1
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
2
|
Najar D, Dichev J, Stoyanov D. Towards New Methodology for Cross-Validation of Clinical Evaluation Scales and Functional MRI in Psychiatry. J Clin Med 2024; 13:4363. [PMID: 39124630 PMCID: PMC11313617 DOI: 10.3390/jcm13154363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/01/2024] Open
Abstract
Objective biomarkers have been a critical challenge for the field of psychiatry, where diagnostic, prognostic, and theranostic assessments are still based on subjective narratives. Psychopathology operates with idiographic knowledge and subjective evaluations incorporated into clinical assessment inventories, but is considered to be a medical discipline and, as such, uses medical intervention methods (e.g., pharmacological, ECT; rTMS; tDCS) and, therefore, is supposed to operate with the language and methods of nomothetic networks. The idiographic assessments are provisionally "quantified" into "structured clinical scales" to in some way resemble nomothetic measures. Instead of fostering data merging and integration, this approach further encapsulates the clinical psychiatric methods, as all other biological tests (molecular, neuroimaging) are performed separately, only after the clinical assessment has provided diagnosis. Translational cross-validation of clinical assessment instruments and fMRI is an attempt to address the gap. The aim of this approach is to investigate whether there exist common and specific neural circuits, which underpin differential item responses to clinical self-rating scales during fMRI sessions in patients suffering from the two main spectra of mental disorders: schizophrenia and major depression. The current status of this research program and future implications to promote the development of psychiatry as a medical discipline are discussed.
Collapse
Affiliation(s)
- Diyana Najar
- Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria; (D.N.); (J.D.)
| | - Julian Dichev
- Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria; (D.N.); (J.D.)
| | - Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute & Strategic Research and Innovation Program for the Development of MU-PLOVDIV–(SRIPD-MUP), European Union-NextGenerationEU, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
4
|
Ferrarelli F. Sleep spindles as neurophysiological biomarkers of schizophrenia. Eur J Neurosci 2024; 59:1907-1917. [PMID: 37885306 DOI: 10.1111/ejn.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/17/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder characterized by a wide range of clinical symptoms, including disrupted sleep. In recent years, there has been growing interest in assessing alterations in sleep parameters in patients with SCZ. Sleep spindles are brief (0.5-2 s) bursts of 12- to 16-Hz rhythmic electroencephalogram (EEG) oscillatory activity occurring during non-rapid eye movement (NREM) sleep. Spindles have been implicated in several critical brain functions, including learning, memory and plasticity, and are thought to reflect the integrity of underlying thalamocortical circuits. This review aims to provide an overview of the current research investigating sleep spindles in SCZ. After briefly describing the neurophysiological features of sleep spindles, I will discuss alterations in spindle characteristics observed in SCZ, their associations with the clinical symptomatology of these patients and their putative underlying neuronal and molecular mechanisms. I will then discuss the utility of sleep spindle measures as predictors of treatment response and disease progression. Finally, I will highlight future directions for research in this emerging field, including the prospect of utilizing sleep spindles as neurophysiological biomarkers of SCZ.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Takai Y, Tamura S, Hoaki N, Kitajima K, Nakamura I, Hirano S, Ueno T, Nakao T, Onitsuka T, Hirano Y. Aberrant thalamocortical connectivity and shifts between the resting state and task state in patients with schizophrenia. Eur J Neurosci 2024; 59:1961-1976. [PMID: 38440952 DOI: 10.1111/ejn.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Prominent pathological hypotheses for schizophrenia include auditory processing deficits and dysconnectivity within cerebral networks. However, most neuroimaging studies have focused on impairments in either resting-state or task-related functional connectivity in patients with schizophrenia. The aims of our study were to examine (1) blood oxygen level-dependent (BOLD) signals during auditory steady-state response (ASSR) tasks, (2) functional connectivity during the resting-state and ASSR tasks and (3) state shifts between the resting-state and ASSR tasks in patients with schizophrenia. To reduce the functional consequences of scanner noise, we employed resting-state and sparse sampling auditory fMRI paradigms in 25 schizophrenia patients and 25 healthy controls. Auditory stimuli were binaural click trains at frequencies of 20, 30, 40 and 80 Hz. Based on the detected ASSR-evoked BOLD signals, we examined the functional connectivity between the thalamus and bilateral auditory cortex during both the resting state and ASSR task state, as well as their alterations. The schizophrenia group exhibited significantly diminished BOLD signals in the bilateral auditory cortex and thalamus during the 80 Hz ASSR task (corrected p < 0.05). We observed a significant inverse relationship between the resting state and ASSR task state in altered functional connectivity within the thalamo-auditory network in schizophrenia patients. Specifically, our findings demonstrated stronger functional connectivity in the resting state (p < 0.004) and reduced functional connectivity during the ASSR task (p = 0.048), which was mediated by abnormal state shifts, within the schizophrenia group. These results highlight the presence of abnormal thalamocortical connectivity associated with deficits in the shift between resting and task states in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiko Hoaki
- Psychiatry Neuroimaging Center, Hoaki Hospital, Oita, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Center, Saga, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Tsu, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Castelnovo A, Casetta C, Cavallotti S, Marcatili M, Del Fabro L, Canevini MP, Sarasso S, D'Agostino A. Proof-of-concept evidence for high-density EEG investigation of sleep slow wave traveling in First-Episode Psychosis. Sci Rep 2024; 14:6826. [PMID: 38514761 PMCID: PMC10958040 DOI: 10.1038/s41598-024-57476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is thought to reflect aberrant connectivity within cortico-cortical and reentrant thalamo-cortical loops, which physiologically integrate and coordinate the function of multiple cortical and subcortical structures. Despite extensive research, reliable biomarkers of such "dys-connectivity" remain to be identified at the onset of psychosis, and before exposure to antipsychotic drugs. Because slow waves travel across the brain during sleep, they represent an ideal paradigm to study pathological conditions affecting brain connectivity. Here, we provide proof-of-concept evidence for a novel approach to investigate slow wave traveling properties in First-Episode Psychosis (FEP) with high-density electroencephalography (EEG). Whole-night sleep recordings of 5 drug-naïve FEP and 5 age- and gender-matched healthy control subjects were obtained with a 256-channel EEG system. One patient was re-recorded after 6 months and 3 years of continuous clozapine treatment. Slow wave detection and traveling properties were obtained with an open-source toolbox. Slow wave density and slow wave traveled distance (measured as the line of longest displacement) were significantly lower in patients (p < 0.05). In the patient who was tested longitudinally during effective clozapine treatment, slow wave density normalized, while traveling distance only partially recovered. These preliminary findings suggest that slow wave traveling could be employed in larger samples to detect cortical "dys-connectivity" at psychosis onset.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Italian Switzerland, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland.
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Cecilia Casetta
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Cavallotti
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Matteo Marcatili
- Psychiatric Department, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Paola Canevini
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Armando D'Agostino
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Mayeli A, Wilson JD, Donati FL, Ferrarelli F. Reduced slow wave density is associated with worse positive symptoms in clinical high risk: An objective readout of symptom severity for early treatment interventions? Psychiatry Res 2024; 333:115756. [PMID: 38281453 PMCID: PMC10923118 DOI: 10.1016/j.psychres.2024.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Individuals at clinical high risk for psychosis (CHR) present subsyndromal psychotic symptoms that can escalate and lead to the transition to a diagnosable psychotic disorder. Identifying biological parameters that are sensitive to these symptoms can therefore help objectively assess their severity and guide early interventions in CHR. Reduced slow wave oscillations (∼1 Hz) during non-rapid eye movement sleep were recently observed in first-episode psychosis patients and were linked to the intensity of their positive symptoms. Here, we collected overnight high-density EEG recordings from 37 CHR and 32 healthy control (HC) subjects and compared slow wave (SW) activity and other SW parameters (i.e., density and negative peak amplitude) between groups. We also assessed the relationships between clinical symptoms and SW parameters in CHR. While comparisons between HC and the entire CHR group showed no SW differences, CHR individuals with higher positive symptom severity (N = 18) demonstrated a reduction in SW density in an EEG cluster involving bilateral prefrontal, parietal, and right occipital regions compared to matched HC individuals. Furthermore, we observed a negative correlation between SW density and positive symptoms across CHR individuals, suggesting a potential target for early treatment interventions.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | | | |
Collapse
|
9
|
Koketsu S, Matsubara K, Ueki Y, Shinohara Y, Inoue K, Murakami S, Ueki T. The defects of the hippocampal ripples and theta rhythm in depression, and the effects of physical exercise on their amelioration. Heliyon 2024; 10:e23738. [PMID: 38226277 PMCID: PMC10788462 DOI: 10.1016/j.heliyon.2023.e23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.
Collapse
Affiliation(s)
- Shinnosuke Koketsu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Physical Therapy, Nagoya Women's University Faculty of Medical Science, Nagoya, Aichi, 467-8610, Japan
| | - Kohki Matsubara
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Yamanashi University Graduate School of Medical Sciences, Chuo, Yamanashi, 409-3898, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Satona Murakami
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
10
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Harrington MO, Reeve S, Bower JL, Renoult L. How do the sleep features that characterise depression impact memory? Emerg Top Life Sci 2023; 7:499-512. [PMID: 38054537 PMCID: PMC10754336 DOI: 10.1042/etls20230100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Depression is associated with general sleep disturbance and abnormalities in sleep physiology. For example, compared with control subjects, depressed patients exhibit lower sleep efficiency, longer rapid eye movement (REM) sleep duration, and diminished slow-wave activity during non-REM sleep. A separate literature indicates that depression is also associated with many distinguishing memory characteristics, including emotional memory bias, overgeneral autobiographical memory, and impaired memory suppression. The sleep and memory features that hallmark depression may both contribute to the onset and maintenance of the disorder. Despite our rapidly growing understanding of the intimate relationship between sleep and memory, our comprehension of how sleep and memory interact in the aetiology of depression remains poor. In this narrative review, we consider how the sleep signatures of depression could contribute to the accompanying memory characteristics.
Collapse
Affiliation(s)
| | - Sarah Reeve
- Department of Clinical Psychology and Psychological Therapies, Norwich Medical School, University of East Anglia, Norwich, U.K
| | - Joanne L. Bower
- School of Psychology, University of East Anglia, Norwich, U.K
| | - Louis Renoult
- School of Psychology, University of East Anglia, Norwich, U.K
| |
Collapse
|
12
|
Li SJ, Lo YC, Tseng HY, Lin SH, Kuo CH, Chen TC, Chang CW, Liang YW, Lin YC, Wang CY, Cho TY, Wang MH, Chen CT, Chen YY. Nucleus accumbens deep brain stimulation improves depressive-like behaviors through BDNF-mediated alterations in brain functional connectivity of dopaminergic pathway. Neurobiol Stress 2023; 26:100566. [PMID: 37664874 PMCID: PMC10474237 DOI: 10.1016/j.ynstr.2023.100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway. To determine whether NAc-DBS alters glucose metabolism via mitochondrial alteration and neurogenesis and whether these changes increase neural plasticity that improves behavioral functions in a chronic social defeat stress (CSDS) mouse model. The Lab-designed MR-compatible neural probes were implanted in the bilateral NAc of C57BL/6 mice with and without CSDS, followed by DBS or sham stimulation. All animals underwent open-field and sucrose preference testing, and brain resting-state functional MRI analysis. Meanwhile, we checked the placement of neural probes in each mouse by T2 images. By confirming the placement location, mice with incorrect probe placement (the negative control group) showed no significant therapeutic effects in behavioral performance and functional connectivity (FC) after receiving electrical stimulation and were excluded from further analysis. Western blotting, seahorse metabolic analysis, and electron microscopy were further applied for the investigation of NAc-DBS. We found NAc-DBS restored emotional deficits in CSDS-subjected mice. Concurrent with behavioral amelioration, the CSDS DBS-on group exhibited enhanced FC in the dopaminergic pathway with increased expression of BDNF- and NeuN-positive cells increased dopamine D1 receptor, dopamine D2 receptors, and TH in the medial prefrontal cortex, NAc, ventral hippocampus, ventral tegmental area, and amygdala. Increased pAMPK/total AMPK and PGC-1α levels, functions of oxidative phosphorylation, and mitochondrial biogenesis were also observed after NAc-DBS treatment. Our findings demonstrate that NAc-DBS can promote BDNF expression, which alters FC and metabolic profile in the dopaminergic pathway, suggesting a potential strategy for ameliorating emotional processes in individuals with MDD.
Collapse
Affiliation(s)
- Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan, ROC
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97002, Taiwan, ROC
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan, ROC
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei, 11217, Taiwan, ROC
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 115024, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Chih-Yu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Tsai-Yu Cho
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Mu-Hua Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Te Chen
- Abbott Medical Taiwan Co, 5/F No. 407, Ruei-Guang Rd., Taipei, 11492, Taiwan, ROC
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| |
Collapse
|
13
|
Ma X, Yang WFZ, Zheng W, Li Z, Tang J, Yuan L, Ouyang L, Wang Y, Li C, Jin K, Wang L, Bearden CE, He Y, Chen X. Neuronal dysfunction in individuals at early stage of schizophrenia, A resting-state fMRI study. Psychiatry Res 2023; 322:115123. [PMID: 36827856 DOI: 10.1016/j.psychres.2023.115123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Schizophrenia has been associated with abnormal intrinsic brain activity, involving various cognitive impairments. Qualitatively similar abnormalities are seen in individuals at ultra-high risk (UHR) for psychosis. In this study, resting-state fMRI (rs-fMRI) data were collected from 44 drug-naïve first-episode schizophrenia (Dn-FES) patients, 48 UHR individuals, and 40 healthy controls (HCs). The fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and functional connectivity (FC), were performed to evaluate resting brain function. A support vector machine (SVM) was applied for classification analysis. Compared to HCs, both clinical groups showed increased fALFF in the central executive network (CEN), decreased ReHo in the ventral visual pathway (VVP) and decreased FC in temporal-sensorimotor regions. Excellent performance was achieved by using fALFF value in distinguishing both FES (sensitivity=83.21%, specificity=80.58%, accuracy=81.37%, p=0.009) and UHR (sensitivity=75.88%, specificity=85.72%, accuracy=80.72%, p<0.001) from HC group. Moreover, the study highlighted the importance of frontal and temporal alteration in the pathogenesis of schizophrenia. However, no fMRI features were observed that could well distinguish Dn-FES from UHR group. To conclude, fALFF in the CEN may provide potential power for identifying individuals at the early stage of schizophrenia and the alteration in the frontal and temporal lobe may be important to these individuals.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, Texas Tech University, Lubbock, United States
| | - Wenxiao Zheng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Clinical Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Lingyan Wang
- Department of Deratology&Traditional Chinese Medicine, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital)
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
14
|
Demirlek C, Bora E. Sleep-dependent memory consolidation in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2023; 254:146-154. [PMID: 36889181 DOI: 10.1016/j.schres.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Sleep disturbances and cognitive impairment are both persistent and common features of schizophrenia. Accumulating evidence indicates that sleep-dependent memory consolidation might be impaired in patients with schizophrenia compared to healthy controls. The current systematic review was performed in accordance with PRISMA guidelines. A random-effects model was used to calculate effect sizes (Hedge's g). In the quantitative review, three separate meta-analyses were conducted for procedural memory in healthy controls, schizophrenia, and comparison between healthy controls and schizophrenia. Additionally, separate meta-analyses were conducted for the studies using finger tapping motor sequence task, as it is the most commonly used task. The current systematic review included 14 studies including 304 patients with schizophrenia and 209 healthy controls. The random-effects model analyses for sleep-dependent procedural memory consolidation resulted in a small effect size in schizophrenia (g = 0.26), a large effect size in healthy controls (g = 0.98), a moderate effect size in healthy controls vs schizophrenia (g = 0.64). For the studies using finger tapping motor sequence task, meta-analyses resulted in a small effect size in schizophrenia (g = 0.19), a large effect size in healthy controls (g = 1.07), a moderate effect size in healthy controls vs schizophrenia (g = 0.70). In the qualitative review, there was also impaired sleep-dependent declarative memory consolidation in schizophrenia compared to healthy controls. Current findings support that sleep improves memory consolidation in healthy adults, but there is a deficit in sleep-dependent memory consolidation in people with schizophrenia. Future studies investigating sleep-dependent consolidation of different memory subtypes with polysomnography in different stages of psychotic disorders are needed.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Dokuz Eylul University Medical School, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
15
|
Tran The J, Magistretti PJ, Ansermet F. The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Front Mol Neurosci 2022; 15:1057539. [PMID: 36590919 PMCID: PMC9795046 DOI: 10.3389/fnmol.2022.1057539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Through research into the molecular and cellular mechanisms that occur during critical periods, recent experimental neurobiological data have brought to light the importance of early childhood. These have demonstrated that childhood and early environmental stimuli play a part not only in our subjective construction, but also in brain development; thus, confirming Freud's intuition regarding the central role of childhood and early experiences of the environment in our psychological development and our subjective outcomes. "Critical periods" of cerebral development represent temporal windows that mark favorable, but also circumscribed, moments in developmental cerebral plasticity. They also vary between different cortical areas. There are, therefore, strictly defined temporal periods for learning language, music, etc., after which this learning becomes more difficult, or even impossible, to acquire. Now, research into these critical periods can be seen as having a significant part to play in the interdisciplinary dialog between psychoanalysis and neurosciences with regard to the role of early experiences in the etiology of some psychopathological conditions. Research into the cellular and molecular mechanisms controlling the onset and end of these critical periods, notably controlled by the maturation of parvalbumin-expressing basket cells, have brought to light the presence of anomalies in the maturation of these neurons in patients with schizophrenia. Starting from these findings we propose revisiting the psychoanalytic theories on the etiology of psychosis from an interdisciplinary perspective. Our study works from the observation, common to both psychoanalysis and neurosciences, that experience leaves a trace; be it a "psychic" or a "synaptic" trace. Thus, we develop a hypothesis for an "absence of trace" in psychosis; reexamining psychosis through the prism of the biological theory of critical periods in plasticity.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,UFR de Psychologie, Université de Caen Normandie, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Cyceron, Caen, France,Agalma Foundation Geneva, Chemin des Mines, Switzerland,*Correspondence: Jessica Tran The,
| | - Pierre J. Magistretti
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francois Ansermet
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
16
|
Tran The J, Ansermet JP, Magistretti PJ, Ansermet F. Hyperactivity of the default mode network in schizophrenia and free energy: A dialogue between Freudian theory of psychosis and neuroscience. Front Hum Neurosci 2022; 16:956831. [PMID: 36590059 PMCID: PMC9795812 DOI: 10.3389/fnhum.2022.956831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The economic conceptualization of Freudian metapsychology, based on an energetics model of the psyche's workings, offers remarkable commonalities with some recent discoveries in neuroscience, notably in the field of neuroenergetics. The pattern of cerebral activity at resting state and the identification of a default mode network (DMN), a network of areas whose activity is detectable at baseline conditions by neuroimaging techniques, offers a promising field of research in the dialogue between psychoanalysis and neuroscience. In this article we study one significant clinical application of this interdisciplinary dialogue by looking at the role of the DMN in the psychopathology of schizophrenia. Anomalies in the functioning of the DMN have been observed in schizophrenia. Studies have evidenced the existence of hyperactivity in this network in schizophrenia patients, particularly among those for whom a positive symptomatology is dominant. These data are particularly interesting when considered from the perspective of the psychoanalytic understanding of the positive symptoms of psychosis, most notably the Freudian hypothesis of delusions as an "attempt at recovery." Combining the data from research in neuroimaging of schizophrenia patients with the Freudian hypothesis, we propose considering the hyperactivity of the DMN as a consequence of a process of massive reassociation of traces occurring in schizophrenia. This is a process that may constitute an attempt at minimizing the excess of free energy present in psychosis. Modern models of active inference and the free energy principle (FEP) may shed some light on these processes.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Université de Caen Normandie, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,Agalma Foundation Geneva, Geneva, Switzerland,Cyceron, Caen, France,*Correspondence: Jessica Tran The
| | | | - Pierre J. Magistretti
- Agalma Foundation Geneva, Geneva, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Francois Ansermet
- Agalma Foundation Geneva, Geneva, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
17
|
Bovy L, Weber FD, Tendolkar I, Fernández G, Czisch M, Steiger A, Zeising M, Dresler M. Non-REM sleep in major depressive disorder. Neuroimage Clin 2022; 36:103275. [PMID: 36451376 PMCID: PMC9723407 DOI: 10.1016/j.nicl.2022.103275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Disturbed sleep is a key symptom in major depressive disorder (MDD). REM sleep alterations are well described in the current literature, but little is known about non-REM sleep alterations. Additionally, sleep disturbances relate to a variety of cognitive symptoms in MDD, but which features of non-REM sleep EEG contribute to this, remains unknown. We comprehensively analyzed non-REM sleep EEG features in two central channels in three independently collected datasets (N = 284 recordings of 216 participants). This exploratory and descriptive study included MDD patients with a broad age range, varying duration and severity of depression, unmedicated or medicated, age- and gender-matched to healthy controls. We explored changes in sleep architecture including sleep stages and cycles, spectral power, sleep spindles, slow waves (SW), and SW-spindle coupling. Next, we analyzed the association of these sleep features with acute measures of depression severity and overnight consolidation of procedural memory. Overall, no major systematic alterations in non-REM sleep architecture were found in patients compared to controls. For the microstructure of non-REM sleep, we observed a higher spindle amplitude in unmedicated patients compared to controls, and after the start of antidepressant medication longer SWs with lower amplitude and a more dispersed SW-spindle coupling. In addition, long-term, but not short-term medication seemed to lower spindle density. Overnight procedural memory consolidation was impaired in medicated patients and associated with lower sleep spindle density. Our results suggest that alterations of non-REM sleep EEG in MDD might be more subtle than previously reported. We discuss these findings in the context of antidepressant medication intake and age.
Collapse
Affiliation(s)
- Leonore Bovy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | - Frederik D. Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center,Corresponding author.
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | | | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| |
Collapse
|
18
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
19
|
Weinhold SL, Lechinger J, Timm N, Hansen A, Ngo HVV, Göder R. Auditory stimulation in-phase with slow oscillations to enhance overnight memory consolidation in patients with schizophrenia? J Sleep Res 2022; 31:e13636. [PMID: 35686351 DOI: 10.1111/jsr.13636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Sleep-dependent memory consolidation is disturbed in patients with schizophrenia, who furthermore show reductions in sleep spindles and probably also in delta power during sleep. The memory dysfunction in these patients is one of the strongest markers for worse long-term functional outcome. However, therapeutic interventions to normalise memory functions, e.g., with medication, still do not exist. Against this backdrop, we investigated to what extent a non-invasive approach enhancing sleep with real-time auditory stimulation in-phase with slow oscillations might affect overnight memory consolidation in patients with schizophrenia. To this end, we examined 18 patients with stably medicated schizophrenia in a double-blinded sham-controlled design. Memory performance was assessed by a verbal (word list) and a non-verbal (complex figure) declarative memory task. In comparison to a sham condition without auditory stimuli, we found that in patients with schizophrenia, auditory stimulation evokes an electrophysiological response similar to that in healthy participants leading to an increase in slow wave and temporally coupled sleep spindle activity during stimulation. Despite this finding, patients did not show any beneficial effect on the overnight change in memory performance by stimulation. Although the stimulation in our study did not improve the patient's memory, the electrophysiological response gives hope that auditory stimulation could enable us to provide better treatment for sleep-related detriments in these patients in the future.
Collapse
Affiliation(s)
- Sara Lena Weinhold
- Department of Psychiatry and Psychotherapy (ZIP), University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Julia Lechinger
- Department of Psychiatry and Psychotherapy (ZIP), University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nele Timm
- Department of Psychiatry and Psychotherapy (ZIP), University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Anja Hansen
- Department of Psychiatry and Psychotherapy (ZIP), University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy (ZIP), University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| |
Collapse
|
20
|
Weinhold SL, Lechinger J, Ittel J, Ritzenhoff R, Drews HJ, Junghanns K, Göder R. Dysfunctional Overnight Memory Consolidation in Patients with Schizophrenia in Comparison to Healthy Controls: Disturbed Slow-Wave Sleep as Contributing Factor? Neuropsychobiology 2022; 81:104-115. [PMID: 34433174 DOI: 10.1159/000517858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Memory deficiency has been shown in schizophrenia patients, but results on the role of sleep parameters in overnight consolidation of associative verbal memory are still missing. Therefore, the aim of our study was to elucidate underlying processes of impaired sleep-related consolidation of associative word pairs in schizophrenia including standard sleep parameters as well as sleep spindle counts and spectral analysis. METHODS Eighteen stably medicated schizophrenia patients and 24 healthy age-matched controls performed an associative declarative memory task before and after polysomnographic recordings. Part of the participants expected verbal associative memory testing in the morning, while the others did not. Furthermore, participants filled in self-rating questionnaires of schizophrenia-typical experiences (Eppendorf Schizophrenia Inventory [ESI] and Psychotic Symptom Rating Scale). RESULTS Schizophrenia patients performed worse in verbal declarative memory in the evening as well as in overnight consolidation (morning compared to evening performance). While duration of slow-wave sleep was nearly comparable between groups, schizophrenia patients showed lower sleep spindle count, reduced delta power during slow-wave sleep, and reduced spindle power during the slow oscillation (SO) up-state. In healthy but not in schizophrenia patients, a linear relationship between overnight memory consolidation and slow-wave sleep duration as well as delta power was evident. No significant effect with respect to the expectation of memory retrieval was evident in our data. Additionally, we observed a negative linear relationship between total number of sleep spindles and ESI score in healthy participants. DISCUSSION/CONCLUSION As expected, schizophrenia patients showed deficient overnight verbal declarative memory consolidation as compared to healthy controls. Reduced sleep spindles, delta power, and spindle power during the SO up-state may link sleep and memory deficiency in schizophrenia. Additionally, the absence of a linear relationship between sleep-related memory consolidation and slow-wave sleep as well as delta power suggests further functional impairments in schizophrenia. Note that this conclusion is based on observational data. Future studies should investigate if stimulation of delta waves during sleep could improve memory performance and thereby quality of life in schizophrenia.
Collapse
Affiliation(s)
- Sara Lena Weinhold
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Julia Lechinger
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jasper Ittel
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Romina Ritzenhoff
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Henning Johannes Drews
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Klaus Junghanns
- Department of Psychiatry and Psychotherapy, Centre for Integrative Psychiatry (ZIP), University Lübeck, Lübeck, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Examining the relationship between working memory consolidation and long-term consolidation. Psychon Bull Rev 2022; 29:1625-1648. [PMID: 35357669 DOI: 10.3758/s13423-022-02084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
An emerging area of research is focused on the relationship between working memory and long-term memory and the likely overlap between these processes. Of particular interest is how some information first maintained in working memory is retained for longer periods and eventually preserved in long-term memory. The process of stabilizing transient memory representations for lasting retention is referred to as consolidation in both the working memory and long-term memory literature, although these have historically been viewed as independent constructs. The present review aims to investigate the relationship between working memory consolidation and long-term memory consolidation, which both have rich, but distinct, histories. This review provides an overview of the proposed models and neural mechanisms of both types of consolidation, as well as clinical findings related to consolidation and potential approaches for the manipulation of consolidation. Finally, two hypotheses are proposed to explain the relationship between working memory consolidation and long-term memory consolidation.
Collapse
|
22
|
Lai M, Hegde R, Kelly S, Bannai D, Lizano P, Stickgold R, Manoach DS, Keshavan M. Investigating sleep spindle density and schizophrenia: A meta-analysis. Psychiatry Res 2022; 307:114265. [PMID: 34922240 DOI: 10.1016/j.psychres.2021.114265] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Sleep abnormalities are an early feature of schizophrenia (SZ) characterized by reductions in sleep spindles that are associated with deficits in brain connectivity and cognitive function. This study investigated sleep spindle density (SSD) differences between SZ, first episode psychosis (FEP), and family high-risk (FHR) populations and matched healthy controls (HC) by investigating recent studies via a meta-analysis. We collected experimental, demographic, and methodological metrics from eligible studies across multiple online databases. 14 total studies survived the inclusion and exclusion criteria for a total of 337 patients and relatives and 339 HC. R-Studio was used to run the meta-analysis via the meta and metaphor packages. A heterogeneity score of I2 = 80% was calculated and thus a random effects model was chosen. We report a large effect size for SSD in patients compared to controls. Furthermore, illness duration was significantly associated with SSD. Our next step to understanding sleep spindles would be to investigate SSD's use as a predictor for SZ or attempt to normalize SSD deficits as a therapeutic option.
Collapse
Affiliation(s)
- Matthew Lai
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
23
|
Craeghs L, Callaerts-Vegh Z, Verslegers M, Van der Jeugd A, Govaerts K, Dresselaers T, Wogensen E, Verreet T, Moons L, Benotmane MA, Himmelreich U, D'Hooge R. Prenatal Radiation Exposure Leads to Higher-Order Telencephalic Dysfunctions in Adult Mice That Coincide with Reduced Synaptic Plasticity and Cerebral Hypersynchrony. Cereb Cortex 2021; 32:3525-3541. [PMID: 34902856 DOI: 10.1093/cercor/bhab431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Higher-order telencephalic circuitry has been suggested to be especially vulnerable to irradiation or other developmentally toxic impact. This report details the adult effects of prenatal irradiation at a sensitive time point on clinically relevant brain functions controlled by telencephalic regions, hippocampus (HPC), and prefrontal cortex (PFC). Pregnant C57Bl6/J mice were whole-body irradiated at embryonic day 11 (start of neurogenesis) with X-ray intensities of 0.0, 0.5, or 1.0 Gy. Female offspring completed a broad test battery of HPC-/PFC-controlled tasks that included cognitive performance, fear extinction, exploratory, and depression-like behaviors. We examined neural functions that are mechanistically related to these behavioral and cognitive changes, such as hippocampal field potentials and long-term potentiation, functional brain connectivity (by resting-state functional magnetic resonance imaging), and expression of HPC vesicular neurotransmitter transporters (by immunohistochemical quantification). Prenatally exposed mice displayed several higher-order dysfunctions, such as decreased nychthemeral activity, working memory defects, delayed extinction of threat-evoked response suppression as well as indications of perseverative behavior. Electrophysiological examination indicated impaired hippocampal synaptic plasticity. Prenatal irradiation also induced cerebral hypersynchrony and increased the number of glutamatergic HPC terminals. These changes in brain connectivity and plasticity could mechanistically underlie the irradiation-induced defects in higher telencephalic functions.
Collapse
Affiliation(s)
- Livine Craeghs
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mieke Verslegers
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Ann Van der Jeugd
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Kristof Govaerts
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tom Dresselaers
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Elise Wogensen
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tine Verreet
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Lieve Moons
- Department of Biology, Research Group Neural Circuit Development and Regeneration, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mohammed A Benotmane
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Uwe Himmelreich
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Rudi D'Hooge
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| |
Collapse
|
24
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
25
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Veschi S, Cama A, Marconi GD, Diomede F, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD. Mol Psychiatry 2021; 26:7465-7474. [PMID: 34331008 DOI: 10.1038/s41380-021-01228-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
26
|
Abstract
Sleep disturbances are commonly observed in schizophrenia, including in chronic, early-course, and first-episode patients. This has generated considerable interest, both in clinical and research endeavors, in characterizing the relationship between disturbed sleep and schizophrenia. Sleep features can be objectively assessed with EEG recordings. Traditionally, EEG studies have focused on sleep architecture, which includes non-REM and REM sleep stages. More recently, numerous studies have investigated alterations in sleep-specific rhythms, including EEG oscillations, such as sleep spindles and slow waves, in individuals with schizophrenia compared with control subjects. In this article, the author reviews state-of-the-art evidence of disturbed sleep in schizophrenia, starting from the relationship between sleep disturbances and clinical symptoms. First, the author presents studies demonstrating abnormalities in sleep architecture and sleep-oscillatory rhythms in schizophrenia and related psychotic disorders, with an emphasis on recent work demonstrating sleep spindles and slow-wave deficits in early-course and first-episode schizophrenia. Next, the author shows how these sleep abnormalities relate to the cognitive impairments in patients diagnosed with schizophrenia and point to dysfunctions in underlying thalamocortical circuits, Ca+ channel activity, and GABA-glutamate neurotransmission. Finally, the author discusses some of the next steps needed to further establish the role of altered sleep in schizophrenia, including the need to investigate sleep abnormalities across the psychotic spectrum and to establish their relationship with circadian disturbances, which in turn will contribute to the development of novel sleep-informed treatment interventions.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, 15213
| |
Collapse
|
27
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021; 35:1253-1264. [PMID: 34617804 PMCID: PMC8521380 DOI: 10.1177/02698811211048281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
28
|
Zhang J, Zhang J, Zhang Z, Zheng Y, Zhong Z, Yao Z, Cai X, Lao L, Huang Y, Qu S. Dopaminergic signaling in prefrontal cortex contributes to the antidepressant effect of electroacupuncture: An iTRAQ-based proteomics analysis in a rat model of CUMS. Anat Rec (Hoboken) 2021; 304:2454-2469. [PMID: 34523244 DOI: 10.1002/ar.24732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Electroacupuncture (EA) is used as an adjunctive treatment for depression. This study was conducted to evaluate the efficacy and mechanisms of EA in the depressive rat model induced by chronic unpredictable mild stress (CUMS) in male adult Wistar rats. The underlying mechanisms were explored by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of the proteins in the prefrontal cortex (PFC), and observing the number of the PFC neurons stained with hematoxylin and eosin (H&E) and synaptic morphological changes under transmission electron microscopy (TEM). The results showed that EA plus paroxetine (EA + Par) for 1 week significantly relieved depression-like anhedonia symptoms and improved anxiety-like behavior, accompanied by the improvements in synaptic morphology and a significant increase of PFC neurons. Moreover, EA or paroxetine alone significantly alleviated anhedonia symptoms after 2 weeks of intervention. Additionally, iTRAQ analysis showed that dopaminergic signaling was significantly altered in CUMS rats after 1 week of EA treatment. As the critical enzyme of this pathway, aromatic-l-amino-acid decarboxylase (DDC) was significantly upregulated after the treatment with EA + Par for 1 week. These findings suggested that the dopaminergic signaling pathway in PFC may be involved in the antidepressant mechanisms of EA.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yu Zheng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zheng Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Wang X, Cheng B, Roberts N, Wang S, Luo Y, Tian F, Yue S. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Hum Brain Mapp 2021; 42:5458-5476. [PMID: 34431584 PMCID: PMC8519858 DOI: 10.1002/hbm.25618] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Working memory (WM) impairments are common features of psychiatric disorders. A systematic meta-analysis was performed to determine common and disorder-specific brain fMRI response during performance of WM tasks in patients with SZ and patients with MDD relative to healthy controls (HC). Thirty-four published fMRI studies of WM in patients with SZ and 18 published fMRI studies of WM in patients with MDD, including relevant HC, were included in the meta-analysis. In both SZ and MDD there was common stronger fMRI response in right medial prefrontal cortex (MPFC) and bilateral anterior cingulate cortex (ACC), which are part of the default mode network (DMN). The effects were of greater magnitude in SZ than MDD, especially in prefrontal-temporal-cingulate-striatal-cerebellar regions. In addition, a disorder-specific weaker fMRI response was observed in right middle frontal gyrus (MFG) in MDD, relative to HC. For both SZ and MDD a significant correlation was observed between the severity of clinical symptoms and lateralized fMRI response relative to HC. These findings indicate that there may be common and distinct anomalies in brain function underlying deficits in WM in SZ and MDD, which may serve as a potential functional neuroimaging-based diagnostic biomarker with value in supporting clinical diagnosis, measuring illness severity and assessing the efficacy of treatments for SZ and MDD at the brain level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Suping Yue
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
31
|
Carruthers SP, Brunetti G, Rossell SL. Sleep disturbances and cognitive impairment in schizophrenia spectrum disorders: a systematic review and narrative synthesis. Sleep Med 2021; 84:8-19. [PMID: 34090012 DOI: 10.1016/j.sleep.2021.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Individuals with schizophrenia spectrum disorders (SSD) experience frequent sleep disturbances in addition to enduring cognitive impairments. The purpose of the present review was to systematically summarise our current understanding of the association between sleep disturbances and cognition in SSD. Through this, it was aimed to identify features of disturbed sleep that are reliably associated with cognitive deficits in SSD and identify the gaps within the current literature that require future investigation. Eighteen relevant studies were identified following a two-stage screening process. Following a structured narrative synthesis of key study components, no clear and consistent pattern emerged. Considerable methodological variability was present amongst the reviewed studies. Although some broad consistencies were identified, such as associations between sleep spindle density and sleep-dependent memory consolidation, the overall pattern of results lacked a cohesive composition due to the diverse list of sleep parameters and cognitive domains investigated, as well as a lack of replication. Additional research is needed before more definitive remarks can be made regarding the influence of sleep disturbances on cognitive function in SSD.
Collapse
Affiliation(s)
- Sean P Carruthers
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Gemma Brunetti
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Hansen N, Singh A, Bartels C, Brosseron F, Buerger K, Cetindag AC, Dobisch L, Dechent P, Ertl-Wagner BB, Fliessbach K, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O, Priller J, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Vukovich R, Wiltfang J, Duezel E, Jessen F, Goya-Maldonado R. Hippocampal and Hippocampal-Subfield Volumes From Early-Onset Major Depression and Bipolar Disorder to Cognitive Decline. Front Aging Neurosci 2021; 13:626974. [PMID: 33967736 PMCID: PMC8097178 DOI: 10.3389/fnagi.2021.626974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The hippocampus and its subfields (HippSub) are reported to be diminished in patients with Alzheimer's disease (AD), bipolar disorder (BD), and major depressive disorder (MDD). We examined these groups vs healthy controls (HC) to reveal HippSub alterations between diseases. Methods: We segmented 3T-MRI T2-weighted hippocampal images of 67 HC, 58 BD, and MDD patients from the AFFDIS study and 137 patients from the DELCODE study assessing cognitive decline, including subjective cognitive decline (SCD), amnestic mild cognitive impairment (aMCI), and AD, via Free Surfer 6.0 to compare volumes across groups. Results: Groups differed significantly in several HippSub volumes, particularly between patients with AD and mood disorders. In comparison to HC, significant lower volumes appear in aMCI and AD groups in specific subfields. Smaller volumes in the left presubiculum are detected in aMCI and AD patients, differing from the BD group. A significant linear regression is seen between left hippocampus volume and duration since the first depressive episode. Conclusions: HippSub volume alterations were observed in AD, but not in early-onset MDD and BD, reinforcing the notion of different neural mechanisms in hippocampal degeneration. Moreover, duration since the first depressive episode was a relevant factor explaining the lower left hippocampal volumes present in groups.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Aditya Singh
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arda C Cetindag
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Birgit B Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Maike Tscheuschler
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Roberto Goya-Maldonado
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Khastkhodaei Z, Muthuraman M, Yang JW, Groppa S, Luhmann HJ. Functional and directed connectivity of the cortico-limbic network in mice in vivo. Brain Struct Funct 2021; 226:685-700. [PMID: 33442810 PMCID: PMC7981333 DOI: 10.1007/s00429-020-02202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
Higher cognitive processes and emotional regulation depend on densely interconnected telencephalic and limbic areas. Central structures of this cortico-limbic network are ventral hippocampus (vHC), medial prefrontal cortex (PFC), basolateral amygdala (BLA) and nucleus accumbens (NAC). Human and animal studies have revealed both anatomical and functional alterations in specific connections of this network in several psychiatric disorders. However, it is often not clear whether functional alterations within these densely interconnected brain areas are caused by modifications in the direct pathways, or alternatively through indirect interactions. We performed multi-site extracellular recordings of spontaneous activity in three different brain regions to study the functional connectivity in the BLA-NAC-PFC-vHC network of the lightly anesthetized mouse in vivo. We show that BLA, NAC, PFC and vHC are functionally connected in distinct frequency bands and determined the influence of a third brain region on this connectivity. In addition to describing mutual synchronicity, we determined the strength of functional connectivity for each region in the BLA-NAC-PFC-vHC network. We find a region-specificity in the strength of feedforward and feedback connections for each region in its interaction with other areas in the network. Our results provide insights into functional and directed connectivity in the cortico-limbic network of adult wild-type mice, which may be helpful to further elucidate the pathophysiological changes of this network in psychiatric disorders and to develop target-specific therapeutic interventions.
Collapse
Affiliation(s)
- Zeinab Khastkhodaei
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and MULTIMODAL Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and MULTIMODAL Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
34
|
Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie 2020; 76:75-86. [PMID: 33358639 DOI: 10.1016/j.therap.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
The multiple brain circuits involved in psychiatric diseases may appear daunting, but we prefer to concentrate on a select few, with a particular sensitivity to stress and neurodevelopmental issues, with a clear pharmacotherapy. This review is structured around 1. the key circuits, their role in health and disease, and the neurotransmitters maintaining them, 2. The influence of upbringing, stress, chronobiology, inflammation and infection, 3. The genetic and epigenetic influence on these circuits, particularly regarding copy number variants and neuronal plasticity, 4. The use and abuse of pharmacological agents with the particular risks of stress and chronobiology at critical periods. A major emphasis is placed on the links between hippocampus, prefrontal cortex and amygdala/periaqueductal grey which control specific aspects of cognition, mood, pain and even violence. Some of the research findings were from the innovative medicine initiative (IMI) NEWMEDS, a 22M€ academic/industrial consortium on the brain circuits critical for psychiatric disease.
Collapse
|
35
|
The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized clinical trial. Neuropsychopharmacology 2020; 45:2189-2197. [PMID: 32919407 PMCID: PMC7785021 DOI: 10.1038/s41386-020-00833-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Sleep spindles, defining oscillations of stage 2 non-rapid eye movement sleep (N2), mediate memory consolidation. Schizophrenia is characterized by reduced spindle activity that correlates with impaired sleep-dependent memory consolidation. In a small, randomized, placebo-controlled pilot study of schizophrenia, eszopiclone (Lunesta®), a nonbenzodiazepine sedative hypnotic, increased N2 spindle density (number/minute) but did not significantly improve memory. This larger double-blind crossover study that included healthy controls investigated whether eszopiclone could both increase N2 spindle density and improve memory. Twenty-six medicated schizophrenia outpatients and 29 healthy controls were randomly assigned to have a placebo or eszopiclone (3 mg) sleep visit first. Each visit involved two consecutive nights of high density polysomnography with training on the Motor Sequence Task (MST) on the second night and testing the following morning. Patients showed a widespread reduction of spindle density and, in both groups, eszopiclone increased spindle density but failed to enhance sleep-dependent procedural memory consolidation. Follow-up analyses revealed that eszopiclone also affected cortical slow oscillations: it decreased their amplitude, increased their duration, and rendered their phase locking with spindles more variable. Regardless of group or visit, the density of coupled spindle-slow oscillation events predicted memory consolidation significantly better than spindle density alone, suggesting that they are a better biomarker of memory consolidation. In conclusion, sleep oscillations are promising targets for improving memory consolidation in schizophrenia, but enhancing spindles is not enough. Effective therapies also need to preserve or enhance cortical slow oscillations and their coordination with thalamic spindles, an interregional dialog that is necessary for sleep-dependent memory consolidation.
Collapse
|
36
|
Something old, something new: A review of the literature on sleep-related lexicalization of novel words in adults. Psychon Bull Rev 2020; 28:96-121. [PMID: 32939631 DOI: 10.3758/s13423-020-01809-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 11/08/2022]
Abstract
Word learning is a crucial aspect of human development that depends on the formation and consolidation of novel memory traces. In this paper, we critically review the behavioural research on sleep-related lexicalization of novel words in healthy young adult speakers. We first describe human memory systems, the processes underlying memory consolidation, then we describe the complementary learning systems account of memory consolidation. We then review behavioural studies focusing on novel word learning and sleep-related lexicalization in monolingual samples, while highlighting their relevance to three main theoretical questions. Finally, we review the few studies that have investigated sleep-related lexicalization in L2 speakers. Overall, while several studies suggest that sleep promotes the gradual transformation of initially labile traces into more stable representations, a growing body of work suggests a rich variety of time courses for novel word lexicalization. Moreover, there is a need for more work on sleep-related lexicalization patterns in varied populations, such as L2 speakers and bilingual speakers, and more work on individual differences, to fully understand the boundary conditions of this phenomenon.
Collapse
|
37
|
Rivera Bonet CN, Hwang G, Hermann B, Struck AF, J Cook C, A Nair V, Mathis J, Allen L, Almane DN, Arkush K, Birn R, Conant LL, DeYoe EA, Felton E, Maganti R, Nencka A, Raghavan M, Shah U, Sosa VN, Ustine C, Prabhakaran V, Binder JR, Meyerand ME. Neuroticism in temporal lobe epilepsy is associated with altered limbic-frontal lobe resting-state functional connectivity. Epilepsy Behav 2020; 110:107172. [PMID: 32554180 PMCID: PMC7483612 DOI: 10.1016/j.yebeh.2020.107172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/18/2022]
Abstract
Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (p < 0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (p < 0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.
Collapse
Affiliation(s)
| | - Gyujoon Hwang
- Department of Medical Physics, University of Wisconsin-Madison, United States of America
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, United States of America
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, United States of America
| | - Cole J Cook
- Department of Medical Physics, University of Wisconsin-Madison, United States of America
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, United States of America
| | - Jedidiah Mathis
- Department of Radiology Froedtert & Medical College of Wisconsin, United States of America
| | - Linda Allen
- Department of Neurology, Medical College of Wisconsin, United States of America
| | - Dace N Almane
- Department of Neurology, University of Wisconsin-Madison, United States of America
| | - Karina Arkush
- Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, United States of America
| | - Rasmus Birn
- Neuroscience Training Program, University of Wisconsin-Madison, United States of America; Department of Medical Physics, University of Wisconsin-Madison, United States of America; Department of Psychiatry, University of Wisconsin-Madison, United States of America
| | - Lisa L Conant
- Department of Neurology, Medical College of Wisconsin, United States of America
| | - Edgar A DeYoe
- Department of Radiology Froedtert & Medical College of Wisconsin, United States of America; Department of Biophysics, Medical College of Wisconsin, United States of America
| | - Elizabeth Felton
- Department of Neurology, University of Wisconsin-Madison, United States of America
| | - Rama Maganti
- Department of Neurology, University of Wisconsin-Madison, United States of America
| | - Andrew Nencka
- Department of Radiology Froedtert & Medical College of Wisconsin, United States of America
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, United States of America
| | - Umang Shah
- Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, United States of America
| | - Veronica N Sosa
- Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, United States of America
| | - Candida Ustine
- Department of Neurology, Medical College of Wisconsin, United States of America
| | - Vivek Prabhakaran
- Neuroscience Training Program, University of Wisconsin-Madison, United States of America; Department of Neurology, University of Wisconsin-Madison, United States of America; Department of Radiology, University of Wisconsin-Madison, United States of America
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, United States of America; Department of Biophysics, Medical College of Wisconsin, United States of America
| | - Mary E Meyerand
- Neuroscience Training Program, University of Wisconsin-Madison, United States of America; Department of Medical Physics, University of Wisconsin-Madison, United States of America; Department of Radiology, University of Wisconsin-Madison, United States of America
| |
Collapse
|
38
|
Sleep-related memory consolidation in the psychosis spectrum phenotype. Neurobiol Learn Mem 2020; 174:107273. [PMID: 32659349 DOI: 10.1016/j.nlm.2020.107273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022]
Abstract
Sleep and memory processing impairments range from mild to severe in the psychosis spectrum. Relationships between memory processing and sleep characteristics have been described for schizophrenia, including unaffected first-degree relatives, but they are less clear across other high-risk groups within the psychosis spectrum. In this study, we investigated high-risk individuals with accumulated risk-factors for psychosis and subthreshold symptoms. Out of 1898 screened individuals, 44 age- and sex-matched participants were sub-grouped into those with substantial environmental risk factors for psychosis and subthreshold psychotic symptoms (high-risk group) and those without these phenotypes (low-risk controls). Four groups (high/low risk, morning/evening training) were trained and tested in the laboratory for sustained attention, motor skill memory (finger-tapping task) and declarative memory (word-pair learning task) immediately after training, again after a night of EEG-recorded sleep at home or a period of daytime wakefulness, and again after 24 h from training. No differences in sustained attention or in memory consolidation of declarative and motor skill memory were found between groups for any time period tested. However, a group difference was found for rapid-eye movement (REM) sleep in relation to motor skill memory: the longer the total sleep time, particularly longer REM sleep, the greater the performance gain, which occurred only in high-risk individuals. In conclusion, our results suggest a gain in motor skill performance with sufficient sleep opportunity for longer REM sleep in high-risk individuals with subthreshold psychotic symptoms. Declarative memory did not benefit from sleep consolidation above or beyond that of the control group.
Collapse
|
39
|
Zhang Y, Quiñones GM, Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: Recent findings and future directions. Schizophr Res 2020; 221:29-36. [PMID: 31753592 PMCID: PMC7231641 DOI: 10.1016/j.schres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during NREM sleep. Slow waves are ∼1 Hz, high amplitude, negative-positive deflections that are primarily generated and coordinated within the cortex, whereas sleep spindles are 12-16 Hz, waxing and waning oscillations that are initiated within the thalamus and regulated by thalamo-cortical circuits. In healthy subjects, these oscillations are thought to be responsible for the restorative aspects of sleep and have been increasingly shown to be involved in learning, memory and plasticity. Furthermore, deficits in sleep spindles and, to lesser extent, slow waves have been reported in both chronic schizophrenia (SCZ) and early course psychosis patients. In this article, we will first describe sleep spindle and slow wave characteristics, including their putative functional roles in the healthy brain. We will then review electrophysiological, genetic, and cognitive studies demonstrating spindle and slow wave impairments in SCZ and other psychotic disorders, with particularly emphasis on recent findings in early course patients. Finally, we will discuss how future work, including sleep studies in individuals at clinical high risk for psychosis, may help position spindles and slow waves as candidate biomarkers, as well as novel treatment targets, for SCZ and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | |
Collapse
|
40
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
41
|
Liu S, Li A, Liu Y, Yan H, Wang M, Sun Y, Fan L, Song M, Xu K, Chen J, Chen Y, Wang H, Guo H, Wan P, Lv L, Yang Y, Li P, Lu L, Yan J, Wang H, Zhang H, Wu H, Ning Y, Zhang D, Jiang T, Liu B. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2020; 216:267-274. [PMID: 31169117 DOI: 10.1192/bjp.2019.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated. AIMS To investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia. METHOD Genomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant. RESULTS The imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia. CONCLUSIONS These findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Shu Liu
- MSc Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.,School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Ang Li
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Hao Yan
- Associate Professor, Peking University Sixth Hospital, Institute of Mental Health.,Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Meng Wang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Lingzhong Fan
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Ming Song
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Associate Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Kaibin Xu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Jun Chen
- Associate Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Yunchun Chen
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Huaning Wang
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Hua Guo
- Professor, Zhumadian Psychiatric Hospital, China
| | - Ping Wan
- Professor, Zhumadian Psychiatric Hospital, China
| | - Luxian Lv
- Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Attending Doctor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Peng Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Associate Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Lin Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Jun Yan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Huiling Wang
- Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Huawang Wu
- Attending Doctor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Yuping Ning
- Professor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| |
Collapse
|
42
|
Schiel JE, Spiegelhalder K. [Interaction of insomnia in old age and associated diseases : Cognitive, behavioral and neurobiological aspects]. Z Gerontol Geriatr 2020; 53:112-118. [PMID: 32020285 DOI: 10.1007/s00391-020-01694-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
The prevalence of insomnia is particularly high in old age. Sleep disturbances and impaired daytime functioning reflected in mood swings and concentration difficulties are often accompanied by other mental disorders such as depression. The objective of this article is to shed light on the role of insomnia in the context of frequent comorbidities in middle and old age. The focus is on the identification of linkage points between insomnia and associated diseases on a neurobiological level; however, possible distinguishing features are also named and deliberations on cognitive behavioral aspects and integrative theories, such as the hyperarousal theory are discussed. In order to provide an outlook for future research opportunities, the UK Biobank is presented as a promising resource of long-term data. Finally, the contents of the preceding deliberations are critically reflected and practical implications for the treatment of older patients with insomnia are derived.
Collapse
Affiliation(s)
- J E Schiel
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität, Hauptstr. 6, 79104, Freiburg, Deutschland.
| | - K Spiegelhalder
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität, Hauptstr. 6, 79104, Freiburg, Deutschland
| |
Collapse
|
43
|
Zhou XT, Bao WD, Liu D, Zhu LQ. Targeting the Neuronal Activity of Prefrontal Cortex: New Directions for the Therapy of Depression. Curr Neuropharmacol 2020; 18:332-346. [PMID: 31686631 PMCID: PMC7327942 DOI: 10.2174/1570159x17666191101124017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Depression is one of the prevalent psychiatric illnesses with a comprehensive performance such as low self-esteem, lack of motivation, anhedonia, poor appetite, low energy, and uncomfortableness without a specific cause. So far, the cause of depression is not very clear, but it is certain that many aspects of biological psychological and social environment are involved in the pathogenesis of depression. Recently, the prefrontal cortex (PFC) has been indicated to be a pivotal brain region in the pathogenesis of depression. And increasing evidence showed that the abnormal activity of the PFC neurons is linked with depressive symptoms. Unveiling the molecular and cellular, as well as the circuit properties of the PFC neurons will help to find out how abnormalities in PFC neuronal activity are associated with depressive disorders. In addition, concerning many antidepressant drugs, in this review, we concluded the effect of several antidepressants on PFC neuronal activity to better understand its association with depression.
Collapse
Affiliation(s)
| | | | | | - Ling-Qiang Zhu
- Address correspondence to this author at the Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China; Tel: 862783692625; Fax: 862783692608; E-mail:
| |
Collapse
|
44
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
45
|
Yoshiike T, Honma M, Ikeda H, Kuriyama K. Bright light exposure advances consolidation of motor skill accuracy in humans. Neurobiol Learn Mem 2019; 166:107084. [PMID: 31491556 DOI: 10.1016/j.nlm.2019.107084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
Abstract
Light has attracted increasing attention as a critical determinant of memory processing. While sleep selectively consolidates newly encoded memories according to their future relevance, the role of light in human memory consolidation is largely unknown. Here, we report how bright light (BL), provided during encoding, influences online and offline consolidation of motor skill learning. We sought to determine whether relatively slower and faster key-press transitions within individuals were differentially consolidated by BL. Healthy human subjects were briefly exposed to either BL (>8000 lx) or control light (CL; <500 lx) during memory encoding at 13:00 h, when light minimally affects circadian phase-shifting, and were retested 24 h later. The effects of BL on online and offline performance gains were determined by accuracy and speed. BL-exposed subjects showed better overall performance accuracy during training and lower overnight accuracy gains after a subsequent night of sleep than did CL-exposed subjects. BL preferentially improved the initially most difficult individual key-press transitions during practice; these were only improved overnight under CL. By contrast, accuracy during what had been the easiest key-press transitions at the beginning of the experiment was unaffected by light conditions or online/offline learning processes. BL effects were not observed for performance speed, mood, or sleep-wake patterns. Brief BL exposure during training may advance motor memory selection and consolidation that optimally meet individual requirements for potential gains, which would otherwise depend on post-training sleep. This suggests a new way of enhancing brain plasticity to compensate for impaired sleep-dependent memory consolidation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Takuya Yoshiike
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan.
| | - Motoyasu Honma
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hiroki Ikeda
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-Ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Kenichi Kuriyama
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
46
|
Shinn AK, Yuksel C, Masters G, Pfaff D, Wamsley E, Djonlagic I, Öngür D, Manoach DS, Stickgold R. Procedural memory consolidation after a night of sleep in bipolar disorder with psychotic features. Schizophr Res 2019; 210:299-300. [PMID: 30611654 PMCID: PMC6688974 DOI: 10.1016/j.schres.2018.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA,Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Grace Masters
- Psychotic Disorders Division, McLean Hospital, Belmont, MA
| | - Danielle Pfaff
- Psychotic Disorders Division, McLean Hospital, Belmont, MA
| | - Erin Wamsley
- Department of Psychology, Furman University, Greenville, SC
| | - Ina Djonlagic
- Harvard Medical School, Boston, MA,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA,Harvard Medical School, Boston, MA
| | - Dara S. Manoach
- Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Robert Stickgold
- Harvard Medical School, Boston, MA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
47
|
Bidirectional optogenetic modulation of prefrontal-hippocampal connectivity in pain-related working memory deficits. Sci Rep 2019; 9:10980. [PMID: 31358862 PMCID: PMC6662802 DOI: 10.1038/s41598-019-47555-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of the prefrontal-hippocampal circuit has been identified as a leading cause to pain-related working-memory (WM) deficits. However, the underlying mechanisms remain poorly determined. To address this issue, we implanted multichannel arrays of electrodes in the prelimbic cortex (PL-mPFC), and in the dorsal hippocampal CA1 field (dCA1) to record the neural activity during the performance of a delayed non-match to sample (DNMS) task. The prefrontal-hippocampal connectivity was selectively modulated by bidirectional optogenetic inhibition or stimulation of local PL-mPFC glutamatergic calcium/calmodulin-dependent protein kinase-II alpha (CaMKIIα) expressing neurons during the DNMS task delay-period. The within-subject behavioral performance was assessed using a persistent neuropathic pain model – spared nerve injury (SNI). Our results showed that the induction of the neuropathic pain condition affects the interplay between PL-mPFC and dCA1 regions in a frequency-dependent manner, and that occurs particularly across theta oscillations while rats performed the task. In SNI-treated rats, this disruption was reversed by the selective optogenetic inhibition of PL-mPFC CaMKIIα-expressing neurons during the last portion of the delay-period, but without any significant effect on pain responses. Finally, we found that prefrontal-hippocampal theta connectivity is strictly associated with higher performance levels. Together, our findings suggest that PL-mPFC CaMKIIα-expressing neurons could be modulated by painful conditions and their activity may be critical for prefrontal-hippocampal connectivity during WM processing.
Collapse
|
48
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
49
|
Bitsch F, Berger P, Nagels A, Falkenberg I, Straube B. Impaired Right Temporoparietal Junction-Hippocampus Connectivity in Schizophrenia and Its Relevance for Generating Representations of Other Minds. Schizophr Bull 2019; 45:934-945. [PMID: 30239972 PMCID: PMC6581138 DOI: 10.1093/schbul/sby132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with impaired and exaggerated Theory of Mind processes, pointing on alterations in generating a representation of another person's mind. Despite recent work on healthy subjects suggesting that a coupling between the right temporoparietal junction (rTPJ) and the hippocampus is relevant for building representations of others' intentions, the neural basis of related dysfunctions in patients with schizophrenia remains unclear. Therefore, we used structural and functional magnetic resonance imaging together with a modified prisoner's dilemma game to test the hypotheses, that patients show dysfunctional social updating on behavioral level accompanied by altered rTPJ-hippocampus coupling on a functional and a structural level. During the task, 31 patients with schizophrenia and 20 healthy controls interacted with 3 playing partners, who behaved according to stable strategies competitively, cooperatively, or randomly. Our data show that patients adapted their social behavior less flexibly to the playing partners than healthy controls, indicating differences in forming mental representations of the counterparts' intentions. Patients showed lower functional connectivity between the rTPJ and temporal lobe regions such as the hippocampus, the fusiform gyrus, and the middle temporal gyrus, indicating that in patients the rTPJ fails to integrate memory-informed processing streams during mental state inferences. Remarkably, the rTPJ-hippocampus coupling accounted for the participants' adaptive social behavior in the task, suggesting that a neural pathway relevant for updating social knowledge and forming forward predictions in social interactions is altered in schizophrenia.
Collapse
Affiliation(s)
- Florian Bitsch
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Philipp Berger
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Arne Nagels
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Department of English and Linguistics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
50
|
Schapiro AC, Reid AG, Morgan A, Manoach DS, Verfaellie M, Stickgold R. The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus 2019; 29:1091-1100. [PMID: 31157946 DOI: 10.1002/hipo.23101] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
During sleep, the hippocampus plays an active role in consolidating memories that depend on it for initial encoding. There are hints in the literature that the hippocampus may have a broader influence, contributing to the consolidation of memories that may not initially require the area. We tested this possibility by evaluating learning and consolidation of the motor sequence task (MST) in hippocampal amnesics and demographically matched control participants. While the groups showed similar initial learning, only controls exhibited evidence of overnight consolidation. These results demonstrate that the hippocampus can be required for normal consolidation of a task without being required for its acquisition, suggesting that the area plays a broader role in coordinating memory consolidation than has previously been assumed.
Collapse
Affiliation(s)
- Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allison G Reid
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dara S Manoach
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|