1
|
Wang Y, Yu S, Li M. Neurovascular crosstalk and cerebrovascular alterations: an underestimated therapeutic target in autism spectrum disorders. Front Cell Neurosci 2023; 17:1226580. [PMID: 37692552 PMCID: PMC10491023 DOI: 10.3389/fncel.2023.1226580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Normal brain development, function, and aging critically depend on unique characteristics of the cerebrovascular system. Growing evidence indicated that cerebrovascular defects can have irreversible effects on the brain, and these defects have been implicated in various neurological disorders, including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder with heterogeneous clinical manifestations and anatomical changes. While extensive research has focused on the neural abnormalities underlying ASD, the role of brain vasculature in this disorder remains poorly understood. Indeed, the significance of cerebrovascular contributions to ASD has been consistently underestimated. In this work, we discuss the neurovascular crosstalk during embryonic development and highlight recent findings on cerebrovascular alterations in individuals with ASD. We also discuss the potential of vascular-based therapy for ASD. Collectively, these investigations demonstrate that ASD can be considered a neurovascular disease.
Collapse
Affiliation(s)
- Yiran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shunyu Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Du Y, Chen L, Yan MC, Wang YL, Zhong XL, Xv CX, Li YB, Cheng Y. Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501). Mol Psychiatry 2023; 28:3092-3103. [PMID: 37117459 DOI: 10.1038/s41380-023-02079-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Mei-Chen Yan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yan-Li Wang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Lin Zhong
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chen-Xi Xv
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yao-Bo Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China.
| |
Collapse
|
3
|
Altered Blood Brain Barrier Permeability and Oxidative Stress in Cntnap2 Knockout Rat Model. J Clin Med 2022; 11:jcm11102725. [PMID: 35628852 PMCID: PMC9146766 DOI: 10.3390/jcm11102725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by three core symptoms, specifically impaired social behavior, stereotypic/repetitive behaviors, and sensory/communication deficits. Although the exact pathophysiology of ASD is still unknown, host genetics, oxidative stress, and compromised blood brain barrier (BBB) have been implicated in predisposition to ASD. With regards to genetics, mutations in the genes such as CNTNAP2 have been associated with increased susceptibility of developing ASD. Although some studies observed conflicting results suggesting no association of CNTNAP2 with ASD, other investigations correlated this gene with autism. In addition, CNTNAP2 mediated signaling is generally considered to play a role in neurological disorders due to its critical role in neurodevelopment, neurotransmission, and synaptic plasticity. In this investigation, we studied BBB integrity and oxidative stress in Cntnap2−/− rats. We observed that the BBB permeability was significantly increased in Cntnap2−/− rats compared to littermate wild-type (WT) animals as determined by FITC-dextran and Evans blue assay. High levels of thiobarbituric acid reactive substances and lower amounts of reduced glutathione were observed in brain homogenates of Cntnap2−/− rats, suggesting oxidative stress. Brain sections from Cntnap2−/− rats showed intense inducible nitric oxide synthase immunostaining, which was undetectable in WT animals. Quantification of nitric oxide in brain homogenates revealed significantly high levels in Cntnap2−/− rats compared to the control group. As increased permeability of the BBB and oxidative stress have been observed in ASD individuals, our results suggest that Cntnap2−/− rats have a high construct and face validity and can be explored to develop effective therapeutic modalities.
Collapse
|
4
|
Zhang X, Yu H, Bai R, Ma C. Identification and Characterization of Biomarkers and Their Role in Opioid Addiction by Integrated Bioinformatics Analysis. Front Neurosci 2020; 14:608349. [PMID: 33328875 PMCID: PMC7729193 DOI: 10.3389/fnins.2020.608349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Although numerous studies have confirmed that the mechanisms of opiate addiction include genetic and epigenetic aspects, the results of such studies are inconsistent. Here, we downloaded gene expression profiling information, GSE87823, from the Gene Expression Omnibus database. Samples from males between ages 19 and 35 were selected for analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were used to analyze the pathways associated with the DEGs. We further constructed protein-protein interaction (PPI) networks using the STRING database and used 10 different calculation methods to validate the hub genes. Finally, we utilized the Basic Local Alignment Search Tool (BLAST) to identify the DEG with the highest sequence similarity in mouse and detected the change in expression of the hub genes in this animal model using RT-qPCR. We identified three key genes, ADCY9, PECAM1, and IL4. ADCY9 expression decreased in the nucleus accumbens of opioid-addicted mice compared with control mice, which was consistent with the change seen in humans. The importance and originality of this study are provided by two aspects. Firstly, we used a variety of calculation methods to obtain hub genes; secondly, we exploited homology analysis to solve the difficult challenge that addiction-related experiments cannot be carried out in patients or healthy individuals. In short, this study not only explores potential biomarkers and therapeutic targets of opioid addiction but also provides new ideas for subsequent research on opioid addiction.
Collapse
Affiliation(s)
- Xiuning Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailei Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rui Bai
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
5
|
Reduced levels of circulating adhesion molecules in adolescents with early-onset psychosis. NPJ SCHIZOPHRENIA 2020; 6:20. [PMID: 32811840 PMCID: PMC7434772 DOI: 10.1038/s41537-020-00112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
It is suggested that neurodevelopmental abnormalities are involved in the disease mechanisms of psychotic disorders. Although cellular adhesion molecules (CAMs) participate in neurodevelopment, modulate blood–brain barrier permeability, and facilitate leukocyte migration, findings concerning their systemic levels in adults with psychosis are inconsistent. We examined plasma levels and mRNA expression in peripheral blood mononuclear cells (PBMCs) of selected CAMs in adolescents with early-onset psychosis (EOP) aged 12–18 years (n = 37) and age-matched healthy controls (HC) (n = 68). EOP patients exhibited significantly lower circulating levels of soluble platelet selectin (~−22%) and soluble vascular cell adhesion molecule-1 (~−14%) than HC. We found no significant associations with symptom severity. PSEL mRNA expression was increased in PBMCs of patients and significantly negatively correlated to duration of illness. These findings suggest a role for CAMs in the pathophysiology of psychotic disorders.
Collapse
|
6
|
Wang H, Yin Y, Gong D, Hong L, Wu G, Jiang Q, Wang C, Blinder P, Long S, Han F, Lu Y. Cathepsin B inhibition ameliorates leukocyte-endothelial adhesion in the BTBR mouse model of autism. CNS Neurosci Ther 2019; 25:476-485. [PMID: 30328295 PMCID: PMC6488924 DOI: 10.1111/cns.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Autism spectrum disorder (ASD) is a wide range of neurodevelopmental disorders involving deficits in social interaction and communication. Unfortunately, autism remains a scientific and clinical challenge owing to the lack of understanding the cellular and molecular mechanisms underlying it. This study aimed to investigate the pathophysiological mechanism underlying leukocyte-endothelial adhesion in autism-related neurovascular inflammation. METHODS Male BTBR T+tf/J mice were used as an autism model. The dynamic pattern of leukocyte-endothelial adhesion in mouse cerebral vessels was detected by two-photon laser scanning microscopy (TPLSM). Using FACS, RT-PCR, and Western blotting, we explored the expression of cell adhesion molecules, the mRNA expression of endothelial chemokine, the protein levels of cathepsin B, and inflammatory mediators. RESULTS We found a significant increase in leukocyte-endothelial adhesion in BTBR mice, accompanied by elevated expression of the adhesion molecule neutrophils CD11b and endothelial ICAM-1. Our data further indicate that elevated neutrophil cathepsin B levels contribute to elevated endothelial chemokine CXCL7 levels in BTBR mice. The pharmacological inhibition of cathepsin B reverses the enhanced leukocyte-endothelial adhesion in the cerebral vessels of autistic mice. CONCLUSION Our results revealed the prominent role of cathepsin B in modulating leukocyte-endothelial adhesion during autism-related neurovascular inflammation and identified a promising novel approach for autism treatment.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Carbohydrate and Lipid Metabolism Research, College of Life Science and TechnologyDalian UniversityDalianChina
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yi‐Xuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Dong‐Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Ling‐Juan Hong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Cheng‐Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Pablo Blinder
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School for NeuroscienceTel‐Aviv UniversityTel AvivIsrael
| | - Sen Long
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of Pharmacy, Hangzhou No.7 People's HospitalMental Health Center Zhejiang University school of MedicineHangzhouChina
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Ying‐Mei Lu
- School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
7
|
Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 2018; 726:133664. [PMID: 29966749 DOI: 10.1016/j.neulet.2018.06.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).
Collapse
|
8
|
Hsueh PT, Lin HH, Wang HH, Liu CL, Ni WF, Liu JK, Chang HH, Sun DS, Chen YS, Chen YL. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. GENES BRAIN AND BEHAVIOR 2018; 17:e12479. [PMID: 29656594 DOI: 10.1111/gbb.12479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/27/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring.
Collapse
Affiliation(s)
- P-T Hsueh
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-H Lin
- Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan.,Section of Infectious Disease, Department of Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - H-H Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - C-L Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - W-F Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - J-K Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - H-H Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - D-S Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Y-S Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Y-L Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Gomez-Fernandez A, de la Torre-Aguilar MJ, Gil-Campos M, Flores-Rojas K, Cruz-Rico MD, Martin-Borreguero P, Perez-Navero JL. Children With Autism Spectrum Disorder With Regression Exhibit a Different Profile in Plasma Cytokines and Adhesion Molecules Compared to Children Without Such Regression. Front Pediatr 2018; 6:264. [PMID: 30320048 PMCID: PMC6169449 DOI: 10.3389/fped.2018.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background: In the etiopathogenesis of autism spectrum disorder (ASD), it has been suggested that a proinflammatory condition, as well as an alteration in adhesion molecules in the early stages of neurodevelopment, may play a role in the pathophysiology of the disorder. This study set out to evaluate the plasma levels of certain inflammatory cytokines, adhesion molecules, and growth factors in a sample of pediatric patients with ASD and compare them to the levels in a control group of healthy children. Methods: Fifty-four children (45 males and nine females) aged 2-6, who were diagnosed with ASD, and a control group of 54 typically-developing children of similar ages were selected. The diagnosis of ASD was carried out in accordance with the DSM-5 criteria and the data obtained from a developmental semi-structured clinical interview and the ADOS evaluation test. Additional testing was carried out to identify the children's developmental level and severity of ASD symptomatology. Patients with ASD were further divided into two subgroups based on developmental parameters: ASD children with neurodevelopmental regression (AMR) and ASD children without neurodevelopmental regression (ANMR). Analyses of plasma molecules, such as cathepsin, IL1β, IL6, IL8, MPO, RANTES, MCP, BDNF, PAI NCAM, sICAM, sVCAM and NGF, were performed. Results: Higher levels of NGF were observed in the ASD group compared with the levels in the control group (p < 0.05). However, in the analysis of the ASD subgroups, lower plasma levels of NCAM and higher levels of NGF were found in the group of ASD children without developmental regression compared to the levels in the group of typically-developing children. Conclusions: These results suggest differences that could be related to different pathophysiological mechanisms in ASD. There is not a specific profile for the expression of relevant plasma cytokines, adhesion molecules or growth factors in children with ASD compared with that in typically-developing children. However, in the ANMR and AMR subgroups, some of the adhesion molecules and neuronal growth factors show differences that may be related to synaptogenesis.
Collapse
Affiliation(s)
- Antonio Gomez-Fernandez
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Maria J de la Torre-Aguilar
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Mercedes Gil-Campos
- Pediatric Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Cordoba, Spain
| | - Katherine Flores-Rojas
- Pediatric Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Cordoba, Spain
| | - Maria D Cruz-Rico
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
| | - Pilar Martin-Borreguero
- Department of Child and Adolescent Clinical Psychiatry and Psychology, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Juan Luis Perez-Navero
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
10
|
Tiwari V, Singh M, Rawat JK, Devi U, Yadav RK, Roy S, Gautam S, Saraf SA, Kumar V, Ansari N, Saeedan AS, Kaithwas G. Redefining the role of peripheral LPS as a neuroinflammatory agent and evaluating the role of hydrogen sulphide through metformin intervention. Inflammopharmacology 2016; 24:253-264. [DOI: 10.1007/s10787-016-0274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
|
11
|
Şimşek Ş, Çetin İ, Çim A, Kaya S. Elevated levels of tissue plasminogen activator and E-selectin in male children with autism spectrum disorder. Autism Res 2016; 9:1241-1247. [DOI: 10.1002/aur.1638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Şeref Şimşek
- Department of Child Psychiatry; Dicle University, Medical School; Diyarbakır Turkey
| | - İhsan Çetin
- Department of Nutrition and Dietetics; Batman University, School of Health Sciences; Batman Turkey
| | - Abdullah Çim
- Department of Medical Genetics; Dicle University, Medical School; Diyarbakır Turkey
| | - Savaş Kaya
- Department of Immunology; Dicle University, Medical School; Diyarbakır Turkey
| |
Collapse
|
12
|
Takeuchi J, Sakagami Y, Perez RC. The Mother and Child Health Handbook in Japan as a Health Promotion Tool: An Overview of Its History, Contents, Use, Benefits, and Global Influence. Glob Pediatr Health 2016; 3:2333794X16649884. [PMID: 27336022 PMCID: PMC4905145 DOI: 10.1177/2333794x16649884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
Background. The Mother and Child Health Handbook (MCHH), a tool used by almost all parents in Japan, serves as a record book shared by parents and health providers to monitor maternal health care throughout the perinatal period, track the child's health and growth, and provide educational information. Methods. A review of the existing literature was performed by narrative review using electronic databases with the search term "Maternal and Child Health Handbook" from January 1980 to February 2016. Results. Twenty-eight papers were obtained: 3 review articles, 17 original articles, 2 brief reports, 2 letters, 1 research note, and 3 proceedings. After the MCHH was initiated in 1947, Japan's infant mortality rate decreased to 2.6 per 1000 live births in 2007, and it is still decreasing. Information recorded in the MCHH at antenatal examinations can be used to evaluate a child's risk of obesity, cardiovascular disease, endocrine disease, mental illness, and infectious disease. Utah's Department of Health implemented a program called "Baby Your Baby" in 1987 based on the Japanese MCHH; this included a similar booklet with family records and educational information. Thus, the MCHH is a unique tool in Japan that has influenced other countries to adopt similar programs. Conclusion. We will confirm the importance of the MCHH's role in promoting health and open dialogue.
Collapse
|
13
|
Kameno Y, Iwata K, Matsuzaki H, Miyachi T, Tsuchiya KJ, Matsumoto K, Iwata Y, Suzuki K, Nakamura K, Maekawa M, Tsujii M, Sugiyama T, Mori N. Serum levels of soluble platelet endothelial cell adhesion molecule-1 and vascular cell adhesion molecule-1 are decreased in subjects with autism spectrum disorder. Mol Autism 2013; 4:19. [PMID: 23773279 PMCID: PMC3695876 DOI: 10.1186/2040-2392-4-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/04/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Adhesion molecules, such as platelet-endothelial adhesion molecule-1 (PECAM-1), platelet selectin (P-selectin), endothelial selectin (E-selectin), intracellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), are localized on the membranes of activated platelets and leukocytes and on the vascular endothelium. Recently, we measured serum levels of soluble (s) forms of adhesion molecules in adults,18 to 26 years old, with autism spectrum disorder (ASD) and observed low levels of sPECAM-1 and sP-selectin. A subsequent study showed a similar result in children two to four years old with ASD. However, information about school age (five to seventeen years old) ASD subjects is required to determine whether adhesion molecules are also reduced in individuals with ASD in this age range. FINDINGS Twenty-two subjects with high-functioning ASD and 29 healthy age-matched controls were recruited. ELISA was used for sPECAM-1, and a suspension array system was used for sP-selectin, sE-selectin, sICAM-1 and sVCAM-1 measurements. We found that serum levels of sPECAM-1 (U = 91.0, P<0.0001 by Mann-Whitney U test) and sVCAM-1 (U = 168.0, P = 0.0042) were significantly lower in ASD subjects than in controls. Subsequently, we examined the correlations between serum levels of either sPECAM-1 or sVCAM-1 and clinical variables including Autism Diagnostic Interview - Revised subscores and our previous cytokine profile data from the same ASD subjects. However, we did not find any significant correlations between them. CONCLUSIONS The present results, taken together with previous results, suggest that sPECAM-1 may play a role in the generation and development of ASD, beginning in childhood and lasting until adulthood.
Collapse
Affiliation(s)
- Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Taishi Miyachi
- Department of Pediatrics, Nagoya City University Hospital, 1-Kawasumi, MIzuho, Mizuho-ku, Nagoya 467-8602, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasuhide Iwata
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Katsuaki Suzuki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University School of Medicine, 5-Zaifu,Hirosaki, Aomori 036-8562, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,Schoolof Contemporary Sociology, Chukyo University, 101 Tokodachi, Kaizu, Toyota, Aichi 470-0393, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
14
|
Bashir S, AL-Ayadhi L. Role of serum levels of neurotensin in children with autism spectrum disorder. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2013.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Onore CE, Nordahl CW, Young GS, Van de Water JA, Rogers SJ, Ashwood P. Levels of soluble platelet endothelial cell adhesion molecule-1 and P-selectin are decreased in children with autism spectrum disorder. Biol Psychiatry 2012; 72:1020-5. [PMID: 22717029 PMCID: PMC3496806 DOI: 10.1016/j.biopsych.2012.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/12/2012] [Accepted: 05/10/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although the etiopathology of autism spectrum disorder (ASD) is not clear, there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines, and microglial activity in brain tissue and cerebrospinal fluid, as well as abnormal peripheral immune cell function. METHODS Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-selectin, and L-selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-selectin, and sL-selectin in the plasma of 49 participants with ASD and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project. Behavioral assessment, the levels of soluble adhesion molecules, and head circumference were compared in the same subjects. RESULTS Levels of sPECAM-1 and sP-selectin were significantly reduced in the ASD group compared to typically developing controls (p < .02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p = .03). CONCLUSIONS Because adhesion molecules modulate the permeability and signaling at the blood-brain barrier as well as leukocyte infiltration into the central nervous system, the current data suggest a role for these molecules in the complex pathophysiology of ASD.
Collapse
Affiliation(s)
- Charity E. Onore
- Department of Medical Microbiology and Immunology, University of California, Davis, USA,M.I.N.D Institute, University of California, Davis, USA
| | - Christine Wu Nordahl
- M.I.N.D Institute, University of California, Davis, USA,Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Gregory S. Young
- M.I.N.D Institute, University of California, Davis, USA,Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Judy A. Van de Water
- M.I.N.D Institute, University of California, Davis, USA,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, USA
| | - Sally J. Rogers
- M.I.N.D Institute, University of California, Davis, USA,Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, USA,M.I.N.D Institute, University of California, Davis, USA,To whom correspondence should be addressed: Paul Ashwood, Ph.D., The M.I.N.D. Institute, 2825 50 Street, Sacramento, CA 95817, Telephone (916) 703-0405,
| |
Collapse
|
16
|
Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. J Clin Bioinforma 2012; 2:17. [PMID: 23043674 PMCID: PMC3507704 DOI: 10.1186/2043-9113-2-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022] Open
Abstract
Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and suggests several systems biology research areas. Autism poses a rich test bed for systems biology modeling techniques.
Collapse
Affiliation(s)
- Mary Randolph-Gips
- Systems Engineering and Computer Engineering, University of Houston - Clear Lake, 2700 Bay Area Bvd, Houston, TX, 77058, USA.
| | | |
Collapse
|
17
|
The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26:383-92. [PMID: 21906670 PMCID: PMC3418145 DOI: 10.1016/j.bbi.2011.08.007] [Citation(s) in RCA: 448] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD.
Collapse
|
18
|
Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry 2012; 2:e69. [PMID: 22832731 PMCID: PMC3309540 DOI: 10.1038/tp.2011.65] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 02/05/2023] Open
Abstract
Abnormal trajectory of brain development has been suggested by previous structural magnetic resonance imaging and head circumference findings in autism spectrum disorders (ASDs); however, the neurochemical backgrounds remain unclear. To elucidate neurochemical processes underlying aberrant brain growth in ASD, we conducted a comprehensive literature search and a meta-analysis of (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies in ASD. From the 22 articles identified as satisfying the criteria, means and s.d. of measure of N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-Inositol and glutamate+glutamine in frontal, temporal, parietal, amygdala-hippocampus complex, thalamus and cerebellum were extracted. Random effect model analyses showed significantly lower NAA levels in all the examined brain regions but cerebellum in ASD children compared with typically developed children (n=1295 at the maximum in frontal, P<0.05 Bonferroni-corrected), although there was no significant difference in metabolite levels in adulthood. Meta-regression analysis further revealed that the effect size of lower frontal NAA levels linearly declined with older mean age in ASD (n=844, P<0.05 Bonferroni-corrected). The significance of all frontal NAA findings was preserved after considering between-study heterogeneities (P<0.05 Bonferroni-corrected). This first meta-analysis of (1)H-MRS studies in ASD demonstrated robust developmental changes in the degree of abnormality in NAA levels, especially in frontal lobes of ASD. Previously reported larger-than-normal brain size in ASD children and the coincident lower-than-normal NAA levels suggest that early transient brain expansion in ASD is mainly caused by an increase in non-neuron tissues, such as glial cell proliferation.
Collapse
Affiliation(s)
- Y Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
19
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain Behav Immun 2011; 25:840-9. [PMID: 20833247 PMCID: PMC3039713 DOI: 10.1016/j.bbi.2010.09.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential etiologic role for immune dysfunction in ASD has been suggested. Dynamic adaptive cellular immune function was investigated in 66 children with a confirmed diagnosis of ASD and 73 confirmed typically developing (TD) controls 2-5 years-of-age. In vitro stimulation of peripheral blood mononuclear cells with PHA and tetanus was used to compare group-associated cellular responses. The production of GM-CSF, TNFα, and IL-13 were significantly increased whereas IL-12p40 was decreased following PHA stimulation in ASD relative to TD controls. Induced cytokine production was associated with altered behaviors in ASD children such that increased pro-inflammatory or T(H)1 cytokines were associated with greater impairments in core features of ASD as well as aberrant behaviors. In contrast, production of GM-CSF and T(H)2 cytokines were associated with better cognitive and adaptive function. Following stimulation, the frequency of CD3(+), CD4(+) and CD8(+) T cells expressing activation markers CD134 and CD25 but not CD69, HLA-DR or CD137 were significantly reduced in ASD, and suggests an altered activation profile for T cells in ASD. Overall these data indicate significantly altered adaptive cellular immune function in children with ASD that may reflect dysfunctional immune activation, along with evidence that these perturbations may be linked to disturbances in behavior and developmental functioning. Further longitudinal analyzes of cellular immunity profiles would delineate the relationship between immune dysfunction and the progression of behavioral and developmental changes throughout the course of this disorder.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, CA, USA.
| | - Paula Krakowiak
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Robin Hansen
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| |
Collapse
|
20
|
Dudley E, Hässler F, Thome J. Profiling for novel proteomics biomarkers in neurodevelopmental disorders. Expert Rev Proteomics 2011; 8:127-36. [PMID: 21329432 DOI: 10.1586/epr.10.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein biomarker discovery from biological fluids, such as serum, has been widely applied to disorders such as cancer and has more recently also been utilized in neuro-psychiatric disorders with relatively clear biological causes, such as Alzheimer's disease and schizophrenia. The application of the associated technologies for the identification of protein biomarker signatures in neurodevelopmental disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder, is comparatively less well established. The aim of this article is to provide an overview of the various protocols available for such analysis, discuss reports in which these techniques have been previously applied in biomarker discovery/validation in neurodevelopmental disorders, and consider the future development of this area of research.
Collapse
Affiliation(s)
- Ed Dudley
- Institute of Mass Spectrometry, School of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|
21
|
Ashwood P, Corbett BA, Kantor A, Schulman H, Van de Water J, Amaral DG. In search of cellular immunophenotypes in the blood of children with autism. PLoS One 2011; 6:e19299. [PMID: 21573236 PMCID: PMC3087757 DOI: 10.1371/journal.pone.0019299] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/30/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism. METHODS We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4-6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ ≥ 68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry. RESULTS There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls. CONCLUSIONS These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of
California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
| | - Blythe A. Corbett
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| | - Aaron Kantor
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Howard Schulman
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Division of Rheumatology, Allergy and Clinical Immunology University of
California Davis, Davis, California, United States of America
| | - David G. Amaral
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| |
Collapse
|
22
|
Aziz A, Harrop SP, Bishop NE. DIA1R is an X-linked gene related to Deleted In Autism-1. PLoS One 2011; 6:e14534. [PMID: 21264219 PMCID: PMC3022024 DOI: 10.1371/journal.pone.0014534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/21/2010] [Indexed: 01/28/2023] Open
Abstract
Background Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.
Collapse
Affiliation(s)
- Azhari Aziz
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Sean P. Harrop
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Naomi E. Bishop
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011; 25:40-5. [PMID: 20705131 PMCID: PMC2991432 DOI: 10.1016/j.bbi.2010.08.003] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/24/2010] [Accepted: 08/06/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential role for immune dysfunction has been suggested in ASD. To test this hypothesis, we investigated evidence of differential cytokine release in plasma samples obtained from 2 to 5 year-old children with ASD compared with age-matched typically developing (TD) children and children with developmental disabilities other than autism (DD). Participants were recruited as part of the population based case-control CHARGE (Childhood Autism Risks from Genetics and Environment) study and included: 97 participants with a confirmed diagnosis of ASD using standard assessments (DSM IV criteria and ADOS, ADI-R), 87 confirmed TD controls, and 39 confirmed DD controls. Plasma was isolated and cytokine production was assessed by multiplex Luminex™ analysis. Observations indicate significant increases in plasma levels of a number of cytokines, including IL-1β, IL-6, IL-8 and IL-12p40 in the ASD group compared with TD controls (p<0.04). Moreover, when the ASD group was separated based on the onset of symptoms, it was noted that the increased cytokine levels were predominantly in children who had a regressive form of ASD. In addition, increasing cytokine levels were associated with more impaired communication and aberrant behaviors. In conclusion, using larger number of participants than previous studies, we report significantly shifted cytokine profiles in ASD. These findings suggest that ongoing inflammatory responses may be linked to disturbances in behavior and require confirmation in larger replication studies. The characterization of immunological parameters in ASD has important implications for diagnosis, and should be considered when designing therapeutic strategies to treat core symptoms and behavioral impairments of ASD.
Collapse
|
24
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 2010; 232:196-9. [PMID: 21095018 DOI: 10.1016/j.jneuroim.2010.10.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/11/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022]
Abstract
A role for immune dysfunction has been suggested in autism spectrum disorders (ASD). Elevated levels of chemokines have been detected in the brain and CSF of individuals with ASD but, to date, no study has examined chemokine levels in the plasma of children with this disorder. In the current study, we determined whether there were differential profiles of chemokines in the plasma of children with ASD compared to age-matched typically developing controls and children with developmental disabilities other than ASD. Increased MCP-1, RANTES and eotaxin levels were observed in ASD children compared with both control groups (p<0.03), and increased chemokine production was associated with higher aberrant behavior scores and more impaired developmental and adaptive function.. Elevated MCP-1, RANTES and eotaxin in some ASD children and their association with more impaired behaviors may have etiological significance. Chemokines and their receptors might provide unique targets for future therapies in ASD.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA, United States.
| | | | | | | | | | | |
Collapse
|
25
|
Fujita-Shimizu A, Suzuki K, Nakamura K, Miyachi T, Matsuzaki H, Kajizuka M, Shinmura C, Iwata Y, Suda S, Tsuchiya KJ, Matsumoto K, Sugihara G, Iwata K, Yamamoto S, Tsujii M, Sugiyama T, Takei N, Mori N. Decreased serum levels of adiponectin in subjects with autism. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:455-8. [PMID: 20074612 DOI: 10.1016/j.pnpbp.2009.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/24/2009] [Accepted: 12/24/2009] [Indexed: 01/03/2023]
Abstract
The neurobiological basis for autism remains poorly understood. We hypothesized that adipokines, such as adiponectin, may play a role in the pathophysiology of autism. In this study, we examined whether serum levels of adiponectin are altered in subjects with autism. We measured serum levels of adiponectin in male subjects with autism (n=31) and age-matched healthy male subjects (n=31). The serum levels of adiponectin in the subjects with autism were significantly lower than that of normal control subjects. The serum adiponectin levels in the subjects with autism were negatively correlated with their domain A scores in the Autism Diagnostic Interview-Revised, which reflects their impairments in social interaction. This study suggests that decreased levels of serum adiponectin might be implicated in the pathophysiology of autism.
Collapse
Affiliation(s)
- Azusa Fujita-Shimizu
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van de Water J, Ashwood P. Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. J Neuroimmunol 2009; 216:126-9. [PMID: 19800697 DOI: 10.1016/j.jneuroim.2009.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/25/2009] [Accepted: 09/04/2009] [Indexed: 02/04/2023]
Abstract
A potential role for T(H)17 cells has been suggested in a number of conditions including neurodevelopmental disorders such as autism spectrum disorders (ASD). In the current study, we investigated cellular release of IL-17 and IL-23 following an in-vitro immunological challenge of peripheral blood mononuclear cells (PBMC) from children with ASD compared to age-matched typically developing controls. Following stimulation, the concentration of IL-23, but not IL-17, was significantly reduced (p=0.021) in ASD compared to controls. Decreased cellular IL-23 production in ASD warrants further research to determine its role on the generation and survival of T(H)17 cells, a cell subset important in neuroinflammatory conditions that may include ASD.
Collapse
Affiliation(s)
- Charity Onore
- Department of Medical Microbiology and Immunology, University of California at Davis, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hughes JR. A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav 2008; 13:425-37. [PMID: 18627794 DOI: 10.1016/j.yebeh.2008.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 01/28/2023]
Abstract
From 1000 studies published in 2007 on all aspects of autism, those that reached clear conclusions or included quantitative data were selected for this review. Possible etiologies include elemental metals, especially the inconsistent evidence regarding mercury from the vaccine preservative thimerosal, not used after 2001, and chromosomes and genes with the conclusion that autism has a complex genetic architecture. Also, various parental conditions are considered, as are many different abnormalities in the central nervous system, especially underconnectivity within the cortex. Furthermore, deficiencies in mirror neurons have been proposed, leading to the "theory of mind" explanation that autistic children tend to disregard others. In addition, various global deficiencies, like an increase in inhibitory synaptic transmission, are proposed. Characteristics of these children include selective (inward) attention; underresponsiveness; stereotyped repetitive motor behavior; increased head size, weight, and height; various cognitive and communicative disorders; and also epilepsy. Therapy has emphasized risperidone, but some atypical antipsychotic medications have been helpful, as have robotic aids, massage, hyperbaric oxygen, and music. Nearly every conceivable problem that a child could have can be observed in these unfortunate children.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology, University of Illinois Medical Center (M/C 796), 912 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Iwata Y, Tsuchiya KJ, Mikawa S, Nakamura K, Takai Y, Suda S, Sekine Y, Suzuki K, Kawai M, Sugihara G, Matsuzaki H, Hashimoto K, Tsujii M, Sugiyama T, Takei N, Mori N. Serum levels of P-selectin in men with high-functioning autism. Br J Psychiatry 2008; 193:338-9. [PMID: 18827301 DOI: 10.1192/bjp.bp.107.043497] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Immune dysfunction has been proposed as a mechanism for the pathophysiology of autistic-spectrum disorders. The selectin family of adhesion molecules plays a prominent role in immune/inflammatory responses. We determined the serum levels of three types of soluble-form selectin (sP, sL and sE) in 15 men with high-functioning autism and 22 age-matched healthy controls by enzyme-linked immunosorbent assay. Levels of sP-selectin and sL-selectin were significantly lower in patients than in controls. Furthermore, sP-selectin levels were negatively correlated with impaired social development during early childhood.
Collapse
Affiliation(s)
- Y Iwata
- Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 2008; 20:775-803. [PMID: 18606031 DOI: 10.1017/s0954579408000370] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.
Collapse
|