1
|
Ghazi N, Garza-Villarreal EA, Soltanian-Zadeh H. Brain connectomics markers for response prediction to transcranial magnetic stimulation in cocaine use disorder. Sci Rep 2025; 15:15336. [PMID: 40316664 PMCID: PMC12048481 DOI: 10.1038/s41598-025-99113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
Cocaine use disorder (CUD) is a worldwide health problem with limited effective treatment options. The therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) is gaining more attention following evidence of its role on craving reduction in CUD. However, the heterogeneity of results underscores a pressing need for biomarkers of treatment outcome. We asked whether brain connectomics together with clinical assessments can predict response to add-on rTMS therapy for CUD better than solely conventional clinical assessments. Forty-four randomly assigned CUD patients underwent the 2-week double-blind acute phase [Sham (n = 20, 2f./18m.) and Active (n = 24, 4f./20m.)], in which they received 2 daily sessions of rTMS on the left dorsolateral prefrontal cortex. Subsequently, 19 and 14 patients continued to an open-label maintenance phase of two weekly rTMS sessions for 3 and 6 months, respectively. Pre and post treatment resting-state brain functional connectivity as well as two clinical scores of craving were measured to predict the subsequent response to rTMS therapy. Two conventional clinical scores, namely Cocaine Craving Questionnaires (CCQ) and Visual Analogue Scale (VAS) were used as craving level assessments. We used a priori seed-driven connectivity of Left Dorsolateral Prefrontal Cortex (LDLPFC) and Anterior Cingulate Cortex (ACC) together with the connectivity from a whole-brain multi-voxel pattern analysis at each time point to predict the reduction in craving after rTMS. The combination of connectivity changes and baseline craving severity improved the prediction of individual craving compared to the prediction with only the initial craving severity. The predictive model from the combination of neuromarkers could explain 45 to 97 percent of variance in craving changes assessed by two different clinical scores. We used leave-one-subject-out cross-validation to support the generalizability of our findings. Our results indicate that employing neuromarkers from resting-state functional connectivity of pre and post condition of CUD patients receiving add-on rTMS therapy increases the power of predicting craving changes and support the idea that neuromarkers may offer improvements in precision medicine approaches.
Collapse
Affiliation(s)
- Nayereh Ghazi
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Eduardo A Garza-Villarreal
- Institute of Neurobiology, National Autonomous University of Mexico (UNAM) Campus Juriquilla, Queretaro, Mexico
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
2
|
Duprat RJ, Linn KA, Satterthwaite TD, Sheline YI, Liang X, Bagdon G, Flounders MW, Robinson H, Platt M, Kable J, Long H, Scully M, Deluisi JA, Thase M, Cristancho M, Grier J, Blaine C, Figueroa-González A, Oathes DJ. Resting fMRI-guided TMS evokes subgenual anterior cingulate response in depression. Neuroimage 2025; 305:120963. [PMID: 39638081 PMCID: PMC11887861 DOI: 10.1016/j.neuroimage.2024.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression alleviation following treatment with repetitive transcranial magnetic stimulation (rTMS) tends to be more effective when TMS is targeted to cortical areas with high (negative) resting state functional connectivity (rsFC) with the subgenual anterior cingulate cortex (sgACC). However, the relationship between sgACC-cortex rsFC and the TMS-evoked response in the sgACC is still being explored and has not yet been established in depressed patients. OBJECTIVES In this study, we investigated the relationship between sgACC-cortical (site of stimulation) rsFC and induced evoked responses in the sgACC in healthy controls and depressed patients. METHODS For each participant (N = 115, 34 depressed patients), a peak rsFC cortical 'hotspot' for the sgACC and control targets were identified at baseline. Single pulses of TMS interleaved with fMRI readouts were administered to these targets to evoke downstream fMRI blood-oxygen-level-dependent (BOLD) responses in the sgACC. Generalized estimating equations were used to investigate the association between TMS-evoked BOLD responses in the sgACC and rsFC between the stimulation site and the sgACC. RESULTS Stimulations over cortical sites with high rsFC to the sgACC were effective in modulating activity in the sgACC in both healthy controls and depressed patients. Moreover, we found that in depressed patients, sgACC rsFC at the site of stimulation was associated with the induced evoked response amplitude in the sgACC: stronger positive rsFC values leading to stronger evoked responses in the sgACC. CONCLUSIONS rsFC-based targeting is a viable strategy to causally modulate the sgACC. Assuming an anti-depressive mechanism working through modulation of the sgACC, the field's exclusive focus on sites anticorrelated with the sgACC for treating depression should be broadened to explore positively-connected sites.
Collapse
Affiliation(s)
- Romain J Duprat
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Kristin A Linn
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, PA, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; The Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Ximo Liang
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Gabriela Bagdon
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Matthew W Flounders
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Heather Robinson
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Michael Platt
- University of Pennsylvania, Department of Psychology, Philadelphia, PA, USA; University of Pennsylvania, Department of Neuroscience, Philadelphia, PA, USA; University of Pennsylvania, Department of Marketing, Philadelphia, PA, USA
| | - Joseph Kable
- University of Pennsylvania, Department of Psychology, Philadelphia, PA, USA
| | - Hannah Long
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Morgan Scully
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Joseph A Deluisi
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Michael Thase
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Mario Cristancho
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Julie Grier
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Camille Blaine
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Almaris Figueroa-González
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Desmond J Oathes
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, USA; Center for the Neuromodulation of Depression and Stress, University of Pennsylvania, Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Penn Brain Science, Translation, Innovation, and Modulation Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ho CC, Peng SJ, Yu YH, Chu YR, Huang SS, Kuo PH. In perspective of specific symptoms of major depressive disorder: Functional connectivity analysis of electroencephalography and potential biomarkers of treatment response. J Affect Disord 2024; 367:944-950. [PMID: 39187193 DOI: 10.1016/j.jad.2024.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND The symptom variability in major depressive disorder (MDD) complicates treatment assessment, necessitating a thorough understanding of MDD symptoms and potential biomarkers. METHODS In this prospective study, we enrolled 54 MDD patients and 39 controls. Over the course of weeks 1, 2, and 4 participants underwent evaluations, with electroencephalograms (EEG) recorded at baseline and week 1. Our investigation considered five previously identified syndromal factors derived from the 17-item Hamilton Depression Rating Scale (17-item HAMD) for assessing depression: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. We assessed treatment response and EEG characteristics across all syndromal factors and total scores, all of which are based on the 17-item HAMD. To analyze the topology of brain networks, we employed functional connectivity (FC) and a graph theory-based method across various frequency bands. RESULTS The healthy control group had notably higher values in delta band EEG FC compared to the MDD patient group. Similar distinctions were observed between the responder and non-responder patient groups. Further exploration of baseline FC values across distinct syndromal factors revealed significant variations among the core, psychomotor-insight, and anorexia subgroups when using a specific graph theory-based approach, focusing on global efficiency and average clustering coefficient. LIMITATIONS Different antidepressants were included in this study. Therefore, the results should be interpreted with caution. CONCLUSIONS Our findings suggest that delta band EEG FC holds promise as a valuable predictor of antidepressant efficacy. It demonstrates an ability to adapt to individual variations in depressive symptomatology, offering insights into personalized treatment for patients with depression.
Collapse
Affiliation(s)
- Chao-Chung Ho
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Syu-Jyun Peng
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsiang Yu
- Division of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yeong-Ruey Chu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Shiau-Shian Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Trachik B, Ganulin ML, Dretsch MN, Merrill JC, Neff R, Caserta R, Deagle E, Hoge CW, Adler AB. Characterizing PTSD symptom profiles in special forces operators and support personnel: Justification for a Precision Medicine Approach. Psychiatry Res 2024; 342:116204. [PMID: 39348780 DOI: 10.1016/j.psychres.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Given the large number and diverse types of PTSD symptoms, examination of subtypes within the comprehensive PTSD criteria is necessary. This is especially true for subpopulations of active-duty service members such as specialized military units that undergo assessment and selection, receive extensive training, and have significant operational experience and trauma exposure. The current study identified PTSD subtypes in 16,284 U.S. Special Operations Forces (SOF) personnel who completed the Preservation of the Force and Family Needs Assessment Survey. Results identified a 4-profile solution. When stratifying the sample by occupation type (Operator vs Support), findings suggest that SOF Support personnel symptom presentations are primarily characterized by dysphoric and negative alterations in cognitions and mood symptoms. In contrast, SOF Operator personnel symptoms are best characterized by traditional profiles, consistent with the existing PTSD subtype literature. Results provide support for pursuing precision medicine approaches based on PTSD symptom profiles.
Collapse
Affiliation(s)
- Benjamin Trachik
- Walter Reed Army Institute of Research -West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA; United States Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; RAND, Santa Monica, CA,USA.
| | - Michelle L Ganulin
- Walter Reed Army Institute of Research -West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA
| | - Michael N Dretsch
- Walter Reed Army Institute of Research -West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA
| | - Julie C Merrill
- Walter Reed Army Institute of Research -West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA
| | - Rob Neff
- Preservation of the Force and Family program at the United States Special Operations Command, MacDill Air Force Base, Tampa, FL, USA
| | - Ryan Caserta
- Preservation of the Force and Family program at the United States Special Operations Command, MacDill Air Force Base, Tampa, FL, USA
| | - Edwin Deagle
- Preservation of the Force and Family program at the United States Special Operations Command, MacDill Air Force Base, Tampa, FL, USA
| | - Charles W Hoge
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Amy B Adler
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
5
|
Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial. Front Neurosci 2024; 18:1390250. [PMID: 39268031 PMCID: PMC11390435 DOI: 10.3389/fnins.2024.1390250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD). The subgenual anterior cingulate cortex (sgACC), a key brain center that regulates human emotions and influences negative emotional states, is a plausible target for tTIS in MDD based on reports of its successful neuromodulation with invasive deep brain stimulation. Methods This pilot, single-site, double-blind, randomized, sham-controlled interventional clinical trial will be conducted at St. Michael's Hospital - Unity Health Toronto in Toronto, ON, Canada. The primary objective is to demonstrate target engagement of the sgACC with 130 Hz tTIS using resting-state magnetic resonance imaging (MRI) techniques. The secondary objective is to estimate the therapeutic potential of tTIS for MDD by evaluating the change in clinical characteristics of participants and electrophysiological outcomes and providing feasibility and tolerability estimates for a large-scale efficacy trial. Thirty participants (18-65 years) with unipolar, non-psychotic MDD will be recruited and randomized to receive 10 sessions of 130 Hz tTIS or sham stimulation (n = 15 per arm). The trial includes a pre- vs. post-treatment 3T MRI scan of the brain, clinical evaluation, and electroencephalography (EEG) acquisition at rest and during the auditory mismatch negativity (MMN) paradigm. Discussion This study is one of the first-ever clinical trials among patients with psychiatric disorders examining the therapeutic potential of repetitive tTIS and its neurobiological mechanisms. Data obtained from this trial will be used to optimize the tTIS approach and design a large-scale efficacy trial. Research in this area has the potential to provide a novel treatment option for individuals with MDD and circuitry-related disorders and may contribute to the process of obtaining regulatory approval for therapeutic applications of tTIS. Clinical Trial Registration ClinicalTrials.gov, identifier NCT05295888.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts Boston, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery & Center for NeuroTechnology and NeuroRecovery (CNTR), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Sridhar Krishnan
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
6
|
Colita D, Burdusel D, Glavan D, Hermann DM, Colită CI, Colita E, Udristoiu I, Popa-Wagner A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J Affect Disord 2024; 344:149-158. [PMID: 37827260 DOI: 10.1016/j.jad.2023.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Two of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders. This complexity of factors has been anticipated by the Swiss psychiatrists Paul Kielholz and Jules Angst who introduced a multimodal treatment of MDD. Depression is the predominant mood disorder, impacting around one-third of individuals who have experienced a stroke. MDD and PSD share common underlying biological mechanisms related to the disruption of monoaminergic pathways. The major contributor to PSD is the stroke lesion location, which can involve the disruption of the serotoninergic, dopaminergic, glutamatergic, GABAergic, or cholinergic pathways. Additionally, various other disorders such as mania, bipolar disorder, anxiety disorder, and apathy might occur post-stroke, although their prevalence is considerably lower. However, there are differences in the onset of MDD among mood disorders. Some mood disorders develop gradually and can persist for a lifetime, potentially culminating in suicide. In contrast, PSD has a rapid onset because of the severe disruption of neural pathways essential for mood behavior caused by the lesion. However, PSD might also spontaneously resolve several months after a stroke, though it is associated with higher mortality. This review also provides a brief overview of the treatments currently available in medical practice.
Collapse
Affiliation(s)
- Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Daiana Burdusel
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Cezar-Ivan Colită
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Eugen Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
7
|
Paolini M, Harrington Y, Colombo F, Bettonagli V, Poletti S, Carminati M, Colombo C, Benedetti F, Zanardi R. Hippocampal and parahippocampal volume and function predict antidepressant response in patients with major depression: A multimodal neuroimaging study. J Psychopharmacol 2023; 37:1070-1081. [PMID: 37589290 PMCID: PMC10647896 DOI: 10.1177/02698811231190859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND For many patients with major depressive disorder (MDD) adequate treatment remains elusive. Neuroimaging techniques received attention for their potential use in guiding and predicting response, but were rarely investigated in real-world psychiatric settings. AIMS To identify structural and functional Magnetic Resonance Imaging (MRI) biomarkers associated with antidepressant response in a real-world clinical sample. METHODS We studied 100 MDD inpatients admitted to our psychiatric ward, treated with various antidepressants upon clinical need. Hamilton Depression Rating Scale percentage decrease from admission to discharge was used as a measure of response. All patients underwent 3.0 T MRI scanning. Grey matter (GM) volumes were investigated both in a voxel-based morphometry (VBM), and in a regions of interest (ROI) analysis. In a subsample of patients, functional resting-state connectivity patterns were also explored. RESULTS In the VBM analysis, worse response was associated to lower GM volumes in two clusters, encompassing the left hippocampus and parahippocampal gyrus, and the right superior and middle temporal gyrus. Investigating ROIs, lower bilateral hippocampi and amygdalae volumes predicted worse treatment outcomes. Functional connectivity in the right temporal and parahippocampal gyrus was also associated to response. CONCLUSION Our results expand existing literature on the relationship between the structure and function of several brain regions and treatment response in MDD. While we are still far from routine use of MRI biomarkers in clinical practice, we confirm a possible role of these techniques in guiding treatment choices and predicting their efficacy.
Collapse
Affiliation(s)
- Marco Paolini
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yasmin Harrington
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Colombo
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Sara Poletti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Carminati
- Vita-Salute San Raffaele University, Milano, Italy
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milano, Italy
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Boucherie DE, Reneman L, Ruhé HG, Schrantee A. Neurometabolite changes in response to antidepressant medication: A systematic review of 1H-MRS findings. Neuroimage Clin 2023; 40:103517. [PMID: 37812859 PMCID: PMC10563053 DOI: 10.1016/j.nicl.2023.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and (es)ketamine are used to treat major depressive disorder (MDD). These different types of medication may involve common neural pathways related to glutamatergic and GABAergic neurotransmitter systems, both of which have been implicated in MDD pathology. We conducted a systematic review of pharmacological proton Magnetic Resonance Spectroscopy (1H-MRS) studies in healthy volunteers and individuals with MDD to explore the potential impact of these medications on glutamatergic and GABAergic systems. We searched PubMed, Web of Science and Embase and included randomized controlled trials or cohort studies, which assessed the effects of SSRIs, SNRIs, or (es)ketamine on glutamate, glutamine, Glx or GABA using single-voxel 1H-MRS or Magnetic Resonance Spectroscopic Imaging (MRSI). Additionally, studies were included when they used a field strength > 1.5 T, and when a comparison of metabolite levels between antidepressant treatment and placebo or baseline with post-medication metabolite levels was done. We excluded animal studies, duplicate publications, or articles with 1H-MRS data already described in another included article. Twenty-nine studies were included in this review. Fifteen studies investigated the effect of administration or treatment with SSRIs or SNRIs, and fourteen studies investigated the effect of (es)ketamine on glutamatergic and GABAergic metabolite levels. Studies on SSRIs and SNRIs were highly variable, generally underpowered, and yielded no consistent findings across brain regions or specific populations. Although studies on (es)ketamine were also highly variable, some demonstrated an increase in glutamate levels in the anterior cingulate cortex in a time-dependent manner after administration. Our findings highlight the need for standardized study and acquisition protocols. Additionally, measuring metabolites dynamically over time or combining 1H-MRS with whole brain functional imaging techniques could provide valuable insights into the effects of these medications on glutamate and GABAergic neurometabolism.
Collapse
Affiliation(s)
- Daphne E Boucherie
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands.
| | - Liesbeth Reneman
- Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands; Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands
| |
Collapse
|
10
|
Sinclair LI, Mohr A, Morisaki M, Edmondson M, Chan S, Bone-Connaughton A, Turecki G, Love S. Is later-life depression a risk factor for Alzheimer's disease or a prodromal symptom: a study using post-mortem human brain tissue? Alzheimers Res Ther 2023; 15:153. [PMID: 37700368 PMCID: PMC10496415 DOI: 10.1186/s13195-023-01299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Depression and dementia are both common diseases. Although new cases of depression are more common in younger adults, there is a second peak at the age of 50 years suggesting a different pathological process. Late-life depression (LLD) is associated with dementia. However, it remains unclear whether depression represents a dementia prodrome or is a true risk factor for its development. LLD is thought to have a vascular component and this may be a possible link between depression and dementia. We hypothesised that later-life depression is a prodromal manifestation of dementia and would therefore be associated with more AD, and/or ischaemic brain abnormalities that are present in earlier-life depression or in age- and sex-matched controls. METHODS We assessed post-mortem orbitofrontal cortex and dorsolateral pre-frontal cortex from 145 individuals in 4 groups: 28 18-50-year-olds with depression, 30 older individuals (ages 51-90) with depression, 28 with early AD (Braak tangle stages III-IV) and 57 matched controls (17 early-life, 42 later-life). Levels of Aβ, phospho-tau and α-synuclein were assessed by immunohistochemistry and ELISA. To quantify chronic ischaemia, VEGF, MAG and PLP1 were measured by ELISA. To assess pericyte damage, PDGFRB was measured by ELISA. For blood-brain barrier leakiness, JAM-A, claudin 5 and fibrinogen were measured by ELISA. To quantity endothelial activation, the ratio of ICAM1:collagen IV was assessed by immunohistochemistry. RESULTS There was no evidence of chronic cerebral hypoperfusion or increased Aβ/tau in either depression group. There was also no indication of pericyte damage, increased blood-brain barrier leakiness or endothelial activation in the OFC or DLPFC in the depression groups. CONCLUSIONS Contrary to some previous findings, we have not found evidence of impaired vascular function or increased Aβ in LLD. Our study had a relatively small sample size and limitations in the availability of clinical data. These results suggest that depression is a risk factor for dementia rather than an early manifestation of AD or a consequence of cerebral vascular insufficiency.
Collapse
Affiliation(s)
- Lindsey I Sinclair
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK.
| | - Asher Mohr
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
| | - Mizuki Morisaki
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
| | - Martin Edmondson
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
| | - Selina Chan
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, Canada
| | - A Bone-Connaughton
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
| | - Gustavo Turecki
- Department of Life Sciences, Warwick University, Warwick, UK
| | - Seth Love
- Dementia Research Group, Faculty of Health Sciences, University of Bristol, Southmead Hospital, Level 1 Learning & Research Building, Bristol, BS10 5NB, UK
| |
Collapse
|
11
|
Finnegan SL, Browning M, Duff E, Harmer CJ, Reinecke A, Rahman NM, Pattinson KTS. Brain activity measured by functional brain imaging predicts breathlessness improvement during pulmonary rehabilitation. Thorax 2023; 78:852-859. [PMID: 36572534 PMCID: PMC10447378 DOI: 10.1136/thorax-2022-218754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/20/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic breathlessness in chronic obstructive pulmonary disease (COPD) is effectively treated with pulmonary rehabilitation. However, baseline patient characteristics predicting improvements in breathlessness are unknown. This knowledge may provide better understanding of the mechanisms engaged in treating breathlessness and help to individualise therapy. Increasing evidence supports the role of expectation (ie, placebo and nocebo effects) in breathlessness perception. In this study, we tested functional brain imaging markers of breathlessness expectation as predictors of therapeutic response to pulmonary rehabilitation, and asked whether D-cycloserine, a brain-active drug known to influence expectation mechanisms, modulated any predictive model. METHODS Data from 71 participants with mild-to-moderate COPD recruited to a randomised double-blind controlled experimental medicine study of D-cycloserine given during pulmonary rehabilitation were analysed (ID: NCT01985750). Baseline variables, including brain-activity, self-report questionnaires responses, clinical measures of respiratory function and drug allocation were used to train machine-learning models to predict the outcome, a minimally clinically relevant change in the Dyspnoea-12 score. RESULTS Only models that included brain imaging markers of breathlessness-expectation successfully predicted improvements in Dyspnoea-12 score (sensitivity 0.88, specificity 0.77). D-cycloserine was independently associated with breathlessness improvement. Models that included only questionnaires and clinical measures did not predict outcome (sensitivity 0.68, specificity 0.2). CONCLUSIONS Brain activity to breathlessness related cues is a strong predictor of clinical improvement in breathlessness over pulmonary rehabilitation. This implies that expectation is key in breathlessness perception. Manipulation of the brain's expectation pathways (either pharmacological or non-pharmacological) therefore merits further testing in the treatment of chronic breathlessness.
Collapse
Affiliation(s)
- Sarah L Finnegan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael Browning
- Oxford Health NHS Foundation Trust, Warneford Hospital, NHS, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eugene Duff
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Oxford Health NHS Foundation Trust, Warneford Hospital, NHS, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea Reinecke
- Oxford Health NHS Foundation Trust, Warneford Hospital, NHS, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Oxford Chinese Academy of Medicine Institute, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kyle T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Nuffield Division of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
12
|
Strege MV, Siegle GJ, Richey JA, Krawczak RA, Young K. Cingulate prediction of response to antidepressant and cognitive behavioral therapies for depression: Meta-analysis and empirical application. Brain Imaging Behav 2023; 17:450-460. [PMID: 36622532 PMCID: PMC10329727 DOI: 10.1007/s11682-022-00756-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
We sought to identify baseline (pre-treatment) neural markers associated with treatment response in major depressive disorder (MDD), specific to treatment type, Cognitive Behavioral Therapy (CBT) or pharmacotherapy (selective serotonin reuptake inhibitors; SSRI). We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies to identify neural prognostic indicators of response to CBT or SSRI. To verify the regions derived from literature, the meta-analytic regions were used to predict clinical change in a verification sample of participants with MDD who received either CBT (n = 60) or an SSRI (n = 19) as part of prior clinical trials. The meta-analysis consisted of 21 fMRI studies that used emotion-related tasks. It yielded prognostic regions of the perigenual (meta pgACC) and subgenual anterior cingulate cortex (meta sgACC), associated with SSRI and CBT response, respectively. When applying the meta-analytic regions to predict treatment response in the verification sample, reactivity of the meta pgACC was prognostic for SSRI response, yet the effect direction was opposite of most prior studies. Meta sgACC reactivity failed to be prognostic for CBT response. Results confirm the prognostic potential of neural reactivity of ACC subregions in MDD but further research is necessary for clinical translation.
Collapse
Affiliation(s)
- Marlene V Strege
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, United States.
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, United States
| | - John A Richey
- Department of Psychology, Virginia Polytechnic Institute and State University, Blacksburg, United States
| | | | - Kymberly Young
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
13
|
Shen H, Ge L, Cao B, Wei GX, Zhang X. The contribution of the cingulate cortex: treating depressive symptoms in first-episode drug naïve schizophrenia. Int J Clin Health Psychol 2023; 23:100372. [PMID: 36793339 PMCID: PMC9922813 DOI: 10.1016/j.ijchp.2023.100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Background Our previous study has shown the cingulate cortex abnormalities in first-episode drug naïve (FEDN) schizophrenia patients with comorbid depressive symptoms. However, it remains largely unknown whether antipsychotics may induce morphometric change in cingulate cortex and its relationship with depressive symptoms. The purpose of this study was to further clarify the important role of cingulate cortex in the treatment on depressive symptoms in FEDN schizophrenia patients. Method In this study, 42 FEDN schizophrenia patients were assigned into depressed patients group (DP, n = 24) and non-depressed patients group (NDP, n = 18) measured by the 24-item Hamilton Depression Rating Scale (HAMD). Clinical assessments and anatomical images were obtained from all patients before and after 12-week treatment with risperidone. Results Although risperidone alleviated psychotic symptoms in all patients, depressive symptoms were decreased only in DP. Significant group by time interaction effects were found in the right rostral anterior cingulate cortex (rACC) and other subcortical regions in the left hemisphere. After risperidone treatment, the right rACC were increased in DP. Further, the increasing volume of right rACC was negatively associated with improvement in depressive symptoms. Conclusion These findings suggested that the abnormality of the rACC is the typical characteristics in schizophrenia with depressive symptoms. It's likely key region contributing to the neural mechanisms underlying the effects of risperidone treatment on depressive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Haoran Shen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Likun Ge
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Alberta, Canada
| | - Gao-Xia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Herrmann L, Ade J, Kühnel A, Widmann A, Demenescu LR, Li M, Opel N, Speck O, Walter M, Colic L. Cross-sectional study of retrospective self-reported childhood emotional neglect and inhibitory neurometabolite levels in the pregenual anterior cingulate cortex in adult humans. Neurobiol Stress 2023; 25:100556. [PMID: 37521513 PMCID: PMC10371855 DOI: 10.1016/j.ynstr.2023.100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
High childhood emotional maltreatment (CM-EMO) is reported in mood and anxiety disorders. The associations with an increased risk for psychopathology are not fully understood. One potential factor may be through alterations in gamma-Aminobutyric acid (GABA). The pregenual anterior cingulate cortex (pgACC) is an important brain region for emotion processing and its' GABA levels were previously implicated in mood and anxiety disorders pathophysiology. We examined the association between the self-reported CM-EMO in adulthood and GABA + levels in the pgACC and in a control region, anterior mid cingulate cortex. GABA+ and total creatine (tCr) were measured in the pgACC and aMCC voxels in seventy-four healthy volunteers (32 (43%) women, ages 19-54, age [standard deviation] = 27.1 [6.5]) using proton magnetic resonance spectroscopy at 7 T. Childhood Trauma Questionnaire was completed by adult participants to measure retrospective self-reported experience of emotional neglect (CM-EMO-NEG) and emotional abuse (CM-EMO-AB) during childhood. Linear mixed models tested the interaction between the region and the two subscales, and GABA+/tCr ratios, with an adjusted alpha = 0.025. Following, linear models, including with covariates were tested. There was an interaction effect between region and CM-EMO-NEG (B = -0.007, p = 0.009), driven by a negative relationship between CM-EMO-NEG and GABA+/tCr in the pgACC (B = -0.004, p = 0.013). Results for CM-EMO-NEG were robust to inclusion of different covariates (ps < 0.035). There was no interaction effect for the CM-EMO-AB (B = 0.007, p = 0.4). Limitations include cross-sectional measurement and retrospective nature of the CTQ. The findings indicate preliminary importance of inhibitory neurometabolite concentrations in the pgACC for retrospective reporting of CM-EMO-NEG.
Collapse
Affiliation(s)
- Luisa Herrmann
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- University Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Johanna Ade
- Institute of Clinical Psychology, Center for Mental Health, Hospital Stuttgart, Stuttgart, Germany
| | - Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Section of Medical Psychology, Department of Psychiatry & Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Annina Widmann
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | | | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| | - Oliver Speck
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- University Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| |
Collapse
|
15
|
Kotoula V, Evans JW, Punturieri CE, Zarate CA. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. FRONTIERS IN NEUROIMAGING 2023; 2:1110258. [PMID: 37554642 PMCID: PMC10406217 DOI: 10.3389/fnimg.2023.1110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.
Collapse
|
16
|
Wade-Bohleber L, Zölch N, Lehmann M, Ernst J, Richter A, Seifritz E, Boeker H, Grimm S. Effects of Psychotherapy on Glutamatergic Neurotransmission. Neuropsychobiology 2023; 82:203-209. [PMID: 37321187 PMCID: PMC10614498 DOI: 10.1159/000530312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Psychodynamic psychotherapy is an effective and widely used treatment for major depressive disorder (MDD); however, little is known about neurobiological changes associated with induced symptom improvement. METHODS Proton magnetic resonance spectroscopy with a two-dimensional J-resolved sequence served to test the relationship between glutamate (Glu) and glutamine (Gln) levels, measured separately in pregenual anterior cingulate cortex (pgACC) and the anterior midcingulate cortex (aMCC) as a control region, with change in depression symptoms after 6 months of weekly psychodynamic psychotherapy sessions in MDD patients. Depressed (N = 45) and healthy (N = 30) subjects participated in a baseline proton magnetic resonance spectroscopy measurement and a subgroup of MDD subjects (N = 21) then received once-a-week psychodynamic psychotherapy and participated in a second proton magnetic resonance spectroscopy measurement after 6 months. Change in depression symptoms was assessed using the Hamilton Depression Rating Scale (HAMD). RESULTS Higher pretreatment pgACC Gln concentrations in MDD patients compared to healthy controls were associated with symptom severity. Patients and controls did not differ regarding Gln levels in aMCC nor regarding Glu levels in both regions. The association of pgACC Gln concentration and severity of depressive symptoms was reversed after 6 months of psychotherapy in MDD subjects. Regarding Gln in aMCC as well as Glu in both regions, there were no significant associations with improvement of depressive symptoms in the course of psychotherapy. DISCUSSION Findings indicate specific regional effects of psychodynamic psychotherapy on glutamatergic neurotransmission and thereby highlight the key role of the pgACC in both depression pathophysiology and recovery.
Collapse
Affiliation(s)
- Laura Wade-Bohleber
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Psychological Institute, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Mick Lehmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jutta Ernst
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Richter
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heinz Boeker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry, Charité Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
17
|
Bansal R, Hellerstein DJ, Sawardekar S, Chen Y, Peterson BS. A randomized controlled trial of desvenlafaxine-induced structural brain changes in the treatment of persistent depressive disorder. Psychiatry Res Neuroimaging 2023; 331:111634. [PMID: 36996664 DOI: 10.1016/j.pscychresns.2023.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
The anatomical changes that antidepressant medications induce in the brain and through which they exert their therapeutic effects remain largely unknown. We randomized 61 patients with Persistent Depressive Disorder (PDD) to receive either desvenlafaxine or placebo in a 12-week trial and acquired anatomical MRI scans in 42 of those patients at baseline before randomization and immediately at the end of the trial. We also acquired MRIs once in 39 age- and sex-matched healthy controls. We assessed whether the serotonin-norepinephrine reuptake inhibitor, desvenlafaxine, differentially changed cortical thickness during the trial compared with placebo. Patients relative to controls at baseline had thinner cortices across the brain. Although baseline thickness was not associated with symptom severity, thicker baseline cortices predicted greater reduction in symptom severity in those treated with desvenlafaxine but not placebo. We did not detect significant treatment-by-time effects on cortical thickness. These findings suggest that baseline thickness may serve as predictive biomarkers for treatment response to desvenlafaxine. The absence of treatment-by-time effects may be attributable either to use of insufficient desvenlafaxine dosing, a lack of desvenlafaxine efficacy in treating PDD, or the short trial duration.
Collapse
Affiliation(s)
- Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA.
| | - David J Hellerstein
- Depression Evaluation Service, Division of Clinical Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA
| | - Ying Chen
- Depression Evaluation Service, Division of Clinical Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA; Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA 90033, USA
| |
Collapse
|
18
|
Abstract
OBJECTIVE Depression is among the most pervasive and debilitating neuropsychiatric sequelae experienced by patients following a traumatic brain injury (TBI). While the individual mechanisms underlying depression and TBI have been widely studied, the neurobiological bases of depression after TBI remain largely unknown. This article highlights the potential mechanisms of action implicated in depression after TBI. RESULTS We review putative mechanisms of action including neuroinflammation, neuroendocrine dysregulation, metabolic abnormalities, and neurotransmitter and circuitry dysfunction. We also identify the current limitations in the field and propose directions for future research. CONCLUSION An improved understanding of the underlying mechanisms will aid the development of precision-guided and personalized treatments for patients suffering from depression after TBI.
Collapse
Affiliation(s)
- Aava Bushra Jahan
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, US.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, US
| | - Kaloyan Tanev
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, US
| |
Collapse
|
19
|
Rojas Albert A, Backhaus W, Graterol Pérez JA, Braaβ H, Schön G, Choe CU, Feldheim J, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Cortical thickness of contralesional cortices positively relates to future outcome after severe stroke. Cereb Cortex 2022; 32:5622-5627. [PMID: 35169830 DOI: 10.1093/cercor/bhac040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Imaging studies have evidenced that contralesional cortices are involved in recovery after motor stroke. Cortical thickness (CT) analysis has proven its potential to capture the changes of cortical anatomy, which have been related to recovery and treatment gains under therapy. An open question is whether CT obtained in the acute phase after stroke might inform correlational models to explain outcome variability. Data of 38 severely impaired (median NIH Stroke Scale 9, interquartile range: 6-13) acute stroke patients of 2 independent cohorts were reanalyzed. Structural imaging data were processed via the FreeSurfer pipeline to quantify regional CT of the contralesional hemisphere. Ordinal logistic regression models were fit to relate CT to modified Rankin Scale as an established measure of global disability after 3-6 months, adjusted for the initial deficit, lesion volume, and age. The data show that CT of contralesional cortices, such as the precentral gyrus, the superior frontal sulcus, and temporal and cingulate cortices, positively relates to the outcome after stroke. This work shows that the baseline cortical anatomy of selected contralesional cortices can explain the outcome variability after severe stroke, which further contributes to the concept of structural brain reserve with respect to contralesional cortices to promote recovery.
Collapse
Affiliation(s)
- Alina Rojas Albert
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hanna Braaβ
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Neurology, University Medical Center, Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
20
|
Grey matter morphology in women with premenstrual dysphoric disorder treated with a selective progesterone receptor modulator. Eur Neuropsychopharmacol 2022; 65:35-43. [PMID: 36343426 DOI: 10.1016/j.euroneuro.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by severe cyclic mood symptoms emerging in the luteal phase of the menstrual cycle. The variation in progesterone levels and its metabolites during the luteal phase seems critical to the occurrence of PMDD symptoms. Notably, the efficacy of selective progesterone receptor modulator (SPRM) treatment on the mental symptoms of PMDD has been recently demonstrated. In the present study, structural magnetic resonance imaging was used to assess the effects of SPRM treatment, compared with placebo, on grey matter morphology in women with PMDD. In total, 35 women were scanned during the luteal phase, before and after three months of treatment with SPRM or placebo. Symptom severity was assessed using the Daily Record of Severity of Problems (DRSP), while gonadal hormone levels were measured by liquid chromatography-tandem mass spectrometry. Region-of-interest and whole-brain approaches were employed to perform voxel-based morphometry analyses, subcortical volumetric analyses, and surface-based morphometry analyses. No interaction or main effects of treatment and time were observed on grey matter volume and cortical surface measures (cortical thickness, gyrification index, sulcal depth, and fractal dimension). The relationship between change in brain morphology and symptom severity was also explored but no treatment-dependant grey matter structure change was related to symptom severity change. These findings suggest that SPRM treatment does not impart macrostructural changes onto grey matter structure, at least in the short term.
Collapse
|
21
|
Tassone VK, Demchenko I, Salvo J, Mahmood R, Di Passa AM, Kuburi S, Rueda A, Bhat V. Contrasting the amygdala activity and functional connectivity profile between antidepressant-free participants with major depressive disorder and healthy controls: A systematic review of comparative fMRI studies. Psychiatry Res Neuroimaging 2022; 325:111517. [PMID: 35944425 DOI: 10.1016/j.pscychresns.2022.111517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
Functional neuroimaging research suggests that the amygdala is implicated in the pathophysiology of major depressive disorder (MDD). This systematic review aimed to identify consistently reported amygdala activity and functional connectivity (FC) abnormalities in antidepressant-free participants with MDD as compared to healthy controls at baseline (i.e., before treatment initiation or experimental manipulation). A search for relevant published studies and registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase) and ClinicalTrials.gov with an end date of March 7th, 2022. Fifty published studies and two registered clinical trials were included in this review. Participants with MDD frequently exhibited amygdala hyperactivity in response to negative stimuli, abnormal event-related amygdala-anterior cingulate cortex (ACC) FC, and abnormal resting-state amygdala FC with the insula and the prefrontal, temporal, and parietal cortices. Decreased resting-state FC was consistently found between the amygdala and the orbitofrontal cortex, striatum, cerebellum, and middle/inferior frontal gyri. Due to the limited number of studies examining resting-state amygdala activity and FC with specific subregions of interest, including those within the ACC, further investigation is warranted.
Collapse
Affiliation(s)
- Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Joseph Salvo
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Raesham Mahmood
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada
| | - Anne-Marie Di Passa
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Sarah Kuburi
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, M5B 1T8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
22
|
Li Y, Wang J, Yan X, Li H. Combined fractional anisotropy and subcortical volumetric deficits in patients with mild-to-moderate depression: Evidence from the treatment of antidepressant traditional Chinese medicine. Front Neurosci 2022; 16:959960. [PMID: 36081664 PMCID: PMC9448251 DOI: 10.3389/fnins.2022.959960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Numerous neuroimaging studies have demonstrated that diverse brain structural plasticity could occur in a human brain during a depressive episode. However, there is a lack of knowledge regarding the underlying mechanisms of mild-to-moderate depression (MMD), especially the changes of brain structural characteristics after treatment with the Shuganjieyu capsule (SG), a kind of traditional Chinese medicine that has been recommended for the specialized treatment of MMD. In this study, we investigated the structural brain plasticity in MMD that have been undergoing 8 weeks of SG treatment compared with age- and sex-matched healthy controls (HCs) and assessed the relationship between these brain structural alternations and clinical symptoms in MMD. At the baseline, we found that: (1) fractional anisotropy (FA) values in patients with MMD were found to be significantly increased in the regions of anterior limb of internal capsule (ALIC) [MNI coordinates: Peak (x/y/z) = 102, 126, 77; MMD FApeak (Mean ± SD) = 0.621 ± 0.043; HCs FApeak (Mean ± SD) = 0.524 ± 0.052; MMD > HCs, t = 9.625, p < 0.001] and posterior limb of internal capsule (PLIC) [MNI coordinates: Peak (x/y/z) = 109, 117, 87; MMD FApeak (Mean ± SD) = 0.694 ± 0.042; HCs FApeak (Mean ± SD) = 0.581 ± 0.041; MMD > HCs, t = 12.90, p < 0.001], and FA values were significantly positively correlated with HAMD scores in patients with MMD. (2) Patients with MMD showed smaller gray matter volume (GMV) of the dorsolateral prefrontal cortex (DLPFC), frontal cortex, occipital cortex, and precuneus, and the GMV of DLPFC was negatively correlated with HAMD scores. After SG treatment, we found that (1) the HAMD scores decreased; (2) FA values were significantly decreased in the regions of the ALIC and PLIC compared to those at baseline and TBSS revealed no significant differences in FA values between patients with MMD and HCs. (3) The structural characteristics of DLPFC in patients with MMD obtained at the 8th week were improved, e.g., no significant differences in GMV of DLPFC between the two groups. Taken together, our results provided neuroimaging evidence suggesting that SG is an effective treatment for patients with MMD. Moreover, alterations of GMV after 8 weeks of SG treatment indicated a potential modulation mechanism in brain structural plasticity within the DLPFC in patients with MMD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Junjie Wang
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xu Yan
- Department of Medical Imaging, Changzhi Medical College, Changzhi, China
| | - Hong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li
| |
Collapse
|
23
|
Gerlach AR, Karim HT, Peciña M, Ajilore O, Taylor WD, Butters MA, Andreescu C. MRI predictors of pharmacotherapy response in major depressive disorder. Neuroimage Clin 2022; 36:103157. [PMID: 36027717 PMCID: PMC9420953 DOI: 10.1016/j.nicl.2022.103157] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is among the most prevalent psychiatric disorders, exacting a substantial personal, social, and economic toll. Antidepressant treatment typically involves an individualized trial and error approach with an inconsistent success rate. Despite a pressing need, no reliable biomarkers for predicting treatment outcome have yet been discovered. Brain MRI measures hold promise in this regard, though clinical translation remains elusive. In this review, we summarize structural MRI and functional MRI (fMRI) measures that have been investigated as predictors of treatment outcome. We broadly divide these into five categories including three structural measures: volumetric, white matter burden, and white matter integrity; and two functional measures: resting state fMRI and task fMRI. Currently, larger hippocampal volume is the most widely replicated predictor of successful treatment. Lower white matter hyperintensity burden has shown robustness in late life depression. However, both have modest discriminative power. Higher fractional anisotropy of the cingulum bundle and frontal white matter, amygdala hypoactivation and anterior cingulate cortex hyperactivation in response to negative emotional stimuli, and hyperconnectivity within the default mode network (DMN) and between the DMN and executive control network also show promise as predictors of successful treatment. Such network-focused measures may ultimately provide a higher-dimensional measure of treatment response with closer ties to the underlying neurobiology.
Collapse
Affiliation(s)
- Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Brett BL, Nelson LD, Meier TB. The Association Between Concussion History and Increased Symptom Severity Reporting Is Independent of Common Medical Comorbidities, Personality Factors, and Sleep Quality in Collegiate Athletes. J Head Trauma Rehabil 2022; 37:E258-E267. [PMID: 34570026 PMCID: PMC8940748 DOI: 10.1097/htr.0000000000000724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We investigated the degree to which the association between history of concussion with psychological distress and general symptom severity is independent of several factors commonly associated with elevated symptom severity. We also examined whether symptom severity endorsement was associated with concussion injury specifically or response to injury in general. SETTING Academic medical center. PARTICIPANTS Collegiate athletes ( N = 106; age: M = 21.37 ± 1.69 years; 33 female) were enrolled on the basis of strict medical/psychiatric exclusion criteria. DESIGN Cross-sectional single-visit study. Comprehensive assessment, including semistructured interviews to retrospectively diagnose the number of previous concussions, was completed. Single-predictor and stepwise regression models were fit to examine the predictive value of prior concussion and orthopedic injuries on symptom severity, both individually and controlling for confounding factors. MAIN OUTCOME MEASURES Psychological distress was operationalized as Brief Symptom Inventory-18 Global Severity Index (BSI-GSI) ratings; concussion-related symptom severity was measured using the Sport Concussion Assessment Tool. RESULTS Controlling for baseline factors associated with the symptom outcomes (agreeableness, neuroticism, negative emotionality, and sleep quality), concussion history was significantly associated with psychological distress ( B = 1.25 [0.55]; P = .025, Δ R2 = 0.034) and concussion-like symptom severity ( B = 0.22 [0.08]; P = .005, Δ R2 = 0.064) and accounted for a statistically significant amount of unique variance in symptom outcomes. Orthopedic injury history was not individually predictive of psychological distress ( B = -0.06 [0.53]; P = .905) or general symptom severity ( B = 0.06 [0.08]; P = .427) and did not explain the relationship between concussion history and symptom outcomes. CONCLUSIONS Concussion history is associated with subtle elevations in symptom severity in collegiate-aged athletes; this relationship is independent of medical, lifestyle (ie, sleep), and personality factors. Furthermore, this relationship is associated with brain injury (ie, concussion) and is not a general response to injury history.
Collapse
Affiliation(s)
- Benjamin L Brett
- Departments of Neurosurgery and Neurology (Drs Brett and Nelson) and Neurosurgery, Biomedical Engineering, and Cell Biology, Neurobiology, and Anatomy (Dr Meier), Medical College of Wisconsin, Milwaukee
| | | | | |
Collapse
|
25
|
Liu Y, Zhang Y, Thyreau B, Tatewaki Y, Matsudaira I, Takano Y, Hirabayashi N, Furuta Y, Jun H, Ninomiya T, Taki Y. Altruistic Social Activity, Depressive Symptoms, and Brain Regional Gray Matter Volume: Voxel-Based Morphometry Analysis from 8695 Old Adults. J Gerontol A Biol Sci Med Sci 2022; 77:1789-1797. [PMID: 35443061 DOI: 10.1093/gerona/glac093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Altruistic social activity, such as giving support to others, has shown protective benefits on dementia risk and cognitive decline. However, the pathological mechanism is unclear. In the present study, we investigated the association between altruistic social activity and brain regional gray matter. Furthermore, to explore the psychological interplay in altruistic social activity, we tested mediating effect of depressive symptoms on brain regional gray matter. We performed a cross-sectional Voxel-Based Morphology (VBM) analysis including 8695 old adults (72.9±6.1 years) from Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) Cohort. We measured altruistic social activities by self-report questionnaire, depressive symptoms by Geriatric Depression Scale (GDS)-short version. We employed the whole-brain VBM method to detect relevant structural properties related to altruistic social activity. We then performed multiple regression models to detect the mediating effect of depressive symptoms on particular brain regional gray matter volume while adjusting possible physical and social lifestyle covariables. We found that altruistic social activity is associated with larger gray matter volume in posterior insula, middle cingulate gyrus, hippocampus, thalamus, superior temporal gyrus, anterior orbital gyrus, and middle occipital gyrus. Depressive symptoms mediated over 10% on altruistic social activity and hippocampus volume, over 20% on altruistic social activity and cingulate gyrus volume. Our results indicated that altruistic social activity might preserve brain regional gray matter where are sensitive to aging and cognitive decline. Meanwhile, this association may be explained by indirect effect on depressive symptoms, suggesting that altruistic social activity may mitigate the neuropathology of dementia.
Collapse
Affiliation(s)
- Yingxu Liu
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Benjamin Thyreau
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuji Takano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Naoki Hirabayashi
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - YoshihikTo Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hata Jun
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | | |
Collapse
|
26
|
Khushboo, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Neuroanatomical, Biochemical, and Functional Modifications in Brain Induced by Treatment with Antidepressants. Mol Neurobiol 2022; 59:3564-3584. [DOI: 10.1007/s12035-022-02780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
|
27
|
Nguyen KP, Chin Fatt C, Treacher A, Mellema C, Cooper C, Jha MK, Kurian B, Fava M, McGrath PJ, Weissman M, Phillips ML, Trivedi MH, Montillo AA. Patterns of Pretreatment Reward Task Brain Activation Predict Individual Antidepressant Response: Key Results From the EMBARC Randomized Clinical Trial. Biol Psychiatry 2022; 91:550-560. [PMID: 34916068 PMCID: PMC8857018 DOI: 10.1016/j.biopsych.2021.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The lack of biomarkers to inform antidepressant selection is a key challenge in personalized depression treatment. This work identifies candidate biomarkers by building deep learning predictors of individual treatment outcomes using reward processing measures from functional magnetic resonance imaging, clinical assessments, and demographics. METHODS Participants in the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study (n = 222) underwent reward processing task-based functional magnetic resonance imaging at baseline and were randomized to 8 weeks of sertraline (n = 106) or placebo (n = 116). Subsequently, sertraline nonresponders (n = 37) switched to 8 weeks of bupropion. The change in Hamilton Depression Rating Scale was measured after treatment. Reward processing, clinical measurements, and demographics were used to train treatment-specific deep learning models. RESULTS The predictive model for sertraline achieved R2 of 48% (95% CI, 33%-61%; p < 10-3) in predicting the change in Hamilton Depression Rating Scale and number-needed-to-treat (NNT) of 4.86 participants in predicting response. The placebo model achieved R2 of 28% (95% CI, 15%-42%; p < 10-3) and NNT of 2.95 in predicting response. The bupropion model achieved R2 of 34% (95% CI, 10%-59%, p < 10-3) and NNT of 1.68 in predicting response. Brain regions where reward processing activity was predictive included the prefrontal cortex and cerebellar crus 1 for sertraline and the cingulate cortex, caudate, orbitofrontal cortex, and crus 1 for bupropion. CONCLUSIONS These findings demonstrate the utility of reward processing measurements and deep learning to predict antidepressant outcomes and to form multimodal treatment biomarkers.
Collapse
Affiliation(s)
- Kevin P Nguyen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cherise Chin Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alex Treacher
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cooper Mellema
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Crystal Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, Texas
| | - Manish K Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Benji Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Patrick J McGrath
- New York State Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Myrna Weissman
- New York State Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Albert A Montillo
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
28
|
Harika-Germaneau G, Wassouf I, Le Tutour T, Guillevin R, Doolub D, Rostami R, Delbreil A, Langbour N, Jaafari N. Baseline Clinical and Neuroimaging Biomarkers of Treatment Response to High-Frequency rTMS Over the Left DLPFC for Resistant Depression. Front Psychiatry 2022; 13:894473. [PMID: 35669263 PMCID: PMC9163359 DOI: 10.3389/fpsyt.2022.894473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has proven to be an efficient treatment option for patients with treatment-resistant depression (TRD). However, the success rate of this method is still low, and the treatment outcome is unpredictable. The objective of this study was to explore clinical and structural neuroimaging factors as potential biomarkers of the efficacy of high-frequency (HF) rTMS (20 Hz) over the left dorso-lateral pre-frontal cortex (DLPFC). METHODS We analyzed the records of 131 patients with mood disorders who were treated with rTMS and were assessed at baseline at the end of the stimulation and at 1 month after the end of the treatment. The response is defined as a 50% decrease in the MADRS score between the first and the last assessment. Each of these patients underwent a T1 MRI scan of the brain, which was subsequently segmented with FreeSurfer. Whole-brain analyses [Query, Design, Estimate, Contrast (QDEC)] were conducted and corrected for multiple comparisons. Additionally, the responder status was also analyzed using binomial multivariate regression models. The explored variables were clinical and anatomical features of the rTMS target obtained from T1 MRI: target-scalp distance, DLPFC gray matter thickness, and various cortical measures of interest previously studied. RESULTS The results of a binomial multivariate regression model indicated that depression type (p = 0.025), gender (p = 0.010), and the severity of depression (p = 0.027) were found to be associated with response to rTMS. Additionally, the resistance stage showed a significant trend (p = 0.055). Whole-brain analyses on volume revealed that the average volume of the left part of the superior frontal and the caudal middle frontal regions is associated with the response status. Other MRI-based measures are not significantly associated with response to rTMS in our population. CONCLUSION In this study, we investigated the clinical and neuroimaging biomarkers associated with responsiveness to high-frequency rTMS over the left DLPFC in a large sample of patients with TRD. Women, patients with bipolar depressive disorder (BDD), and patients who are less resistant to HF rTMS respond better. Responders present a lower volume of the left part of the superior frontal gyrus and the caudal middle frontal gyrus. These findings support further investigation into the use of clinical variables and structural MRI as possible biomarkers of rTMS treatment response.
Collapse
Affiliation(s)
- Ghina Harika-Germaneau
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Issa Wassouf
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France.,Centre Hospitalier Nord Deux-Sèvres, Service de Psychiatrie Adulte, Thouars, France
| | - Tom Le Tutour
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France
| | - Remy Guillevin
- CHU de Poitiers, Service de Radiologie, Poitiers, France.,Laboratoire Dactim Mis, LMA, UMR CNRS 7348, Poitiers, France
| | - Damien Doolub
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran.,Atieh Clinical Neuroscience Centre, Tehran, Iran
| | - Alexia Delbreil
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France.,CHU Poitiers, Service de Médecine Légale, Poitiers, France
| | - Nicolas Langbour
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Nematollah Jaafari
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| |
Collapse
|
29
|
Chu SH, Parhi KK, Westlund Schreiner M, Lenglet C, Mueller BA, Klimes-Dougan B, Cullen KR. Effect of SSRIs on Resting-State Functional Brain Networks in Adolescents with Major Depressive Disorder. J Clin Med 2021; 10:jcm10194322. [PMID: 34640340 PMCID: PMC8509847 DOI: 10.3390/jcm10194322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Investigation of brain changes in functional connectivity and functional network topology from receiving 8-week selective serotonin reuptake inhibitor (SSRI) treatments is conducted in 12 unmedicated adolescents with major depressive disorder (MDD) by using wavelet-filtered resting-state functional magnetic resonance imaging (fMRI). Changes are observed in frontal-limbic, temporal, and default mode networks. In particular, topological analysis shows, at the global scale and in the 0.12–0.25 Hz band, that the normalized clustering coefficient and smallworldness of brain networks decreased after treatment. Regional changes in clustering coefficient and efficiency were observed in the bilateral caudal middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus, left pars triangularis, putamen, and right superior frontal gyrus. Furthermore, changes of nodal centrality and changes of connectivity associated with these frontal and temporal regions confirm the global topological alternations. Moreover, frequency dependence is observed from FDR-controlled subnetworks for the limbic-cortical connectivity change. In the high-frequency band, the altered connections involve mostly frontal regions, while the altered connections in the low-frequency bands spread to parietal and temporal areas. Due to the limitation of small sample sizes and lack of placebo control, these preliminary findings require confirmation with future work using larger samples. Confirmation of biomarkers associated with treatment could suggest potential avenues for clinical applications such as tracking treatment response and neurobiologically informed treatment optimization.
Collapse
Affiliation(s)
- Shu-Hsien Chu
- Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (S.-H.C.); (K.K.P.); (C.L.)
| | - Keshab K. Parhi
- Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (S.-H.C.); (K.K.P.); (C.L.)
| | - Melinda Westlund Schreiner
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA;
| | - Christophe Lenglet
- Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (S.-H.C.); (K.K.P.); (C.L.)
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
| | | | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
- Correspondence:
| |
Collapse
|
30
|
Williams RJ, Brown EC, Clark DL, Pike GB, Ramasubbu R. Early post-treatment blood oxygenation level-dependent responses to emotion processing associated with clinical response to pharmacological treatment in major depressive disorder. Brain Behav 2021; 11:e2287. [PMID: 34333866 PMCID: PMC8413787 DOI: 10.1002/brb3.2287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Pre-treatment blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been used for the early identification of patients with major depressive disorder (MDD) who later respond or fail to respond to medication. However, BOLD responses early after treatment initiation may offer insight into early neural changes associated with later clinical response. The present study evaluated both pre-treatment and early post-treatment fMRI responses to an emotion processing task, to further our understanding of neural changes associated with a successful response to pharmacological intervention. METHODS MDD patients who responded (n = 22) and failed to respond (n = 12) after 8 weeks of treatment with either citalopram or quetiapine extended release, and healthy controls (n = 18) underwent two fMRI scans, baseline (pre-treatment), and early post-treatment (one week after treatment commencement). Participants completed an emotional face matching task at both scans. RESULTS Using threshold-free cluster enhancement (TFCE) and non-parametric permutation testing, fMRI activation maps showed that after one week of treatment, responders demonstrated increased activation in the left parietal lobule, precentral gyrus, and bilateral insula (all P < 0.05 threshold-free cluster enhancement (TFCE) family-wise error-corrected) to negative facial expressions. Non-responders showed some small increases in the precentral gyrus, while controls showed no differences between scans. Compared to non-responders, responders showed some increased activation in the superior parietal lobule and middle temporal gyrus at the post-treatment scan. There were no group differences between responders, non-responders, and controls at baseline. CONCLUSIONS One week after treatment commencement, BOLD signal changes in the parietal lobules, insula, and middle temporal gyrus were related to clinical response to pharmacological treatment.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Lebel CA, Gibbard WB, Tortorelli C, Pei J, Beaulieu C, Bagshawe M, McMorris CA. Prenatal Exposure And Child brain and mental Health (PEACH) study: protocol for a cohort study of children and youth with prenatal alcohol exposure. BMJ Open 2021; 11:e051660. [PMID: 33980537 PMCID: PMC8118071 DOI: 10.1136/bmjopen-2021-051660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Fetal alcohol spectrum disorder (FASD), which is caused by prenatal alcohol exposure (PAE), affects an estimated 4% of North Americans, and is the most common preventable cause of intellectual disability. Mental health problems, including anxiety and depression, are experienced by nearly all individuals with FASD. However, there is very limited knowledge about effective mental health treatments for individuals with FASD; effective treatments are hindered in part due to a lack of understanding of the basic neurobiology underlying internalising disorders in youth with FASD. METHODS AND ANALYSIS The Prenatal Exposure And Child brain and mental Health (PEACH) study includes children aged 7-18 years. We will use longitudinal neuroimaging (anatomical T1-weighted, diffusion and passive viewing function MRI) and mental health assessments (Behaviour Assessment Scale for Children, Multi-dimensional Anxiety Scale for Children, Children's Depression Inventory (CDI-2), Kiddie Scale of Affective Disorders) to: (1) characterise brain development trajectories in youth with FASD, (2) determine whether brain alterations mediate increased anxiety and depression in youth with FASD and (3) identify baseline brain features that predict changes of anxiety and depression symptoms over the next 2 years. All of this will be done while considering sex and adverse postnatal experiences, which can significantly impact mental health and brain outcomes. This project will forge new understanding of FASD and mental health from a neurobiological perspective, highlighting key time periods (ie, sensitive windows) and brain regions (ie, that may be susceptible to neurostimulation), while identifying factors that predict individual trajectories of anxiety and depression symptoms. ETHICS AND DISSEMINATION This study was approved by the University of Calgary Conjoint Health Research Ethics Board and the University of Alberta Health Research Ethics Board. Study results will be disseminated in peer-reviewed journals, at relevant conferences and in conjunction with our knowledge mobilisation partners.
Collapse
Affiliation(s)
- Catherine A Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | | | - Jacqueline Pei
- Faculty of Education, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mercedes Bagshawe
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Carly A McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Intrinsic reward circuit connectivity profiles underlying symptom and quality of life outcomes following antidepressant medication: a report from the iSPOT-D trial. Neuropsychopharmacology 2021; 46:809-819. [PMID: 33230268 PMCID: PMC8027440 DOI: 10.1038/s41386-020-00905-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
There is a critical need to better understand the neural basis of antidepressant medication (ADM) response with respect to both symptom alleviation and quality of life (QoL) in major depressive disorder (MDD). Reward neurocircuitry has been implicated in QoL, the neural basis of MDD, and the mechanisms of ADM response. Yet, we do not know whether change in reward neurocircuitry as a function of ADM is associated with change in symptoms and QoL. To address this gap in knowledge, we analyzed data from 128 patients with MDD who participated in the iSPOT-D trial and were assessed with functional neuroimaging pre- and post-ADM treatment (randomized to sertraline, venlafaxine-XR, or escitalopram). 58 matched healthy controls were scanned at the same time points. We quantified functional connectivity (FC) of reward neurocircuitry using nucleus accumbens (NAc) seed regions of interest, and then characterized how changes in FC relate to symptom response (primary outcome) and QoL response (secondary outcome). Symptom responders showed an increase in NAc-dorsal anterior cingulate cortex (ACC) FC relative to non-responders (p < 0.001) which was associated with improvement in physical QoL (p < 0.0003), and a decrease in NAc-inferior parietal lobule FC relative to controls (p < 0.001). QoL response was characterized by increases in FC between NAc-ventral ACC for environmental, NAc-thalamus for physical, and NAc-paracingulate gyrus for social domains (p < 0.001). Symptom responders to sertraline were distinguished by a decrease in NAc-insula FC (p < 0.001) and to venlafaxine-XR by an increase in NAc-inferior temporal gyrus FC (p < 0.005). Findings suggest that change in reward neurocircuitry may underlie differential ADM response profiles with respect to symptoms and QoL in depression.
Collapse
|
34
|
Herrera-Melendez A, Stippl A, Aust S, Scheidegger M, Seifritz E, Heuser-Collier I, Otte C, Bajbouj M, Grimm S, Gärtner M. Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 2021; 43:63-70. [PMID: 33309459 DOI: 10.1016/j.euroneuro.2020.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Ketamine was recently approved for treatment resistant depression. However, despite its therapeutic potential, about 50% of patients do not show improvement under this therapy. In this prospective two-site study, we investigated baseline brain structural predictors for rapid symptom improvement after a single subanesthetic ketamine infusion. Furthermore, given the preclinical evidence and findings from a pilot study in a clinical population that ketamine induces rapid neuroplasticity, we performed an exploratory investigation of macroscopic changes 24 h post-treatment. T1-weighted MRI brain images from 33 depressed patients were acquired before and 24 h after a single ketamine infusion and analyzed using voxel-based morphometry (VBM). Additionally, we performed a region of interest (ROI)-based analysis of structures that have previously been shown to play a role in the antidepressant effects of ketamine: bilateral hippocampus, nucleus accumbens, anterior cingulate cortex, and thalamus. A whole-brain regression analysis showed that greater baseline volume of the bilateral rostral anterior cingulate cortex (rACC) significantly predicts rapid symptom reduction. The right ACC showed the same association in the ROI analysis, while the other regions yielded no significant results. Exploratory follow-up analyses revealed no volumetric changes 24 h after treatment. This is the first study reporting an association between pretreatment gray matter volume of the bilateral rACC and the rapid antidepressant effects of ketamine. Results are in line with previous investigations, which highlighted the potential of the rACC as a biomarker for response prediction to different antidepressant treatments. Ketamine-induced volumetric changes may be seen at later time points.
Collapse
Affiliation(s)
- Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Isabella Heuser-Collier
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Matti Gärtner
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany
| |
Collapse
|
35
|
Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Res Neuroimaging 2020; 305:111158. [PMID: 32889511 DOI: 10.1016/j.pscychresns.2020.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
An identification of precise biomarkers contributing to poor outcome of a major depressive episode (MDE) has the potential to improve therapeutic strategies by reducing time to symptomatic relief. In a cross-sectional volumetric study with a 6 month clinical follow-up, we performed baseline brain grey matter volume analysis between 2 groups based on illness improvement: 27 MDD patients in the "responder" (R) group (Clinical Global Impression- Improvement (CGI-I) score ≤ 2) and 30 in the "non-responder" (NR) group (CGI-I > 2), using a Voxel Based-Morphometry analysis. NR had significantly smaller Grey Matter (GM) volume in the bilateral thalami, in precentral gyrus, middle temporal gyrus, precuneus and middle cingulum compared to R at baseline. Additionally, they exhibited significant greater GM volume increase in the left anterior lobe of cerebellum and posterior cingulate cortex. The latter result was not significant when participants with bipolar disorder were excluded from the analysis. NR group had higher baseline anxiety scores. Our study has pointed out the role of thalamus in prognosis of MDE. These findings highlight the involvement of emotion regulation in the outcome of MDE. The present study provides a step towards the understanding of neurobiological processes of treatment resistant depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France.
| | - J Coloigner
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - M Soulas
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| | - C Barillot
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| |
Collapse
|
36
|
Fournier JC, Roberts NJ, Ford KL. Personality and psychopathology: In defense of a practical path toward integrating psychometric and biological approaches to advance a comprehensive model. J Pers 2020; 90:61-74. [PMID: 33135156 DOI: 10.1111/jopy.12605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Personality and psychopathology each reflect patterns of internal experience and outward behavior that differ between people and affect functioning. Drawing strict distinctions between the two concepts is not only difficult, but it may prove unnecessary for advancing an integrated model of psychological experiences associated with mental illness. We argue that developing such a model will be critical for improving treatment outcomes, and we discuss a practical path forward. Proponents of psychometric approaches to developing models of psychological experience focus on observable phenotypes and utilize statistical methods to describe patterns of covariation among a broad range of symptoms and dispositions. Advocates of biologically based approaches emphasize neuroscientific tools for identifying abnormalities in brain function that give rise to an individual's experience. There is substantial evidence that measures of personality and measures of symptoms capture nonoverlapping, clinically important information for understanding how and for whom treatments for mental illness work. In this article, we highlight the importance of combining psychometric and neurobiological approaches in order to understand which features of an individual those measures reflect, which aspects of neurobiology generate and maintain those features, how they relate to each other, and critically, how best to alter them to reduce distress and dysfunction.
Collapse
Affiliation(s)
- Jay C Fournier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole J Roberts
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katy Lauren Ford
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Kwak S, Kim M, Kim T, Kwak Y, Oh S, Lho SK, Moon SY, Lee TY, Kwon JS. Defining data-driven subgroups of obsessive-compulsive disorder with different treatment responses based on resting-state functional connectivity. Transl Psychiatry 2020; 10:359. [PMID: 33106472 PMCID: PMC7589530 DOI: 10.1038/s41398-020-01045-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Characterization of obsessive-compulsive disorder (OCD), like other psychiatric disorders, suffers from heterogeneities in its symptoms and therapeutic responses, and identification of more homogeneous subgroups may help to resolve the heterogeneity. We aimed to identify the OCD subgroups based on resting-state functional connectivity (rsFC) and to explore their differences in treatment responses via a multivariate approach. From the resting-state functional MRI data of 107 medication-free OCD patients and 110 healthy controls (HCs), we selected rsFC features, which discriminated OCD patients from HCs via support vector machine (SVM) analyses. With the selected brain features, we subdivided OCD patients into subgroups using hierarchical clustering analyses. We identified 35 rsFC features that achieved a high sensitivity (82.74%) and specificity (76.29%) in SVM analyses. The OCD patients were subdivided into two subgroups, which did not show significant differences in their demographic and clinical backgrounds. However, one of the OCD subgroups demonstrated more impaired rsFC that was involved either within the default mode network (DMN) or between DMN brain regions and other network regions. This subgroup also showed both lower improvements in symptom severity in the 16-week follow-up visit and lower responder percentage than the other subgroup. Our results highlight that not only abnormalities within the DMN but also aberrant rsFC between the DMN and other networks may contribute to the treatment response and support the importance of these neurobiological alterations in OCD patients. We suggest that abnormalities in these connectivity may play predictive biomarkers of treatment response, and aid to build more optimal treatment strategies.
Collapse
Affiliation(s)
- Seoyeon Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yoobin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sanghoon Oh
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Ang YS, Kaiser R, Deckersbach T, Almeida J, Phillips ML, Chase HW, Webb CA, Parsey R, Fava M, McGrath P, Weissman M, Adams P, Deldin P, Oquendo MA, McInnis MG, Carmody T, Bruder G, Cooper CM, Fatt CRC, Trivedi MH, Pizzagalli DA. Pretreatment Reward Sensitivity and Frontostriatal Resting-State Functional Connectivity Are Associated With Response to Bupropion After Sertraline Nonresponse. Biol Psychiatry 2020; 88:657-667. [PMID: 32507389 PMCID: PMC7529779 DOI: 10.1016/j.biopsych.2020.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Standard guidelines recommend selective serotonin reuptake inhibitors as first-line antidepressants for adults with major depressive disorder, but success is limited and patients who fail to benefit are often switched to non-selective serotonin reuptake inhibitor agents. This study investigated whether brain- and behavior-based markers of reward processing might be associated with response to bupropion after sertraline nonresponse. METHODS In a two-stage, double-blinded clinical trial, 296 participants were randomized to receive 8 weeks of sertraline or placebo in stage 1. Individuals who responded continued on another 8-week course of the same intervention in stage 2, while sertraline and placebo nonresponders crossed over to bupropion and sertraline, respectively. Data from 241 participants were analyzed. The stage 2 sample comprised 87 patients with major depressive disorder who switched medication and 38 healthy control subjects. A total of 116 participants with major depressive disorder treated with sertraline in stage 1 served as an independent replication sample. The probabilistic reward task and resting-state functional magnetic resonance imaging were administered at baseline. RESULTS Greater pretreatment reward sensitivity and higher resting-state functional connectivity between bilateral nucleus accumbens and rostral anterior cingulate cortex were associated with positive response to bupropion but not sertraline. Null findings for sertraline were replicated in the stage 1 sample. CONCLUSIONS Pretreatment reward sensitivity and frontostriatal connectivity may identify patients likely to benefit from bupropion following selective serotonin reuptake inhibitor failures. Results call for a prospective replication based on these biomarkers to advance clinical care.
Collapse
Affiliation(s)
- Yuen-Siang Ang
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Roselinde Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80302
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Jorge Almeida
- Department of Psychiatry, University of Texas at Austin, Dell Medical School, 1601 Trinity St., Austin, TX 78712
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, 3811 O’Hara St, Pittsburgh, PA 15213
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh, 3811 O’Hara St, Pittsburgh, PA 15213
| | - Christian A. Webb
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Ramin Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, 100 Nicolls Road, Stony Brook, NY 11794
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Patrick McGrath
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Myrna Weissman
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Phil Adams
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Patricia Deldin
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Maria A. Oquendo
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Thomas Carmody
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Gerard Bruder
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Crystal M. Cooper
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Cherise R. Chin Fatt
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Madhukar H. Trivedi
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
39
|
Bryant RA, Erlinger M, Felmingham K, Malhi GS, O'Donnell ML, Williams LM, Korgaonkar MS. Differential neural predictors of treatment response for fear and dysphoric features of posttraumatic stress disorder. Depress Anxiety 2020; 37:1026-1036. [PMID: 32579790 DOI: 10.1002/da.23061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although trauma-focused cognitive behavioral therapy (TF-CBT) is the frontline treatment for posttraumatic stress disorder (PTSD), at least one-third of patients are treatment nonresponders. This study aimed to identify neural markers of treatment response, specifically the prediction of remission of specific PTSD symptoms. METHODS This study assessed PTSD treatment-seeking patients (n = 40) before TF-CBT during functional magnetic brain resonance imaging (fMRI) when they processed fearful, sad, happy, and neutral faces. Patients underwent nine sessions of TF-CBT and were independently assessed on the Clinician-Administered PTSD Scale (CAPS) following treatment. Treatment responders and nonresponders were compared with healthy controls (n = 40). The severity of PTSD was assessed with the CAPS. fMRI responses were calculated for each emotion face compared to neutral contrast, which were correlated with reduction in PTSD severity from pretreatment to posttreatment. Treatment response was categorized by at least 50% reduction in the severity of PTSD. RESULTS The activation of left insula during the processing of both sad and fearful faces was associated with a greater reduction of fear but not with dysphoric symptoms after treatment. Connectivity of the left insula to the pregenual anterior cingulate cortex was associated with poorer response to treatment. Responders and controllers had similar levels of activation and connectivity and were different from nonresponders. CONCLUSIONS Positive response to TF-CBT is predicted during emotion processing by normal levels of recruitment of neural networks implicated in emotional information. These findings suggest that distinct neural networks are predictive of PTSD fear and dysphoric symptom reduction following TF-CBT.
Collapse
Affiliation(s)
- Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, Australia.,Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - May Erlinger
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Kim Felmingham
- Discipline of Psychological Science, University of Melbourne, Melbourne, Australia
| | - Gin S Malhi
- Department of Psychiatry, University of Sydney, Sydney, Australia
| | - Meaghan L O'Donnell
- Phoenix Australia Centre for Posttraumatic Mental Health, University of Melbourne, Melbourne, Australia
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), VA Palo Alto Health Care System, Livermore, California
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.,Faculty of Medicine and Health, School of Health Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Functional connectivity of the prefrontal cortex and amygdala is related to depression status in major depressive disorder. J Affect Disord 2020; 274:897-902. [PMID: 32664030 DOI: 10.1016/j.jad.2020.05.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We used resting-state functional magnetic resonance imaging to examine possible amygdala-prefrontal cortex functional connectivity abnormalities and to clarify the correlation of the abnormal connectivity with response to antidepressant medications. METHODS We recruited 40 drug-naïve patients with first-episode depression, had a 17-item Hamilton Rating Scale for Depression (HRSD17) score>17 for participation in a magnetic resonance imaging scan. Remission was defined as an HRSD17 score <7 following 8 weeks of fluoxetine antidepressant treatment. Gender- and age-matched healthy subjects (n = 26) also underwent MRI scanning. Finally, the association between the change in HRSD17 scores and a change in connectivity between the amygdala and prefrontal cortex from pre to post-treatment was evaluated in major depressive disorder (MDD). RESULTS After controlling for age, gender and years of education, a statistically significant increase in functional connectivity to the right prefrontal cortex from the amygdala was observed in the MDD group compared with the healthy control group (p<0.05, corrected). After 8 weeks of antidepressant treatment and remission in the MDD group, a significant decrease in functional connectivity to the right prefrontal cortex and the left prefrontal cortex from the amygdala was observed, compared with the level of connectivity in the drug-naïve MDD group(p<0.05,corrected). There were no significant associations between the difference in HRSD17 scores rMDD and fMDD with the change in connectivity. LIMITATIONS The design of this study lack resistance to treatment for the depressed group. CONCLUSIONS Increased functional connectivity of PFC-AMY is a promise to be a biomarker of MDD, however weather it could be a biomarker of fluoxetine treatment needs future studying.
Collapse
|
41
|
Vandermeer MRJ, Liu P, Mohamed Ali O, Daoust AR, Joanisse MF, Barch DM, Hayden EP. Orbitofrontal cortex grey matter volume is related to children's depressive symptoms. Neuroimage Clin 2020; 28:102395. [PMID: 32889399 PMCID: PMC7479290 DOI: 10.1016/j.nicl.2020.102395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Adults with a history of depression show distinct patterns of grey matter volume (GMV) in frontal cortical (e.g., prefrontal cortex, orbitofrontal cortex) and limbic (e.g., anterior cingulate, amygdala, hippocampus, dorsal striatum) structures, regions relevant to the processing and regulation of reward, which is impaired in the context of depression. However, it is unclear whether these GMV associations with depression precede depressive disorder onset or whether GMV is related to early emerging symptoms or familial depression. To address these questions, we used voxel-based morphometry (VBM) to examine GMV in 85 community-dwelling children (M = 11.12 years, SD = 0.63 years) screened for current and lifetime depression. Associations between children's depressive symptoms (self- and mother-report of children's symptoms), children's maternal depression history, and GMV were examined. Although maternal depression history was unrelated to children's GMV, child GMV in the orbitofrontal cortex (OFC) was negatively related to children's self-reported depressive symptoms, using both a priori ROI and whole-brain analyses. Moderated regression analyses indicated that girls' GMV was negatively related to girls' depressive symptoms (as indexed by both self- and mother-report of girls' symptoms), whereas boys' symptoms were positively related to GMV. Our findings suggest that brain morphology in the OFC, a region with functional roles in processes relevant to depressive symptoms (i.e., reward-based learning and reward processing), is associated with early depressive symptoms prior to the development of clinically significant depression.
Collapse
Affiliation(s)
- Matthew R J Vandermeer
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Pan Liu
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Ola Mohamed Ali
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Andrew R Daoust
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Marc F Joanisse
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, 4444 Forest Park Avenue, Suite 2100, St. Louis, MO, USA; Department of Psychology, Washington University, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth P Hayden
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| |
Collapse
|
42
|
Kim ES, Kim HE, Kim JJ. The neural influence of autobiographical memory related to the parent-child relationship on psychological health in adulthood. PLoS One 2020; 15:e0231592. [PMID: 32282812 PMCID: PMC7153857 DOI: 10.1371/journal.pone.0231592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
The recollection of childhood memories is affected by the subjects involved, such as father and mother, and by the context. This study aimed to clarify the neural influence of autobiographical memory related to the parent-child relationship on psychological health in adulthood. Twenty-nine healthy volunteers participated in a functional magnetic resonance imaging experiment using a childhood memory recollection task, in which they appraised the emotion a parent would have provided in a given situation. Whole-brain univariate and psychophysiological interaction analyses were performed. Neuroimaging results indicated notable involvement of the caudal anterior cingulate cortex and precuneus in autobiographical memory related to the parent-child relationship, and their activities were closely associated with the level of depression and self-esteem, respectively. The functional connectivity results indicated increased connectivity between the caudal anterior cingulate cortex and fusiform gyrus for the father-positive condition compared to the mother-positive condition and there was a positive correlation between the strength of connectivity between the two regions and the anxiety level. Our findings suggest the processing of negative affect and the personalness of autobiographical memories are distinctly engaged depending on the parent in question and the situational valence. The present study illuminates the impact of autobiographical memory processes on various dimensions of psychological health.
Collapse
Affiliation(s)
- Eun Seong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Occupational Therapy, Chunnam Techno University, Gokseong, Republic of Korea
| | - Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
43
|
Campbell SB, Trachik B, Goldberg S, Simpson TL. Identifying PTSD symptom typologies: A latent class analysis. Psychiatry Res 2020; 285:112779. [PMID: 31983505 DOI: 10.1016/j.psychres.2020.112779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by re-experiencing, avoidance, negative alterations in cognition and mood, and arousal symptoms per the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5). While numerous symptom combinations are possible to meet diagnostic criteria, simplification of this heterogeneity of symptom presentations may have clinical utility. In a nationally representative sample of American adults with lifetime DSM-5 PTSD diagnoses from the third wave of the National Epidemiologic Survey on Alcohol and Related Conditions (n = 2,365), we used Latent Class Analysis (LCA) to identify qualitatively distinct PTSD symptom typologies. Subsequently, we used linear and logistic regressions to identify demographic, trauma-related, and psychiatric characteristics associated with membership in each class. In contrast to prior LCAs with DSM-IV-TR diagnostic criteria, fit indices for the present analyses of DSM-5 PTSD revealed a four-class solution to the data: Dysphoric (23.8%), Threat-Reactivity (26.1%), High Symptom (33.7%), and Low Symptom (16.3%). Exploratory analyses revealed distinctions between classes in socioeconomic impairment, trauma exposure, comorbid diagnoses, and demographic characteristics. Although the study is limited by its cross-sectional design (preventing analysis of temporal associations or causal pathways between covariates and latent classes), findings may support efforts to develop personalized medicine approaches to PTSD diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah B Campbell
- VA Puget Sound Health Care System - Seattle Division, 1660 S. Columbian Way, Seattle WA, 98108, United States; University of Washington Department of Health Services, 1959 NE Pacific St, Magnuson Health Sciences Center, Room H-680, Box 357660, Seattle, WA, 98195-7660.
| | - Benjamin Trachik
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA.
| | - Simon Goldberg
- Department of Counseling Psychology, University of Wisconsin - Madison, Madison, WI, USA; Center for Healthy Minds, University of Wisconsin - Madison, Madison, WI, USA.
| | - Tracy L Simpson
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA; University of Washington Department of Psychiatry and Behavioral Sciences, 1959 NE Pacific Street, Box 356560, Room BB1644, Seattle, WA 98195-6560.
| |
Collapse
|
44
|
Abedi-Firouzjah R, Rostamzadeh A, Banaei A, Shafiee M, Moghaddam ZM, Vafapour H. Exploring Changes in Thalamus Metabolites as Diagnostic Biomarkers in Idiopathic Generalised Epilepsy Patients Using Magnetic Resonance Spectroscopy. Malays J Med Sci 2020; 27:78-86. [PMID: 32158347 PMCID: PMC7053553 DOI: 10.21315/mjms2020.27.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Idiopathic generalised epilepsy (IGE) refers to a group of epilepsies resulting from the activation of neurons in the whole brain. This study aimed to evaluate the metabolite changes in thalamus as diagnostic biomarkers in IGE patients compared to healthy individuals using magnetic resonance spectroscopy (MRS) technique. Methods The MRS was performed on 35 IGE patients (26 women and 11 men) with average age of 32 (ranged from 18 to 43) and 35 healthy individuals (13 women and 22 men) with average age of 31 (ranged from 21 to 50) as the control group. The levels of N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) were measured using MRS. The NAA/Cr and NAA/Cho ratios were calculated for all participants. These values were statistically compared using t-test between the groups. Results The NAA had significant lower values in IGE patients, 9.6 (SD = 0.8) and 9.9 (SD = 0.7) for right and left thalamus, respectively, compared to 10.9 (SD = 0.9) and 10.7 (SD = 0.9) in control group. The Cr values in the left side of thalamus were significantly higher in IGE patients (6.7 [SD = 0.8] versus 5.8 [SD = 0.5]); however, there was no difference in right thalamus. Measurements showed no difference for amounts of Cho between the groups in both sides of thalamus. The NAA/Cr ratio was 1.48 (SD = 0.14) and 1.48 (SD = 0.16) for right and left thalamus, respectively, in IGE patients in comparison with 1.83 (SD = 0.2) and 1.86 (SD = 0.26) in controls. There was no meaningful variation between the NAA/Cho ratio of the right and left thalamus among the groups. Conclusion Thalamic NAA, Cr and NAA/Cr ratio values in IGE patients showed statistical differences compared to healthy individuals. Evaluating metabolites variations in thalamus using MRS is suggested for differentiating IGE patients from healthy individuals.
Collapse
Affiliation(s)
| | - Ayoob Rostamzadeh
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Radiology, Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Shafiee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zafar Masoumi Moghaddam
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hassan Vafapour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
45
|
Touroutoglou A, Andreano J, Dickerson BC, Barrett LF. The tenacious brain: How the anterior mid-cingulate contributes to achieving goals. Cortex 2020; 123:12-29. [PMID: 31733343 PMCID: PMC7381101 DOI: 10.1016/j.cortex.2019.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/20/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022]
Abstract
Tenacity-persistence in the face of challenge-has received increasing attention, particularly because it contributes to better academic achievement, career opportunities and health outcomes. We review evidence from non-human primate neuroanatomy and structural and functional neuroimaging in humans suggesting that the anterior mid cingulate cortex (aMCC) is an important network hub in the brain that performs the cost/benefit computations necessary for tenacity. Specifically, we propose that its position as a structural and functional hub allows the aMCC to integrate signals from diverse brain systems to predict energy requirements that are needed for attention allocation, encoding of new information, and physical movement, all in the service of goal attainment. We review and integrate research findings from studies of attention, reward, memory, affect, multimodal sensory integration, and motor control to support this hypothesis. We close by discussing the implications of our framework for educational achievement, exercise and eating disorders, successful aging, and neuropsychiatric disorders such as depression and dementia.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Joseph Andreano
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Northeastern University, Department of Psychology, Boston, MA, USA
| |
Collapse
|
46
|
Nakano T, Takamura M, Ichikawa N, Okada G, Okamoto Y, Yamada M, Suhara T, Yamawaki S, Yoshimoto J. Enhancing Multi-Center Generalization of Machine Learning-Based Depression Diagnosis From Resting-State fMRI. Front Psychiatry 2020; 11:400. [PMID: 32547427 PMCID: PMC7270328 DOI: 10.3389/fpsyt.2020.00400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/20/2020] [Indexed: 02/04/2023] Open
Abstract
Resting-state fMRI has the potential to help doctors detect abnormal behavior in brain activity and to diagnose patients with depression. However, resting-state fMRI has a bias depending on the scanner site, which makes it difficult to diagnose depression at a new site. In this paper, we propose methods to improve the performance of the diagnosis of major depressive disorder (MDD) at an independent site by reducing the site bias effects using regression. For this, we used a subgroup of healthy subjects of the independent site to regress out site bias. We further improved the classification performance of patients with depression by focusing on melancholic depressive disorder. Our proposed methods would be useful to apply depression classifiers to subjects at completely new sites.
Collapse
Affiliation(s)
- Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Yamada
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
47
|
Enneking V, Leehr EJ, Dannlowski U, Redlich R. Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies. Psychol Med 2020; 50:187-209. [PMID: 31858931 DOI: 10.1017/s0033291719003660] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antidepressive pharmacotherapy (AD), electroconvulsive therapy (ECT) and cognitive behavioural therapy (CBT) are effective treatments for major depressive disorder. With our review, we aim to provide a systematic overview of neuroimaging studies that investigate the effects of AD, ECT and CBT on brain grey matter volume (GMV) and biomarkers associated with response. After a systematic database research on PubMed, we included 50 studies using magnetic resonance imaging and investigating (1) changes in GMV, (2) pre-treatment GMV biomarkers associated with response, or (3) the accuracy of predictions of response to AD, ECT or CBT based on baseline GMV data. The strongest evidence for brain structural changes was found for ECT, showing volume increases within the temporal lobe and subcortical structures - such as the hippocampus-amygdala complex, anterior cingulate cortex (ACC) and striatum. For AD, the evidence is heterogeneous as only 4 of 11 studies reported significant changes in GMV. The results are not sufficient in order to draw conclusions about the structural brain effects of CBT. The findings show consistently that higher pre-treatment ACC volume is associated with response to AD, ECT and CBT. An association of higher pre-treatment hippocampal volume and response has only been reported for AD. Machine learning approaches based on pre-treatment whole brain patterns reach accuracies of 64-90% for predictions of AD or ECT response on the individual patient level. The findings underline the potential of brain biomarkers for the implementation in clinical practice as an additive feature within the process of treatment selection.
Collapse
Affiliation(s)
- Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
48
|
Preuss A, Bolliger B, Schicho W, Hättenschwiler J, Seifritz E, Brühl AB, Herwig U. SSRI Treatment Response Prediction in Depression Based on Brain Activation by Emotional Stimuli. Front Psychiatry 2020; 11:538393. [PMID: 33281635 PMCID: PMC7691246 DOI: 10.3389/fpsyt.2020.538393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: The prediction of antidepressant treatment response may improve outcome. Functional magnetic resonance imaging (fMRI) of emotion processing in major depressive disorder (MDD) may reveal regional brain function serving as predictors of response to treatment with selective serotonin reuptake inhibitor (SSRI). Methods: We examined the association between pre-treatment neural activity by means of fMRI during the perception of emotional stimuli in 22 patients with MDD and the treatment outcome after 6 weeks' medication with an SSRI. A whole brain correlation analysis with Beck Depression Inventory (BDI) change between pre- to post-treatment was conducted to identify neural regions associated with treatment response. Results: During the perception of positive stimuli, responders were characterized by more activation in posterior cingulate cortex (PCC), medial prefrontal cortex, and thalamus as well as middle temporal gyrus. During perception of negative stimuli, PCC, and pregenual anterior cingulate cortex showed the highest correlation with treatment response. Furthermore, responders exhibited higher activation to emotional stimuli than to neutral stimuli in all the above-mentioned regions, while non-responders demonstrated an attenuated neural response to emotional compared to neutral stimuli. Conclusion: Our data suggest that the activity of distinct brain regions is correlated with SSRI treatment outcome and may serve as treatment response predictor. While some regions, in which activity was correlated with treatment response, can be assigned to networks that have been implied in the pathophysiology of depression, most of our regions of interest could also be matched to the default mode network (DMN). Higher DMN activity has been associated with increased rumination as well as negative self-referential processing in previous studies. This may suggest our responders to SSRI to be characterized by such dysregulations and that SSRIs might modify the function associated with this network.
Collapse
Affiliation(s)
- Antonia Preuss
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland.,Clinic for Psychiatry and Psychotherapy Clienia, Oetwil am See, Switzerland
| | - Bianca Bolliger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland
| | - Wenzel Schicho
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland
| | - Josef Hättenschwiler
- Center for Treatment of Anxiety and Affection Disorder Zentrum für Angst- und Depressionsbehandlung Zürich (ZADZ), Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland
| | - Annette Beatrix Brühl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland
| | - Uwe Herwig
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich, Switzerland.,Center for Psychiatry Reichenau, Academic Hospital University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Hamann C, Rusterholz T, Studer M, Kaess M, Tarokh L. Association between depressive symptoms and sleep neurophysiology in early adolescence. J Child Psychol Psychiatry 2019; 60:1334-1342. [PMID: 31512761 DOI: 10.1111/jcpp.13088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depression is highly prevalent among adolescents, and depressive symptoms rise rapidly during early adolescence. Depression is often accompanied by subjective sleep complaints and alterations in sleep neurophysiology. In this study, we examine whether depressive symptoms, measured on a continuum, are associated with subjective and objective (sleep architecture and neurophysiology) measures of sleep in early adolescence. METHODS High-density sleep EEG, actigraphy, and self-reported sleep were measured in 52 early adolescents (12.31 years; SD: 1.121; 25 female). Depressive symptoms were measured on a continuum using the Center for Epidemiological Studies Depression Scale (CES-D). The association between depressive symptoms and 2 weeks of actigraphy, self-reported sleep, sleep architecture, and sleep neurophysiology (slow wave activity and sigma power) was determined via multiple linear regression with factors age, sex, and pubertal status. RESULTS Despite no association between polysomnography measures of sleep quality and depressive symptoms, individuals with more depressive symptoms manifested worse actigraphically measured sleep. Less sleep spindle activity, as reflected in nonrapid eye movement sleep sigma power, was associated with more depressive symptoms over a large cluster encompassing temporal, parietal, and occipital regions. Furthermore, worse subjectively reported sleep quality was also associated with less sigma power over these same areas. Puberty, age, and sex did not impact this association. CONCLUSIONS Sleep spindles have been hypothesized to protect sleep against environmental disturbances. Thus, diminished spindle power may be a subtle sign of disrupted sleep and its association with depressive symptoms in early adolescence may signal vulnerability for depression.
Collapse
Affiliation(s)
- Christoph Hamann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Martina Studer
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Section for Translational Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Enneking V, Dzvonyar F, Dannlowski U, Redlich R. [Neuronal effects and biomarkers of antidepressant treatments : Current review from the perspective of neuroimaging]. DER NERVENARZT 2019; 90:319-329. [PMID: 30729991 DOI: 10.1007/s00115-019-0675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Depression is one of the most frequent and disabling mental disorders worldwide and is accompanied by a severe impairment in the quality of life. There are numerous imaging studies showing differences in the volume of gray and white brain matter and function between patients suffering from depression and healthy controls. Neuroimaging studies show that pharmacotherapy and electroconvulsive therapy are accompanied by an increase of hippocampal gray matter volume while as a result of psychotherapy activity changes in the anterior cingulate cortex (ACC) have repeatedly been reported. By the identification of neuroanatomical markers, baseline volumes of the ACC have also been shown to be associated with therapy response to all treatments. The identification of such neuronal biomarkers in combination with machine learning techniques provide a promising step towards a neurobiologically based application for the prediction of treatment response.
Collapse
Affiliation(s)
- Verena Enneking
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Fanni Dzvonyar
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Udo Dannlowski
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Ronny Redlich
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland.
| |
Collapse
|