured with MRS sequences separately from fMRI, in the absence of a task. The present study aims to resolve this disconnect, developing acquisition and processing techniques to simultaneously assess GABA, glutamate and glutamine (Glx) and BOLD in relation to a cognitive task, at 3 T. Healthy subjects (N = 81) performed a cognitive task (Eriksen flanker), which was presented visually in a task-OFF, task-ON block design, with individual event onset timing jittered with respect to the MRS readout. fMRS data were acquired from the medial anterior cingulate cortex during task performance, using an adapted MEGA-PRESS implementation incorporating unsuppressed water-reference signals at a regular interval. These allowed for continuous assessment of BOLD activation, through T2 *-related changes in water linewidth. BOLD-fMRI data were additionally acquired. A novel linear model was used to extract modelled metabolite spectra associated with discrete functional stimuli, building on well established processing and quantification tools. Behavioural outcomes from the flanker task, and activation patterns from the BOLD-fMRI sequence, were as expected from the literature. BOLD response assessed through fMRS showed a significant correlation with fMRI, specific to the fMRS-targeted region of interest; fMRS-assessed BOLD additionally correlated with lengthening of response time in the incongruent flanker condition. While no significant task-related changes were observed for GABA+, a significant increase in measured Glx levels (~8.8%) was found between task-OFF and task-ON periods. These findings verify the efficacy of our protocol and analysis pipelines for the simultaneous assessment of metabolite dynamics and BOLD. As well as establishing a robust basis for further work using these techniques, we also identify a number of clear directions for further refinement in future studies.
Collapse
Affiliation(s)
- Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Gerard Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | | | | | - Lydia Brunvoll Sandøy
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Erik Johnsen
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Craven AR, Bell TK, Ersland L, Harris AD, Hugdahl K, Oeltzschner G. Linewidth-related bias in modelled concentration estimates from GABA-edited 1H-MRS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582249. [PMID: 38464094 PMCID: PMC10925149 DOI: 10.1101/2024.02.27.582249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
J-difference-edited MRS is widely used to study GABA in the human brain. Editing for low-concentration target molecules (such as GABA) typically exhibits lower signal-to-noise ratio (SNR) than conventional non-edited MRS, varying with acquisition region, volume and duration. Moreover, spectral lineshape may be influenced by age-, pathology-, or brain-region-specific effects of metabolite T2, or by task-related blood-oxygen level dependent (BOLD) changes in functional MRS contexts. Differences in both SNR and lineshape may have systematic effects on concentration estimates derived from spectral modelling. The present study characterises the impact of lineshape and SNR on GABA+ estimates from different modelling algorithms: FSL-MRS, Gannet, LCModel, Osprey, spant and Tarquin. Publicly available multi-site GABA-edited data (222 healthy subjects from 20 sites; conventional MEGA-PRESS editing; TE = 68 ms) were pre-processed with a standardised pipeline, then filtered to apply controlled levels of Lorentzian and Gaussian linebroadening and SNR reduction. Increased Lorentzian linewidth was associated with a 2-5% decrease in GABA+ estimates per Hz, observed consistently (albeit to varying degrees) across datasets and most algorithms. Weaker, often opposing effects were observed for Gaussian linebroadening. Variations are likely caused by differing baseline parametrization and lineshape constraints between models. Effects of linewidth on other metabolites (e.g., Glx and tCr) varied, suggesting that a linewidth confound may persist after scaling to an internal reference. These findings indicate a potentially significant confound for studies where linewidth may differ systematically between groups or experimental conditions, e.g. due to T2 differences between brain regions, age, or pathology, or varying T2* due to BOLD-related changes. We conclude that linewidth effects need to be rigorously considered during experimental design and data processing, for example by incorporating linewidth into statistical analysis of modelling outcomes or development of appropriate lineshape matching algorithms.
Collapse
Affiliation(s)
- Alexander R. Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Tiffany K. Bell
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Hu Y, Li S, Li J, Zhao Y, Li M, Cui W, Peng X, Dong Z, Zhang L, Xu H, Gao L, Huang X, Kuang W, Gong Q, Liu H. Impaired visual-motor functional connectivity in first-episode medication-naïve patients with major depressive disorder. Cereb Cortex 2024; 34:bhad387. [PMID: 37991260 PMCID: PMC10793073 DOI: 10.1093/cercor/bhad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/29/2023] [Indexed: 11/23/2023] Open
Abstract
The perceptual dysfunctions have been fundamental causes of cognitive and emotional problems in patients with major depressive disorder. However, visual system impairment in depression has been underexplored. Here, we explored functional connectivity in a large cohort of first-episode medication-naïve patients with major depressive disorder (n = 190) and compared it with age- and sex-matched healthy controls (n = 190). A recently developed individual-oriented approach was applied to parcellate the cerebral cortex into 92 regions of interest using resting-state functional magnetic resonance imaging data. Significant reductions in functional connectivities were observed between the right lateral occipitotemporal junction within the visual network and 2 regions of interest within the sensorimotor network in patients. The volume of right lateral occipitotemporal junction was also significantly reduced in major depressive disorder patients, indicating that this visual region is anatomically and functionally impaired. Behavioral correlation analysis showed that the reduced functional connectivities were significantly associated with inhibition control in visual-motor processing in patients. Taken together, our data suggest that functional connectivity between visual network and sensorimotor network already shows a significant reduction in the first episode of major depressive disorder, which may interfere with the inhibition control in visual-motor processing. The lateral occipitotemporal junction may be a hub of disconnection and may play a role in the pathophysiology of major depressive disorder.
Collapse
Affiliation(s)
- Yongbo Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Shiyi Li
- Changping Laboratory, Science Park Road, Changping District, Beijing 100001, China
| | - Jin Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Meiling Li
- Changping Laboratory, Science Park Road, Changping District, Beijing 100001, China
| | - Weigang Cui
- School of Engineering Medicine, Beihang University, Bejing 100083, China
| | - Xiaolong Peng
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Zaiquan Dong
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lianqing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Haizhen Xu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Li Gao
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| | - Hesheng Liu
- Changping Laboratory, Science Park Road, Changping District, Beijing 100001, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Marinkovic K, White DR, Alderson Myers A, Parker KS, Arienzo D, Mason GF. Cortical GABA Levels Are Reduced in Post-Acute COVID-19 Syndrome. Brain Sci 2023; 13:1666. [PMID: 38137114 PMCID: PMC10741691 DOI: 10.3390/brainsci13121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - David R. White
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Austin Alderson Myers
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Katie S. Parker
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Donatello Arienzo
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Graeme F. Mason
- Department of Radiology and Biomedical Imaging, Psychiatry, and Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
17
|
Dósa Z, Nieto-Gonzalez JL, Elfving B, Hougaard KS, Holm MM, Wegener G, Jensen K. Reduction in hippocampal GABAergic transmission in a low birth weight rat model of depression. Acta Neuropsychiatr 2023; 35:315-327. [PMID: 36896595 DOI: 10.1017/neu.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.
Collapse
Affiliation(s)
- Zita Dósa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pharmaceutical Research Center of Excellence, North-West University, Potchefstroom, South Africa
| | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
18
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
19
|
Liu S, Liu X, Chen S, Su F, Zhang B, Ke Y, Li J, Ming D. Neurophysiological markers of depression detection and severity prediction in first-episode major depressive disorder. J Affect Disord 2023; 331:8-16. [PMID: 36940824 DOI: 10.1016/j.jad.2023.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Deviant γ auditory steady-state responses (γ-ASSRs) have been documented in some psychiatric disorders. Nevertheless, the role of γ-ASSR in drug-naïve first-episode major depressive disorder (FEMD) patients remains equivocal. This study aimed to examine whether γ-ASSRs are impaired in FEMD patients and predict depression severity. METHODS Cortical reactivity was assessed in a cohort of 28 FEMD patients relative to 30 healthy control (HC) subjects during an ASSR paradigm randomly presented at 40 and 60 Hz. Event-related spectral perturbation and inter-trial phase coherence (ITC) were calculated to quantify dynamic changes of the γ-ASSR. Receiver operating characteristic curve combined with binary logistic regression were then employed to summarize ASSR variables that maximally differentiated groups. RESULTS FEMD patients exhibited significantly inferior 40 Hz-ASSR-ITC in the right hemisphere versus HC subjects (p = 0.007), along with attenuated θ-ITC that reflected underlying impairments in θ responses during 60 Hz clicks (p < 0.05). Moreover, the 40 Hz-ASSR-ITC and θ-ITC in the right hemisphere can be used as a combinational marker to detect FEMD patients with 84.0 % sensitivity and 81.5 % specificity (area under the curve was 0.868, 95 % CI: 0.768-0.968). Pearson's correlations between the depression severity and ASSR variables were further conducted. The symptom severity of FEMD patients was negatively correlated with 60 Hz-ASSR-ITC in the midline and right hemisphere, possibly indicating that depression severity mediated high γ neural synchrony. CONCLUSIONS Our findings provide critical insight into the pathological mechanism of FEMD, suggesting first that 40 Hz-ASSR-ITC and θ-ITC in right hemisphere constitute potential neurophysiological markers for early depression detection, and second, that high γ entrainment deficits may contribute to underlying symptom severity in FEMD patients.
Collapse
Affiliation(s)
- Shuang Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Xiaoya Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Sitong Chen
- Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China
| | - Fangyue Su
- Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China
| | - Bo Zhang
- Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China
| | - Yufeng Ke
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Jie Li
- Tianjin Anding Hospital, Tianjin, China.
| | - Dong Ming
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China; Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China.
| |
Collapse
|
20
|
Lasagna CA, Grove TB, Semple E, Suzuki T, Menkes MW, Pamidighantam P, McInnis M, Deldin PJ, Tso IF. Reductions in regional theta power and fronto-parietal theta-gamma phase-amplitude coupling during gaze processing in bipolar disorder. Psychiatry Res Neuroimaging 2023; 331:111629. [PMID: 36966619 PMCID: PMC10567117 DOI: 10.1016/j.pscychresns.2023.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/28/2023]
Abstract
Impaired social cognition is common in bipolar disorder (BD) and predicts poor functional outcomes. A critical determinant of social cognition is the ability to discriminate others' gaze direction, and its alteration may contribute to functional impairment in BD. However, the neural mechanisms underlying gaze processing in BD are unclear. Because neural oscillations are crucial neurobiological mechanisms supporting cognition, we aimed to understand their role in gaze processing in BD. Using electroencephalography (EEG) data recorded during a gaze discrimination task for 38 BD and 34 controls (HC), we examined: theta and gamma power over bilateral posterior and midline anterior locations associated with early face processing and higher-level cognitive processing, and theta-gamma phase-amplitude coupling (PAC) between locations. Compared to HC, BD showed reduced midline-anterior and left-posterior theta power, and diminished bottom-up/top-down theta-gamma PAC between anterior/posterior sites. Reduced theta power and theta-gamma PAC related to slower response times. These findings suggest that altered theta oscillations and anterior-posterior cross-frequency coupling between areas associated with higher-level cognition and early face processing may underlie impaired gaze processing in BD. This is a crucial step towards translational research that may inform novel social cognitive interventions (e.g., neuromodulation to target specific oscillatory dynamics) to improve functioning in BD.
Collapse
Affiliation(s)
- Carly A Lasagna
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States.
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, United States
| | - Erin Semple
- Department of Psychiatry, University of Michigan, United States
| | - Takakuni Suzuki
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Margo W Menkes
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Preetha Pamidighantam
- Michigan State University College of Human Medicine, Michigan State University, United States
| | - Melvin McInnis
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Patricia J Deldin
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Ivy F Tso
- Department of Psychiatry & Behavioral Health, The Ohio State University, United States
| |
Collapse
|
21
|
Chen G, Ma S, Gong Q, Xie X, Wu P, Guo W, Kang L, Li M, Zhang H, Zhou E, Zhang Y, Rong J, Duan H, Jin L, Xu S, Zhang N, Sun S, Li R, Yao L, Xiang D, Bu L, Liu Z. Assessment of brain imaging and cognitive function in a modified rhesus monkey model of depression. Behav Brain Res 2023; 445:114382. [PMID: 36871905 DOI: 10.1016/j.bbr.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Wu
- Hubei Topgene Xinsheng Technology Co., Ltd, Wuhan 430000, China
| | - Wenbi Guo
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan 430070, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Zhang W, Liu W, Liu S, Su F, Kang X, Ke Y, Ming D. Altered fronto-central theta-gamma coupling in major depressive disorder during auditory steady-state responses. Clin Neurophysiol 2023; 146:65-76. [PMID: 36535093 DOI: 10.1016/j.clinph.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Neural oscillations during sensory and cognitive events interact at different frequencies. However, such evidence in major depressive disorder (MDD) remains scarce. We explored the possible abnormal neural oscillations in MDD by analyzing theta-phase/gamma-amplitude coupling (TGC). METHODS Resting-state and auditory steady-state response (ASSR) electroencephalography recordings were obtained from 35 first-episode MDD and 35 healthy controls (HCs). TGC during rest, ASSR stimulation, and ASSR baseline between and within groups were analyzed to evaluate MDD alterations. Receiver operating characteristic (ROC), TGC comparison between MDD severity subgroups (mild, moderate, major), and correlations were investigated to determine the potential use of altered TGC for identifying MDD. RESULTS In MDD, left fronto-central TGC decreased during stimulation, while right fronto-central TGC increased during baseline. The area under ROC curve for altered TGC was 0.863. Furthermore, during stimulation, moderate and major MDD groups exhibited significantly lower TGC than mild group, and fronto-central TGC was negatively correlated with depression scale scores. CONCLUSIONS Our results provided the first evidence for an abnormal TGC response of fronto-central regions in MDD during an ASSR task. Importantly, altered TGC may be promising biomarkers of MDD. SIGNIFICANCE Our findings enhance the understanding of physiological mechanisms underlying MDD and aid in its clinical diagnosis.
Collapse
Affiliation(s)
- Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Liu
- Children's Hospital, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Fangyue Su
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xianyun Kang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Kong L, Li H, Lin F, Zheng W, Zhang H, Wu R. Neurochemical and microstructural alterations in bipolar and depressive disorders: A multimodal magnetic resonance imaging study. Front Neurol 2023; 14:1089067. [PMID: 36937532 PMCID: PMC10014904 DOI: 10.3389/fneur.2023.1089067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
AIMS Depression in bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatments and poor clinical outcomes in many bipolar patients. Herein, we report direct comparisons between medication-free patients with BD and those with UD in terms of the microstructure and neurometabolites in eight brain regions. METHODS A total of 20 patients with BD, 30 with UD patients, and 20 matched healthy controls (HCs) underwent 3.0T magnetic resonance imaging with chemical exchange saturation transfer (CEST) for glutamate (Glu; GluCEST) imaging, multivoxel magnetic resonance spectroscopy, and diffusion kurtosis imaging. RESULTS Compared with HCs, patients with UD showed significantly lower levels of multiple metabolites, GluCEST% values, and diffusional kurtosis [mean kurtosis (MK)] values in most brain regions. In contrast, patients with BD presented significantly higher levels of Glu in their bilateral ventral prefrontal white matter (VPFWM), higher choline (Cho)-containing compounds in their left VPFWM and anterior cingulate cortex (ACC), and higher GluCEST% values in their bilateral VPFWM and ACC; moreover, reduced MK in these patients was more prominent in the left VPFWM and left thalamus. CONCLUSION The findings demonstrated that both patients with UD and BD have abnormal microstructure and metabolic alterations, and the changes are not completely consistent in the prefrontal lobe region. Elevated Glu, Cho, and GluCEST% in the ACC and VPFWM of patients with UD and BD may help in differentiating between these two disorders. Our findings support the significance for the microstructural integrity and brain metabolic changes of the prefrontal lobe region in BD and UD.
Collapse
Affiliation(s)
- Lingmei Kong
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hui Li
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Fengfeng Lin
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenbin Zheng
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haidu Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu
| |
Collapse
|
24
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
Zheng N, Ou Y, Li H, Liu F, Xie G, Li P, Lang B, Guo W. Shared and differential fractional amplitude of low-frequency fluctuation patterns at rest in major depressive disorders with or without sleep disturbance. Front Psychol 2023; 14:1153335. [PMID: 37034932 PMCID: PMC10075231 DOI: 10.3389/fpsyg.2023.1153335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Sleep disturbances (SD) are commonly found in patients with major depressive disorder (MDD). This study aims to explore the influence of SD symptoms on clinical characteristics in patients with MDD and to investigate the shared and distinct fractional amplitude of low-frequency fluctuation (fALFF) patterns in these patients with or without SD symptoms. Methods Twenty-four MDD patients with SD symptoms (Pa_s), 33 MDD patients without SD symptoms (Pa_ns) and 32 healthy controls (HCs) were included in this study. The fALFF and correlation analyses were applied to analyze the features of imaging and clinical data. Results Pa_s showed more severe anxiety and depression than Pa_ns. Compared with Pa_ns, Pa_s exhibited increased fALFF value in the left precuneus. Patients shared abnormal fALFF in the frontal-occipital brain regions. There was a positive correlation between fALFF values of the left precuneus and sleep disturbance scores (r = 0.607, p = 0.0000056734) in all patients in addition to a negative correlation between fALFF values of the left MOG/cuneus and HAMD-17 total scores (r = -0.595, p = 0.002141) in Pa_s. The receiver operating characteristic (ROC) results of the fALFF could be used to discriminate Pa_s from Pa_ns with a specificity of 72.73% and a sensitivity of 70.83%. Conclusion Pa_s displayed more serious anxiety and depression symptoms. Patients shared abnormal fALFF in the frontal-occipital brain regions, which may be a common characteristic for MDD. And increased fALFF value in the left precuneus might be a specific neuroimaging feature of MDD patients with SD symptoms.
Collapse
Affiliation(s)
- Nanxi Zheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bing Lang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bing Lang,
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
26
|
Ritter C, Buchmann A, Müller ST, Volleberg M, Haynes M, Ghisleni C, Noeske R, Tuura R, Hasler G. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy. JAMA Psychiatry 2022; 79:1209-1216. [PMID: 36260322 PMCID: PMC9582968 DOI: 10.1001/jamapsychiatry.2022.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
Importance Major depressive disorder (MDD) is one of the most prevalent illnesses worldwide. Perturbations of the major inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate (Glu), respectively, as well as Glx (Glu or glutamine [Gln]) have been extensively reported in a multitude of brain areas of individuals with depression, but few studies have examined changes in Gln, the metabolic counterpart of synaptic Glu. Objective To investigate changes in GABA, Glx, Glu, and Gln levels in a voxel in the left dorsolateral prefrontal cortex of participants with no, past, and current MDD using proton magnetic resonance spectroscopy (1H-MRS). Design, Setting, and Participants This community-based study used a cross-sectional design using 3-T 1H-MRS in participants not taking MDD medication recruited from the community. The sample consisted of 251 healthy controls, 98 participants with a history of past MDD, and 47 participants who met the diagnostic criteria for current MDD. Diagnostic groups were comparable regarding age, education, income, and diet. Data were collected from March 2014 to October 2021, and data were analyzed from October 2021 to June 2022. Main Outcomes and Measures GABA, Glx, Glu, and Gln concentrations in the left dorsolateral prefrontal cortex. Results Of 396 included participants, 258 (65.2%) were female, and the mean (SD) age was 25.0 (4.7) years. Compared with healthy controls, those with past MDD and current MDD had lower GABA concentrations (mean [SEM] concentration: healthy controls, 2.70 [0.03] mmol/L; past MDD, 2.49 [0.05] mmol/L; current MDD, 2.54 [0.07] mmol/L; 92 with past MDD vs 236 healthy controls: r = 0.18; P = .002; 44 with current MDD vs 236 healthy controls: r = 0.13; P = .04). Compared with healthy controls, those with past MDD also had lower Glu concentrations (mean [SEM] concentration: healthy controls, 7.52 [0.06] mmol/L; past MDD, 7.23 [0.11] mmol/L; 93 with past MDD vs 234 healthy controls: r = 0.16; P = .01) and higher Gln concentrations (mean [SEM] concentration: healthy controls, 1.63 [0.04] mmol/L; past MDD, 1.84 [0.07] mmol/L; 66 with past MDD 153 healthy controls: r = 0.17; P = .04). Conclusions and Relevance In a large, mostly medication-free community sample, reduced prefrontal GABA concentrations were associated with past MDD, consistent with histopathologic studies reporting reduced glial cell and GABA cell density in the prefrontal cortex in individuals with depression. Patients with MDD also demonstrated increased Gln levels, indicative of increased synaptic Glu release, adding to previous evidence for the Glu hypothesis of MDD.
Collapse
Affiliation(s)
- Christopher Ritter
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Martin Volleberg
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Melanie Haynes
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Ghisleni
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Ruth Tuura
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
| |
Collapse
|
27
|
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int J Mol Sci 2022; 23:ijms23168974. [PMID: 36012234 PMCID: PMC9409038 DOI: 10.3390/ijms23168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.
Collapse
Affiliation(s)
- Jonathan Chabert
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| | - Etienne Allauze
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Université Clermont Auvergne, 7 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ingrid De Chazeron
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Jean-Yves Rotgé
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Philippe Fossati
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Pierre-Michel Llorca
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ludovic Samalin
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| |
Collapse
|
28
|
Wang M, Qi X, Yang X, Fan H, Dou Y, Guo W, Wang Q, Chen E, Li T, Ma X. The pattern glare and visual memory are disrupted in patients with major depressive disorder. BMC Psychiatry 2022; 22:518. [PMID: 35918667 PMCID: PMC9344705 DOI: 10.1186/s12888-022-04167-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Visual memory impairment is one of the most commonly complained symptoms in patients with major depressive disorder (MDD). Pattern glare is also a distorted visual phenomenon that puzzles patients with MDD. Nevertheless, how these two phenomena interact in MDD remains unknown. This study investigated the association between pattern glare and visual memory in MDD patients. METHODS Sixty-two patients with MDD and forty-nine age-, sex- and education level-matched healthy controls (HCs) were included in this study. The Pattern Recognition Memory (PRM) test and the Brief Visual Memory Test-Revised (BVMT-R) were applied to measure visual memory. The pattern glare test including three patterns with different spatial frequencies (SFs) was used to explore pattern glare levels. RESULTS Patients with MDD scored lower on the PRM-PCi, BVMT-R1, BVMT-R2, BVMT-R3, and BVMT-Rt and higher on the PRM-MCLd than HCs (all p < 0.05). Pattern glare scores for MDD patients were higher with mid-SF (p < 0.001), high-SF (p = 0.006) and mid-high SF differences (p = 0.01) than for HCs. A positive correlation between mid-SF and PRM-MCLd scores in all participants was observed (p = 0.01, r = 0.246). A negative correlation between mid-high difference scores and BVMT-R2 scores (p = 0.032, r = -0.317) was observed in HCs, but no significant correlation was observed in MDD patients. CONCLUSIONS The present study showed that visual memory and pattern glare are disrupted in MDD. Visual memory may be associated with pattern glare and needs to be studied in future work.
Collapse
Affiliation(s)
- Min Wang
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | | | - Xiao Yang
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huanhuan Fan
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Dou
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Eric Chen
- grid.415550.00000 0004 1764 4144Department of Psychiatry, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tao Li
- grid.412901.f0000 0004 1770 1022Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China. .,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
30
|
Craven AR, Bhattacharyya PK, Clarke WT, Dydak U, Edden RAE, Ersland L, Mandal PK, Mikkelsen M, Murdoch JB, Near J, Rideaux R, Shukla D, Wang M, Wilson M, Zöllner HJ, Hugdahl K, Oeltzschner G. Comparison of seven modelling algorithms for γ-aminobutyric acid-edited proton magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2022; 35:e4702. [PMID: 35078266 PMCID: PMC9203918 DOI: 10.1002/nbm.4702] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/01/2023]
Abstract
Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.
Collapse
Affiliation(s)
- Alexander R. Craven
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
- NORMENT Center of ExcellenceHaukeland University HospitalBergenNorway
| | | | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- MRC Brain Network Dynamics UnitUniversity of OxfordOxfordUK
| | - Ulrike Dydak
- School of Health SciencesPurdue UniversityIndianaWest LafayetteUSA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Lars Ersland
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
| | - Pravat K. Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research CentreGurgaonIndia
- Florey Institute of Neuroscience and Mental HealthParkvilleMelbourneVictoriaAustralia
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Jamie Near
- Centre d'Imagerie CérébraleDouglas Mental Health University InstituteMontrealCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Reuben Rideaux
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research CentreGurgaonIndia
- Perinatal Trials Unit FoundationBengaluruIndia
- Centre for Perinatal NeuroscienceImperial College LondonLondonUK
| | - Min Wang
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Martin Wilson
- Centre for Human Brain Health and School of PsychologyUniversity of BirminghamBirminghamUK
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Kenneth Hugdahl
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
- Department of RadiologyHaukeland University HospitalBergenNorway
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| |
Collapse
|
31
|
Simeonova D, Paunova R, Stoyanova K, Todeva-Radneva A, Kandilarova S, Stoyanov D. Functional MRI Correlates of Stroop N-Back Test Underpin the Diagnosis of Major Depression. J Integr Neurosci 2022; 21:113. [PMID: 35864765 DOI: 10.31083/j.jin2104113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 08/01/2024] Open
Abstract
INTRODUCTION In the current study, we used the Stroop Color and Word Test (SCWT) combined with an n-back component in functional magnetic resonance imaging (fMRI) in order to activate the working memory and cognitive interference in patients with Major Depressive Disorder (MDD) as compared to healthy controls. Our hypothesis was that there would be significant alterations in the selective visual attention processing regions of the brain which may identify mechanisms underlying major depression. MATERIALS AND METHODS Fifty participants, of which 24 were patients with depression and 26 healthy controls were recruited. RESULTS The first major finding of the current study was hypoactivation in the lingual gyrus during the condition with instructions to track the sequence of the words (word>color) of the Stroop n-back task and hyperactivation of the same structure in the opposite (color>word) condition where subjects had to focus on the order of the word color in depressed patients as compared to healthy controls. CONCLUSIONS Changes in these regions have been consistently reported across studies with different fMRI techniques in both adolescent and adult patients with MDD reinforcing the role of the region in the pathophysiology of depression. Further studies are needed to examine possible longitudinal changes in the region and its activity in remission.
Collapse
Affiliation(s)
- Denitsa Simeonova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| | - Kristina Stoyanova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University Plovdiv, 4002 Tsentar, Plovdiv, Bulgaria
| |
Collapse
|
32
|
Magnotta VA, Xu J, Fiedorowicz JG, Williams A, Shaffer J, Christensen G, Long JD, Taylor E, Sathyaputri L, Richards JG, Harmata G, Wemmie J. Metabolic abnormalities in the basal ganglia and cerebellum in bipolar disorder: A multi-modal MR study. J Affect Disord 2022; 301:390-399. [PMID: 35031333 PMCID: PMC8828710 DOI: 10.1016/j.jad.2022.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
AIMS Bipolar type I disorder (BD) is characterized by severe mood swings and occurs in about 1% of the population. The mechanisms underlying the disorder remain unknown. Prior studies have suggested abnormalities in brain metabolism using 1H and 31P magnetic resonance spectroscopy (MRS). Supporting altered metabolism, in previous studies we found T1ρ relaxation times in the cerebellum were elevated in participants with BD. In addition, T1ρ relaxation times in the basal ganglia were lower in participants with BD experiencing depressed mood. Based on these findings, this study sought to probe brain metabolism with a focus of extending these assessments to the cerebellum. METHODS This study collected data from 64 participants with Bipolar type I disorder (BD) and 42 controls. Subjects were scanned at both 3T (anatomical, functional, and T1ρ imaging data) and 7T (31P and 1H spectroscopy). Regions of interest defined by the 1H MRS data were used to explore metabolic and functional changes in the cerebellar vermis and putamen. RESULTS Elevated concentrations of n-Acetyl-l-aspartate (NAA), glutamate, glutathione, taurine, and creatine were found in the cerebellar vermis along with decreased intra-cellular pH. Similar trends were observed in the right putamen for glutamate, creatine, and pH. We also observed a relationship between T1ρ relaxation times and mood in the putamen. We did not observe a significant effect of medications on these measures. LIMITATIONS The study was cross sectional in design and employed a naturalistic approach for assessing the impact of medications on the results. CONCLUSION This study supports prior findings of reduced pH in mitochondrial dysfunction in BD while also showing that these differences extend to the cerebellum.
Collapse
Affiliation(s)
- Vincent A Magnotta
- Department of Radiology, The University of Iowa, United States; Department of Psychiatry, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States.
| | - Jia Xu
- Department of Radiology, The University of Iowa, United States
| | | | | | - Joseph Shaffer
- Department of Radiology, The University of Iowa, United States; College of Biosciences, Kansas City University, United States
| | - Gary Christensen
- Department of Electrical and Computer Engineering, The University of Iowa, United States; Department of Radiation Oncology, The University of Iowa, United States
| | - Jeffrey D Long
- Department of Psychiatry, The University of Iowa, United States; Department of Biostatistics, The University of Iowa, United States
| | - Eric Taylor
- Department of Molecular Physiology and Biophysics, The University of Iowa, United States
| | | | | | - Gail Harmata
- Department of Psychiatry, The University of Iowa, United States
| | - John Wemmie
- Department of Psychiatry, The University of Iowa, United States; Department of Molecular Physiology and Biophysics, The University of Iowa, United States; Department of Neurosurgery, The University of Iowa, United States
| |
Collapse
|
33
|
Tomiyasu M, Harada M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future Prospects. Magn Reson Med Sci 2022; 21:235-252. [PMID: 35173095 PMCID: PMC9199975 DOI: 10.2463/mrms.rev.2021-0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MR spectroscopy (MRS) is a unique and useful method for noninvasively evaluating biochemical metabolism in human organs and tissues, but its clinical dissemination has been slow and often limited to specialized institutions or hospitals with experts in MRS technology. The number of 3-T clinical MR scanners is now increasing, representing a major opportunity to promote the use of clinical MRS. In this review, we summarize the theoretical background and basic knowledge required to understand the results obtained with MRS and introduce the general consensus on the clinical utility of proton MRS in routine clinical practice. In addition, we present updates to the consensus guidelines on proton MRS published by the members of a working committee of the Japan Society of Magnetic Resonance in Medicine in 2013. Recent research into multinuclear MRS equipped in clinical MR scanners is explained with an eye toward future development. This article seeks to provide an overview of the current status of clinical MRS and to promote the understanding of when it can be useful. In the coming years, MRS-mediated biochemical evaluation is expected to become available for even routine clinical practice.
Collapse
Affiliation(s)
- Moyoko Tomiyasu
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology.,Department of Radiology, Kanagawa Children's Medical Center
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
34
|
Du H, Shen X, Du X, Zhao L, Zhou W. Altered Visual Cortical Excitability Is Associated With Psychopathological Symptoms in Major Depressive Disorder. Front Psychiatry 2022; 13:844434. [PMID: 35321224 PMCID: PMC8936091 DOI: 10.3389/fpsyt.2022.844434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies suggest that in people with major depressive disorder (MDD), there exists a perturbation of the normal balance between the excitatory and inhibitory neurotransmitter systems in the visual cortex, indicating the possibility of altered visual cortical excitability. However, investigations into the neural activities of the visual cortex in MDD patients yielded inconsistent findings. The present study aimed to evaluate the visual cortical excitability utilizing a paired-pulse stimulation paradigm in patients with MDD and to access the paired-pulse behavior of recording visual evoked potentials (VEPs) as a marker of MDD. We analyzed the amplitudes of VEPs and paired-pulse suppression (PPS) at four different stimulus onset asynchronies (SOAs) spanning 93 ms to 133 ms. Further, the relationship between PPS and the symptom severity of depression was investigated using Spearman's correlation. We found that, whereas the first VEP amplitude remained unchanged, the second VEP amplitude was significantly higher in the MDD group compared to the healthy controls. As a result, the amplitude ratio (second VEP amplitude/first VEP amplitude) increased, indicating reduced PPS and thus increased excitability in the visual cortex. Moreover, we found the amplitude ratios had a significantly positive correlation with the symptom severity of depression in MDD, indicating a clinically useful biomarker for MDD. Our findings provide new insights into the changes in the excitation-inhibition balance of visual cortex in MDD, which could pave the way for specific clinical interventions.
Collapse
Affiliation(s)
- Hongheng Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xue Shen
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xiaoyan Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Wenjun Zhou
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Prisciandaro JJ, Mellick W, Squeglia LM, Hix S, Arnold L, Tolliver BK. Results from a randomized, double-blind, placebo-controlled, crossover, multimodal-MRI pilot study of gabapentin for co-occurring bipolar and cannabis use disorders. Addict Biol 2022; 27:e13085. [PMID: 34390300 PMCID: PMC9104469 DOI: 10.1111/adb.13085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023]
Abstract
Disrupted brain gamma-aminobutyric acid (GABA)/glutamate homeostasis is a promising target for pharmacological intervention in co-occurring bipolar disorder (BD) and cannabis use disorder (CUD). Gabapentin is a safe and well-tolerated medication, FDA-approved to treat other neurological diseases, that restores GABA/glutamate homeostasis, with treatment studies supporting efficacy in treating CUD, as well as anxiety and sleep disorders that are common to both BD and CUD. The present manuscript represents the primary report of a randomized, double-blind, placebo-controlled, crossover (1-week/condition), multimodal-MRI (proton-MR spectroscopy, functional MRI) pilot study of gabapentin (1200 mg/day) in BD + CUD (n = 22). Primary analyses revealed that (1) gabapentin was well tolerated and adherence and retention were high, (2) gabapentin increased dorsal anterior cingulate cortex (dACC) and right basal ganglia (rBG) glutamate levels and (3) gabapentin increased activation to visual cannabis cues in the posterior midcingulate cortex (pMCC, a region involved in response inhibition to rewarding stimuli). Exploratory evaluation of clinical outcomes further found that in participants taking gabapentin versus placebo, (1) elevations of dACC GABA levels were associated with lower manic/mixed and depressive symptoms and (2) elevations of rBG glutamate levels and pMCC activation to cannabis cues were associated with lower cannabis use. Though promising, the findings from this study should be interpreted with caution due to observed randomization order effects on dACC glutamate levels and identification of statistical moderators that differed by randomization order (i.e. cigarette-smoking status on rBG glutamate levels and pMCC cue activation). Nonetheless, they provide the necessary foundation for a more robustly designed (urn-randomized, parallel-group) future study of adjuvant gabapentin for BD + CUD.
Collapse
Affiliation(s)
- James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lindsay M Squeglia
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sara Hix
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Arnold
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bryan K Tolliver
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
36
|
Zöllner HJ, Tapper S, Hui SCN, Barker PB, Edden RAE, Oeltzschner G. Comparison of linear combination modeling strategies for edited magnetic resonance spectroscopy at 3 T. NMR IN BIOMEDICINE 2022; 35:e4618. [PMID: 34558129 PMCID: PMC8935346 DOI: 10.1002/nbm.4618] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/01/2023]
Abstract
J-difference-edited spectroscopy is a valuable approach for the in vivo detection of γ-aminobutyric-acid (GABA) with magnetic resonance spectroscopy (MRS). A recent expert consensus article recommends linear combination modeling (LCM) of edited MRS but does not give specific details regarding implementation. This study explores different modeling strategies to adapt LCM for GABA-edited MRS. Sixty-one medial parietal lobe GABA-edited MEGA-PRESS spectra from a recent 3-T multisite study were modeled using 102 different strategies combining six different approaches to account for co-edited macromolecules (MMs), three modeling ranges, three baseline knot spacings, and the use of basis sets with or without homocarnosine. The resulting GABA and GABA+ estimates (quantified relative to total creatine), the residuals at different ranges, standard deviations and coefficients of variation (CVs), and Akaike information criteria, were used to evaluate the models' performance. Significantly different GABA+ and GABA estimates were found when a well-parameterized MM3co basis function was included in the model. The mean GABA estimates were significantly lower when modeling MM3co , while the CVs were similar. A sparser spline knot spacing led to lower variation in the GABA and GABA+ estimates, and a narrower modeling range-only including the signals of interest-did not substantially improve or degrade modeling performance. Additionally, the results suggest that LCM can separate GABA and the underlying co-edited MM3co . Incorporating homocarnosine into the modeling did not significantly improve variance in GABA+ estimates. In conclusion, GABA-edited MRS is most appropriately quantified by LCM with a well-parameterized co-edited MM3co basis function with a constraint to the nonoverlapped MM0.93 , in combination with a sparse spline knot spacing (0.55 ppm) and a modeling range of 0.5-4 ppm.
Collapse
Affiliation(s)
- Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C. N. Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, Tan ZL, Northoff G, Song XM. From Molecular to Behavior: Higher Order Occipital Cortex in Major Depressive Disorder. Cereb Cortex 2021; 32:2129-2139. [PMID: 34613359 DOI: 10.1093/cercor/bhab343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhe Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,University of Ottawa Institute of Mental Health Research, University of Ottawa; Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
38
|
On the reproducibility of hippocampal MEGA-sLASER GABA MRS at 7T using an optimized analysis pipeline. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2021; 34:427-436. [PMID: 32865653 PMCID: PMC8154804 DOI: 10.1007/s10334-020-00879-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/05/2022]
Abstract
Objectives GABA is the most important inhibitory neurotransmitter. Thus, variation in its concentration is connected to a wide variety of diseases. However, the low concentration and the overlap of more prominent resonances hamper GABA quantification using MR spectroscopy. The hippocampus plays a pivotal role in neurodegeneration. Susceptibility discontinuities in the vicinity of the hippocampus cause strong B0 inhomogeneities, impeding GABA spectroscopy. The aim of this work is to improve the reproducibility of hippocampal GABA+ MRS. Methods The GABA+/total creatine ratio in the hippocampus was measured using a MEGA-sLASER sequence at 7 Tesla. 10 young healthy volunteers participated in the study. A dedicated pre-processing approach was established. Spectral quantification was performed with Tarquin. The quantification parameters were carefully adjusted to ensure optimal quantification. Results An inter-subject coefficient of variation of the GABA+/total creatine of below 15% was achieved. Additional to spectral registration, which is essential to obtain reproducible GABA measures, eddy current compensation and additional difference artifact suppression improved the reproducibility. The mean FWHM was 23.1 Hz (0.078 ppm). Conclusion The increased spectral dispersion of ultra-high-field spectroscopy allows for reproducible spectral quantification, despite a very broad line width. The achieved reproducibility enables the routine use of hippocampal GABA spectroscopy at 7 Tesla. Electronic supplementary material The online version of this article (10.1007/s10334-020-00879-9) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: possible in vivo neurometabolite explanation for mood stabilization. Eur Arch Psychiatry Clin Neurosci 2021; 271:537-547. [PMID: 31993746 DOI: 10.1007/s00406-020-01096-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is characterized by unstable mood states ranging from mania to depression. Although there is some evidence that mood instability may result from an imbalance between excitatory glutamatergic and inhibitory GABA-ergic neurotransmission, few proton magnetic resonance spectroscopy (1H-MRS) studies have measured these two neurometabolites simultaneously in BD. The enzyme glutamic acid decarboxylase (GAD1) catalyzes the decarboxylation of glutamate (Glu) to GABA, and its single nucleotide polymorphisms (SNPs) might influence Glu/GABA ratio. Thus, we investigated Glu/GABA ratio in the dorsal anterior cingulate cortex (dACC) of euthymic BD type I patients and healthy controls (HC), and assessed the influence of both mood stabilizers and GAD1 SNPs on this ratio. Eighty-eight subjects (50 euthymic BD type I patients and 38 HC) underwent 3T 1H-MRS in the dACC (2 × 2 × 4.5 cm3) using a two-dimensional JPRESS sequence and all subjects were genotyped for 4 SNPs in the GAD1 gene. BD patients had lower dACC Glu/GABA ratio compared to HC, where this was influenced by anticonvulsant and antipsychotic medications, but not lithium. The presence of GAD1 rs1978340 allele A was associated with higher Glu/GABA ratio in BD, while patients without this allele taking mood stabilizers had a lower Glu/GABA ratio. The lowering of dACC Glu/GABA could be one explanation for the mood stabilizing action of anticonvulsants and antipsychotics in BD type I euthymia. Therefore, this putative role of Glu/GABA ratio and the influence of GAD1 genotype interacting with mood stabilization medication should be confirmed by further studies involving larger samples and other mood states.ClincalTrials.gov registration: NCT01237158.
Collapse
|
40
|
Truong V, Cheng PZ, Lee HC, Lane TJ, Hsu TY, Duncan NW. Occipital gamma-aminobutyric acid and glutamate-glutamine alterations in major depressive disorder: An mrs study and meta-analysis. Psychiatry Res Neuroimaging 2021; 308:111238. [PMID: 33385764 DOI: 10.1016/j.pscychresns.2020.111238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
The neurotransmitters GABA and glutamate have been suggested to play a role in Major Depressive Disorder (MDD) through an imbalance between cortical inhibition and excitation. This effect has been highlighted in higher brain areas, such as the prefrontal cortex, but has also been posited in basic sensory cortices. Based on this, magnetic resonance spectroscopy (MRS) was used to investigate potential changes to GABA+ and glutamate+glutamine (Glx) concentrations within the occipital cortex in MDD patients (n = 25) and healthy controls (n = 25). No difference in occipital GABA+ or Glx concentrations, nor in the GABA+/Glx ratio, was found between groups. An analysis of an extended MDD patient and unmatched control dataset (n = 90) found no correlation between metabolite concentrations and depressive symptoms. These results were integrated with prior studies through metabolite-specific meta-analyses, revealing no difference in occipital GABA and Glx concentrations between patients and controls. An effect of publication year on GABA group differences was found, suggesting that previously reported results may have been artifacts of measurement accuracy. Taken together, our results suggest that, contrary to some prior reports, MRS measurements of occipital GABA and Glx do not differ between MDD patients and controls.
Collapse
Affiliation(s)
- Vuong Truong
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan; Vision and Cognition Lab, Centre for Integrative Neurosciences, Tübingen, Germany; Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Paul Z Cheng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Timothy J Lane
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Hsu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan.
| |
Collapse
|
41
|
Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry 2021; 26:6747-6755. [PMID: 33863994 PMCID: PMC8760062 DOI: 10.1038/s41380-021-01090-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD. Psychophysically, we observe a highly specific deficit in visual surround motion suppression in a large sample of acute MDD subjects which, importantly, correlates with symptom severity. Both visual deficit and its relation to symptom severity are replicated in the smaller MDD sample that received MRS. Using high-field 7T proton Magnetic resonance spectroscopy (1H-MRS), acute MDD subjects exhibit decreased GABA concentration in visual MT+ which, unlike in healthy subjects, no longer correlates with their visual motion performance, i.e., impaired SI. In sum, our combined psychophysical-biochemical study demonstrates an important role of reduced occipital GABA for altered visual perception and psychopathological symptoms in acute MDD. Bridging the gap from the biochemical level of occipital GABA over visual-perceptual changes to psychopathological symptoms, our findings point to the importance of the occipital cortex in acute depressed MDD including its role as candidate biomarker.
Collapse
|
42
|
Erchinger VJ, Miller J, Jones T, Kessler U, Bustillo J, Haavik J, Petrillo J, Ziomek G, Hammar Å, Oedegaard KJ, Calhoun VD, McClintock SM, Ersland L, Oltedal L, Abbott CC. Anterior cingulate gamma-aminobutyric acid concentrations and electroconvulsive therapy. Brain Behav 2020; 10:e01833. [PMID: 32940003 PMCID: PMC7667336 DOI: 10.1002/brb3.1833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The anticonvulsant hypothesis posits that ECT's mechanism of action is related to enhancement of endogenous anticonvulsant brain mechanisms. Results of prior studies investigating the role of the inhibitory neurotransmitter gamma-aminobutyric acid ("GABA+", GABA and coedited macromolecules) in the pathophysiology and treatment of depression remain inconclusive. The aim of our study was to investigate treatment-responsive changes of GABA+ in subjects with a depressive episode receiving electroconvulsive therapy (ECT). METHODS In total, 41 depressed subjects (DEP) and 35 healthy controls (HC) were recruited at two independent sites in Norway and the USA. MEGA-PRESS was used for investigation of GABA+ in the anterior cingulate cortex. We assessed longitudinal and cross-sectional differences between DEP and HC, as well as the relationship between GABA+ change and change in depression severity and number of ECTs. We also assessed longitudinal differences in cognitive performance and GABA+ levels. RESULTS Depressive episode did not show a difference in GABA+ relative to HC (t71 = -0.36, p = .72) or in longitudinal analysis (t36 = 0.97, p = .34). Remitters and nonremitters did not show longitudinal (t36 = 1.12, p = .27) or cross-sectional differences in GABA+. GABA+ levels were not related to changes in antidepressant response (t35 = 1.12, p = .27) or treatment number (t36 = 0.05, p = .96). An association between cognitive performance and GABA+ levels was found in DEP that completed cognitive effortful testing (t18 = 2.4, p = .03). CONCLUSION Our results failed to support GABA as a marker for depression and abnormal mood state and provide no support for the anticonvulsant hypothesis of ECT. ECT-induced change in GABA concentrations may be related to change in cognitive function.
Collapse
Affiliation(s)
- Vera J Erchinger
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jeremy Miller
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jonathan Petrillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gregory Ziomek
- Department of Psychiatry, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Åsa Hammar
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Ketil J Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, Emory, Atlanta, GA, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lars Ersland
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
43
|
Qiu YH, Huang ZH, Gao YY, Feng SJ, Huang B, Wang WY, Xu QH, Zhao JH, Zhang YH, Wang LM, Nie K, Wang LJ. Alterations in intrinsic functional networks in Parkinson's disease patients with depression: A resting-state functional magnetic resonance imaging study. CNS Neurosci Ther 2020; 27:289-298. [PMID: 33085178 PMCID: PMC7871794 DOI: 10.1111/cns.13467] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of this research was to investigate the alterations in functional brain networks and to assess the relationship between depressive impairment and topological network changes in Parkinson's disease (PD) patients with depression (DPD). Methods Twenty‐two DPD patients, 23 PD patients without depression (NDPD), and 25 matched healthy controls (HCs) were enrolled. All participants were examined by resting‐state functional magnetic resonance imaging scans. Graph theoretical analysis and network‐based statistic methods were used to analyze brain network topological properties and abnormal subnetworks, respectively. Results The DPD group showed significantly decreased local efficiency compared with the HC group (P = .008, FDR corrected). In nodal metrics analyses, the degree of the right inferior occipital gyrus (P = .0001, FDR corrected) was positively correlated with the Hamilton Depression Rating Scale scores in the DPD group. Meanwhile, the temporal visual cortex, including the bilateral middle temporal gyri and right inferior temporal gyrus in the HC and NDPD groups and the left posterior cingulate gyrus in the NDPD group, was defined as hub region, but not in the DPD group. Compared with the HC group, the DPD group had extensive weakening of connections between the temporal‐occipital visual cortex and the prefrontal‐limbic network. Conclusions These results suggest that PD depression is associated with disruptions in the topological organization of functional brain networks, mainly involved the temporal‐occipital visual cortex and the posterior cingulate gyrus and may advance our current understanding of the pathophysiological mechanisms underlying DPD.
Collapse
Affiliation(s)
- Yi-Hui Qiu
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhi-Heng Huang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu-Yuan Gao
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Shu-Jun Feng
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wan-Yi Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Qi-Huan Xu
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jie-Hao Zhao
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu-Hu Zhang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li-Min Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li-Juan Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
44
|
Gong J, Wang J, Qiu S, Chen P, Luo Z, Wang J, Huang L, Wang Y. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis. Transl Psychiatry 2020; 10:353. [PMID: 33077728 PMCID: PMC7573621 DOI: 10.1038/s41398-020-01036-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Identification of intrinsic brain activity differences and similarities between major depression (MDD) and bipolar disorder (BD) is necessary. However, results have not yet yielded consistent conclusions. A meta-analysis of whole-brain resting-state functional MRI (rs-fMRI) studies that explored differences in the amplitude of low-frequency fluctuation (ALFF) between patients (including MDD and BD) and healthy controls (HCs) was conducted using seed-based d mapping software. Systematic literature search identified 50 studies comparing 1399 MDD patients and 1332 HCs, and 15 studies comparing 494 BD patients and 593 HCs. MDD patients displayed increased ALFF in the right superior frontal gyrus (SFG) (including the medial orbitofrontal cortex, medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC]), bilateral insula extending into the striatum and left supramarginal gyrus and decreased ALFF in the bilateral cerebellum, bilateral precuneus, and left occipital cortex compared with HCs. BD showed increased ALFF in the bilateral inferior frontal gyrus, bilateral insula extending into the striatum, right SFG, and right superior temporal gyrus (STG) and decreased ALFF in the bilateral precuneus, left cerebellum (extending to the occipital cortex), left ACC, and left STG. In addition, MDD displayed increased ALFF in the left lingual gyrus, left ACC, bilateral precuneus/posterior cingulate gyrus, and left STG and decreased ALFF in the right insula, right mPFC, right fusiform gyrus, and bilateral striatum relative to BD patients. Conjunction analysis showed increased ALFF in the bilateral insula, mPFC, and decreased ALFF in the left cerebellum in both disorders. Our comprehensive meta-analysis suggests that MDD and BD show a common pattern of aberrant regional intrinsic brain activity which predominantly includes the insula, mPFC, and cerebellum, while the limbic system and occipital cortex may be associated with spatially distinct patterns of brain function, which provide useful insights for understanding the underlying pathophysiology of brain dysfunction in affective disorders, and developing more targeted and efficacious treatment and intervention strategies.
Collapse
Affiliation(s)
- Jiaying Gong
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China ,grid.488525.6Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655 China
| | - Junjing Wang
- grid.440718.e0000 0001 2301 6433Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006 China
| | - Shaojuan Qiu
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Pan Chen
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Zhenye Luo
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Jurong Wang
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Li Huang
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
45
|
Ma Y, Tong L, Li J, Ashraf J, Wang S, Zhao B, Liu L, Blecker C, Zhou S. Comparison of γ‐aminobutyric acid accumulation capability in different mung bean (
Vigna radiata
L.) varieties under heat and relative humidity treatment, and its correlation with endogenous amino acids and polyamines. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuling Ma
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
- Department of Food Science and Formulation Gembloux Agro‐Bio Tech Université de Liège Passage des Déportés 2 Gembloux Belgium
| | - Litao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Juan Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Jawad Ashraf
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Shanshan Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Bo Zhao
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Liya Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Christophe Blecker
- Department of Food Science and Formulation Gembloux Agro‐Bio Tech Université de Liège Passage des Déportés 2 Gembloux Belgium
| | - Sumei Zhou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| |
Collapse
|
46
|
Applying dimensional psychopathology: transdiagnostic associations among regional homogeneity, leptin and depressive symptoms. Transl Psychiatry 2020; 10:248. [PMID: 32699219 PMCID: PMC7376105 DOI: 10.1038/s41398-020-00932-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
Dimensional psychopathology and its neurobiological underpinnings could provide important insights into major psychiatric disorders, including major depressive disorder, bipolar disorder and schizophrenia. In a dimensional transdiagnostic approach, we examined depressive symptoms and their relationships with regional homogeneity and leptin across major psychiatric disorders. A total of 728 participants (including 403 patients with major psychiatric disorders and 325 age-gender-matched healthy controls) underwent resting-state functional magnetic resonance imaging at a single site. We obtained plasma leptin levels and depressive symptom measures (Hamilton Depression Rating Scale (HAMD)) within 24 h of scanning and compared the regional homogeneity (ReHo), plasma leptin levels and HAMD total score and factor scores between patients and healthy controls. To reveal the potential relationships, we performed correlational and mediational analyses. Patients with major psychiatric disorders had significant lower ReHo in primary sensory and visual association cortices and higher ReHo in the frontal cortex and angular gyrus; plasma leptin levels were also elevated. Furthermore, ReHo alterations, leptin and HAMD factor scores had significant correlations. We also found that leptin mediated the transdiagnostic relationships among ReHo alterations in primary somatosensory and visual association cortices, core depressive symptoms and body mass index. The transdiagnostic associations we demonstrated support the common neuroanatomical substrates and neurobiological mechanisms. Moreover, leptin could be an important association among ReHo, core depressive symptoms and body mass index, suggesting a potential therapeutic target for dimensional depressive symptoms across major psychiatric disorders.
Collapse
|
47
|
Averill LA, Abdallah CG, Fenton LR, Fasula MK, Jiang L, Rothman DL, Mason GF, Sanacora G. Early life stress and glutamate neurotransmission in major depressive disorder. Eur Neuropsychopharmacol 2020; 35:71-80. [PMID: 32418842 PMCID: PMC7913468 DOI: 10.1016/j.euroneuro.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Early life stress (ELS) and glutamate neurotransmission have been implicated in the pathophysiology of major depressive disorder (MDD). In non-human primates, ELS was positively correlated with cortical Glx (i.e., glutamate + glutamine). However, the relationship between ELS and cortical glutamate in adult patients with MDD is not fully known. Using 1H Magnetic Resonance Spectroscopy (MRS), we conducted exploratory analyses measuring occipital cortical glutamate and glutamine levels in 36 medication-free patients with MDD. In a subsample (n=11), we measured dynamic glutamate/glutamine cycling (Vcycle) using advanced 13C MRS methods. ELS history was assessed using Early-life Trauma Inventory (ETI). Exploratory analyses suggest a relationship between ETI and glutamine as reflected by a significant positive correlation between ETI scores and occipital glutamine (rs=0.39, p=0.017) but not glutamate. Post-hoc analyses showed that the association with glutamine was driven by the ETI emotional abuse (ETI-EA) subscale (rs=0.39, p=0.02). Vcycle correlation with ETI was at trend level (rs=0.55, p=0.087) and significantly correlated with ETI-EA (rs=0.67, p=0.03). In this small sample of patients with MDD, those with childhood emotional abuse appear to have increased occipital glutamate neurotransmission as reflected by increased glutamate/glutamine cycling and glutamine level. Future studies would be needed to confirm this pilot evidence and to examine whether ELS effects on glutamate neurotransmission underlie the relationship between ELS and psychopathology.
Collapse
Affiliation(s)
- Lynnette A Averill
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516 USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA.
| | - Chadi G Abdallah
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516 USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA
| | - Lisa R Fenton
- United States Department of Veterans Affairs, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516 USA
| | - Madonna K Fasula
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, Tompkins East TE-2, New Haven, CT, USA; Yale Magnetic Resonance Research Center, 300 Cedar Street, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, Tompkins East TE-2, New Haven, CT, USA; Yale Magnetic Resonance Research Center, 300 Cedar Street, New Haven, CT, USA
| | - Graeme F Mason
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, Tompkins East TE-2, New Haven, CT, USA; Yale Magnetic Resonance Research Center, 300 Cedar Street, New Haven, CT, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA
| |
Collapse
|
48
|
Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:43-78. [PMID: 32616214 DOI: 10.1016/bs.apha.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been much recent progress in understanding of the mechanism of ketamine's rapid and enduring antidepressant effects. Here we review recent insights from clinical and preclinical studies, with special emphasis of ketamine-induced changes in GABAergic synaptic transmission that are considered essential for its antidepressant therapeutic effects. Subanesthetic ketamine is now understood to exert its initial action by selectively blocking a subset of NMDA receptors on GABAergic interneurons, which results in disinhibition of glutamatergic target neurons, a surge in extracellular glutamate and correspondingly elevated glutamatergic synaptic transmission. This surge in glutamate appears to be corroborated by the rapid metabolism of ketamine into hydroxynorketamine, which acts at presynaptic sites to disinhibit the release of glutamate. Preclinical studies indicate that glutamate-induced activity triggers the release of BDNF, followed by transient activation of the mTOR pathway and increased expression of synaptic proteins, along with functional strengthening of glutamatergic synapses. This drug-on phase lasts for approximately 2h and is followed by a period of days characterized by structural maturation of newly formed glutamatergic synapses and prominently enhanced GABAergic synaptic inhibition. Evidence from mouse models with constitutive antidepressant-like phenotypes suggests that this phase involves strengthened inhibition of dendrites by somatostatin-positive GABAergic interneurons and correspondingly reduced NMDA receptor-mediated Ca2+ entry into dendrites, which activates an intracellular signaling cascade that converges with the mTOR pathway onto increased activity of the eukaryotic elongation factor eEF2 and enhanced translation of dendritic mRNAs. Newly synthesized proteins such as BDNF may be important for the prolonged therapeutic effects of ketamine.
Collapse
|
49
|
Du X, Li J, Li M, Yang X, Qi Z, Xu B, Liu W, Xu Z, Deng Y. Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell Biosci 2020; 10:26. [PMID: 32158532 PMCID: PMC7057577 DOI: 10.1186/s13578-020-00393-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Glutamate (Glu) is the predominant excitatory neurotransmitter in the central nervous system (CNS). Glutamatergic transmission is critical for controlling neuronal activity. In presynaptic neurons, Glu is stored in synaptic vesicles and released by stimulation. The homeostasis of glutamatergic system is maintained by a set of transporters in the membrane of synaptic vesicles. The family of vesicular Glu transporters in mammals is comprised of three highly homologous proteins: VGLUT1-3. Among them, VGLUT1 accounts for the largest proportion. However, most of the Glu is transported into the synaptic vesicles via the type 1 vesicle Glu transporter (VGLUT1). So, the expression of particular VGLUT1 is largely complementary with limited overlap and so far it is most specific markers for neurons that use Glu as neurotransmitter. Controlling the activity of VGLUT1 could potentially modulate the efficiency of excitatory neuro-transmission and change the filling level of synaptic vesicles. This review summarizes the recent knowledge concerning molecular and functional characteristic of VGLUT1, their development, contribution to a series of central nervous system and peripheral nervous system diseases such as learning and memory disorders, Alzheimer's disease, Parkinson's disease and sensitized nociception or pain pathology et al.
Collapse
Affiliation(s)
- Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| |
Collapse
|
50
|
Qi X, Fan H, Yang X, Chen Y, Deng W, Guo W, Wang Q, Chen E, Li T, Ma X. High level of pattern glare in major depressive disorder. BMC Psychiatry 2019; 19:415. [PMID: 31864335 PMCID: PMC6925875 DOI: 10.1186/s12888-019-2399-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/09/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Visual deficits have been reported in abundance by recent studies on major depressive disorder. Pattern glare manifests as visual distortions, such as the symptoms of headache, glare, eyestrain, illusions of shapes, colors, and motion when viewing repetitive striped patterns, of which some can be observed in major depressive disorder. Inspired by what mentioned, the present study aims to explore whether there exists association between pattern glare and major depressive disorder and further attempts to explore possible clinical diagnostic value of pattern glare in major depressive disorder. METHODS Twenty-four patients diagnosed with major depressive disorder (MDDs group) were compared with 30 age-, gender- and education level-matched healthy control subjects (HCs group) on their visual stress with black-and-white gratings of different spatial frequencies-0.3 (low-SF), 2.3 (mid-SF), and 9.4 (high-SF) cycles per degree (c/deg)-which was named pattern glare test. The MDDs group divided into first episode medication-free group (fMDD) and recurrent medicated group (rMDD), comparisons of pattern glare scores (PGS) were performed within the MDDs group. We used Pearson and Spearman analysis to explore the relationship between some clinical indexes and pattern glare scores. ROC (receiver operating characteristic) curve was used to evaluate whether pattern glare test was able to discriminate patients and healthy controls. RESULTS The mid-SF pattern glare score significantly elevated in patients with major depressive disorder compared to control subjects. No differences of pattern glare scores were found between fMDD and rMDD. A significant negative correlation between mid-high difference and age in HCs group was found. There were no correlations between other variables and pattern glare scores. The mid-SF score has limited value in the diagnosis of major depressive disorder. CONCLUSIONS We observed an increased level of pattern glare in patients with major depressive disorder, reflecting the existence of cortical hyper-excitability in major depressive disorder. The mid-SF score may have a value in understanding cortical excitability in major depressive disorder.
Collapse
Affiliation(s)
- Xiongwei Qi
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China
| | - Huanhuan Fan
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China
| | - Xiao Yang
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China
| | - Yayun Chen
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China
| | - Wei Deng
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China ,0000 0004 1770 1022grid.412901.fWest China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China ,0000 0004 1770 1022grid.412901.fWest China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China ,0000 0004 1770 1022grid.412901.fWest China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tao Li
- 0000 0004 1770 1022grid.412901.fPsychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610064 People’s Republic of China ,0000 0004 1770 1022grid.412901.fWest China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China. .,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|