1
|
Nelson EA, Kraguljac NV, Bashir A, Cofield SS, Maximo JO, Armstrong W, Lahti AC. A longitudinal study of hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic-naïve first episode psychosis patients. Mol Psychiatry 2025; 30:2017-2026. [PMID: 39580605 PMCID: PMC12014507 DOI: 10.1038/s41380-024-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Previous studies have implicated hippocampal abnormalities in the neuropathology of psychosis spectrum disorders. Reduced hippocampal volume has been reported across all illness stages, and this atrophy has been hypothesized to be the result of glutamatergic excess. To test this hypothesis, we measured hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic naïve first episode psychosis patients (FEP) and the progression of volume decline and changes in glutamate levels over a 16-week antipsychotic drug (APD) trial. We aimed to determine if subfield volumes at baseline were associated with glutamate levels, and if baseline glutamate levels were predictive of change in subfield volumes over time. METHODS We enrolled ninety-three medication-naïve FEP participants and 80 matched healthy controls (HC). T1 and T2 weighted images and magnetic resonance spectroscopy (MRS) data from a voxel prescribed in the left hippocampus were collected from participants at baseline and after 6 and 16 weeks of APD treatment. Hippocampal subfield volumes were assessed using FreeSurfer 7.1.1., while glutamate levels were quantified using jMRUI version 6.0. Data were analyzed using linear mixed models. RESULTS We found regional subfield volume deficits in the CA1, and presubiculum in FEP at baseline, that further expanded to include the molecular and granule cell layer of the dentate gyrus (GC/ML/DG) and CA4 by week 16. Baseline hippocampal glutamate levels in FEP were not significantly different than those of HC, and there was no effect of treatment on glutamate. Glutamate levels were not related to initial subfield volumes or volume changes over 16 weeks. CONCLUSION We report a progressive loss of hippocampal subfield volumes over a period of 16 weeks after initiation of treatment, suggestive of early progression in neuropathology. Our results do not suggest a role for glutamate as a driving factor. This study underscores the need to further research the mechanism(s) underlying this phenomenon as it has implications for early intervention to preserve cognitive decline in FEP participants.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, USA
| | - Adil Bashir
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Stacey S Cofield
- Department of Electrical and Computer Engineering, Auburn University, Auburn, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
2
|
Wu Y, Yan D, Yang J. Is Theta Burst Stimulation Ready as a Clinical Treatment for Bipolar Disorder? Bipolar Disord 2025. [PMID: 40230209 DOI: 10.1111/bdi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND To date, no studies have investigated the efficacy of theta burst stimulation (TBS) in the treatment of bipolar disorder (BD), and the results are inconclusive. OBJECTIVE We aim to systematically review the existing literature related to the efficacy of TBS in BD and synthesize the results through meta-analysis. METHODS We searched for PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of science, PsycINFO, CNKI, and Wan fang databases without language restriction through July 30, 2023, and included randomized-controlled trials that assessed the treatment effect of TBS in patients with BD. We used a random-effects model to pool effect sizes, which were expressed as Cohen's d (or Odds ratio) and 95% confidence intervals (CIs). The outcome measures include changes in Montgomery-Asberg Depression Rating Scale (MADRS) scores, response and remission rates of depression, and dropout rates. RESULT Eight randomized sham-controlled trials were included in the meta-analysis. The overall effect size of the outcome measures, including changes in MARDS scale scores, response rate, and remission rates, were -0.81 (95% confidence interval [CI]: 4.07 to 2.44), 1.07 (95% CI: 0.47 to 2.44) and 0.74 (95% CI: 0.38 to 1.45), respectively. Notably, the TBS group showed favorable efficacy without major adverse events. CONCLUSION Current studies indicate that TBS does not show significant antidepressant efficacy in patients with BD, although it is very well tolerated.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Yan
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianli Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Yang C, Zhang H, Tian J, Li Z, Liu R, Huang G, Zhao L. Structural alteration of hippocampal subfields in type 2 diabetes mellitus patients with dyslipidemia. Brain Res 2025; 1850:149368. [PMID: 39622483 DOI: 10.1016/j.brainres.2024.149368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To explore alterations in hippocampal subfield volumes in type 2 diabetes mellitus (T2DM) patients with dyslipidemia using hippocampal subfield segmentation. METHODS A total of 99 T2DM patients were prospectively recruited and divided into two groups based on the presence or absence of dyslipidemia: the T2DM dyslipidemia group and the T2DM normal lipidemia group. Additionally, 57 healthy volunteers were recruited as the healthy control (HC) group. General clinical data and cognitive psychological scale scores were collected. Subgroup analyses of T2DM patients were conducted based on the presence or absence of mild cognitive impairment (MCI). Hippocampal subfield volumes were analyzed using a general linear model with post-hoc Bonferroni correction. Significant differential hippocampal subfields were further analyzed in subgroups using the general linear model with post-hoc Bonferroni tests. Partial correlation analyses were performed to assess correlations between subfield-specific volumes and lipid and glucose metabolism indicators, as well as cognitive psychological scale scores. P-values from partial correlation analyses were corrected using the false discovery rate (FDR). RESULTS Volumes of the bilateral hippocampal tail, left presubiculum_body, and right subiculum_body were significantly reduced in the T2DM dyslipidemia group compared to both the HC group and the T2DM normal lipidemia group. Post-hoc analyses revealed that the T2DM dyslipidemia group had the smallest hippocampal subfield volumes. Further subgroup analysis showed that T2DM dyslipidemia patients with MCI exhibited the most pronounced volume reductions in the bilateral hippocampal tail and right subiculum_body. After FDR correction, partial correlation analysis indicated that, in the T2DM dyslipidemia group, the left hippocampal tail volume was positively correlated with the Montreal Cognitive Assessment score. In the T2DM dyslipidemia without MCI group, the volume of the right subiculum_body was negatively correlated with fasting insulin levels and the insulin resistance index, but positively correlated with total cholesterol and low-density lipoprotein cholesterol levels. In T2DM patients with normal lipidemia without MCI, the volume of the right subiculum_body was positively correlated with TC levels. CONCLUSION T2DM patients with dyslipidemia, especially those with MCI, exhibit significant atrophy in hippocampal subfield volumes, with correlations observed between lipid levels and hippocampal subfield volume changes. These findings suggest that lipid alterations may play an essential role in hippocampal structural abnormalities and cognitive impairment in T2DM patients. This study provides new insights into the neuropathophysiological mechanisms underlying brain alterations and cognitive decline in T2DM.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China
| | - Jing Tian
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhoule Li
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ruifang Liu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
4
|
Zhang L, Wang W, Ruan Y, Li Z, Sun L, Ji GJ, Tian Y, Wang K. Altered functional connectivity and hyperactivity of the caudal hippocampus in schizophrenia compared with bipolar disorder: a resting state fMRI (functional magnetic resonance imaging) study. BMC Psychiatry 2025; 25:182. [PMID: 40016773 PMCID: PMC11866882 DOI: 10.1186/s12888-025-06632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Schizophrenia patients frequently present with structural and functional abnormalities of the hippocampus (Hipp). Further, these abnormalities are often associated with specific symptom profiles. AIM To determine whether schizophrenia patients show specific functional connectivity (FC) and activity abnormalities in each hippocampal subregion compared to the BD (bipolar disorder) and HC (healthy control) groups. METHODS Basal activation state and functional connectivity (FC) in four subregions of the bilateral Hipp were examined: left caudal (cHipp_L), right caudal (cHipp_R), left rostral (rHipp_L), and right rostral (rHipp_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients, 57 bipolar disorder (BD) patients, and 45 healthy controls (HCs), and analyzed for fractional amplitude of low-frequency fluctuations (fALFF) as a measure of basal neural activity and for whole-brain FC based on the hippocampal subregions. RESULTS The schizophrenia group exhibited greater fALFF in bilateral cHipp (the caudal part of hippocampus) and rHipp (the rostral part of hippocampus) subregions compared to BD and HC groups as well as increased FC between the bilateral cHipp and multiple brain regions, including the thalamus, putamen, middle frontal gyrus, parietal cortex, and precuneus. Moreover, fALFF values of the bilateral cHipp were positively correlated with the severity of clinical symptoms as measured by the Positive and Negative Syndrome Scale. CONCLUSIONS These findings confirm an important contribution of hippocampal dysfunction, especially of the cHipp, in schizophrenia. Further, hyper-connectivity and hyperactivity of the cHipp could serve as a biomarker for therapeutic development.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Mental Health Center, Hefei, Anhui Province, China.
- Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, 316 Huangshani Road, Hefei, Anhui Province, China.
| | - Wenli Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
- Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yuan Ruan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
- Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Zhiyong Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
- Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Le Sun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
- Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
5
|
Lappas AS, Ioannou M, Christodoulou NG. Histopathological evidence of cellular alterations in the dentate gyrus is associated with aberrant RB1CC1-ATG16L1 expression in the hippocampus among older adults with chronic schizophrenia: A pilot post-mortem study. Schizophr Res 2025; 275:14-24. [PMID: 39612766 DOI: 10.1016/j.schres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Recent evidence brings autophagy, and specifically the RB1CC1 gene into sharp focus as aetiologically relevant to Schizophrenia. Our understanding of whether and how these genetic signatures translate to cellular functions remains limited. MATERIAL AND METHODS Post-mortem study of 10 individuals with Schizophrenia and 18 individuals without any neurological/psychiatric disorder, matched for age, sex, post-mortem-interval, pH and BRAAK score. Formalin-fixed, paraffin-embedded, 6 μm sections cut through segments of the anterior, middle and posterior left or right hippocampus were examined for histopathological differences and immunohistochemical expression of RB1CC1 and ATG16L1 proteins. RESULTS Dentate gyrus (DG) granule cells area (p = 0.005) and circularity (p = 0.012) were significantly lower among Schizophrenia vs. controls. Antipsychotics were associated with lower circularity (p = 0.007). RB1CC1 and ATG16L1 immunoexpression were positively correlated (p < 0.001) and significantly lower in the CA1 (p = 0.047, p = 0.005, respectively). RB1CC1 immunoexpression was significantly higher in the DG among Schizophrenia vs. controls (p = 0.047,). The latter was more pronounced among donors treated with antipsychotics. Lower ATG16L1 CA1 immunoreactivity was correlated with lower granule cell area (p < 0.001). CONCLUSIONS For the first time, we present histopathological evidence of morphological alterations in the DG of the human brain in Schizophrenia. We propose that these changes indicate DG developmental arrest, which is associated with diminished RB1CC1-ATG16L1-mediated autophagy initiation in the CA1. We suggest that this is a pathological process, whereas RB1CC1-ATG16L1 upregulation in the DG, and possibly in the CA4, may represent a compensatory/restorative mechanism. Antipsychotics may upregulate RB1CC1-ATG16L1 autophagy initiation. Larger studies are required to validate these findings and explore clinical correlations.
Collapse
Affiliation(s)
- Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece; Aneurin Bevan University Health Board, United Kingdom.
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
6
|
Yang C, Zhang H, Ma Z, Fan Y, Xu Y, Tan J, Tian J, Cao J, Zhang W, Huang G, Zhao L. Structural and functional alterations of the hippocampal subfields in T2DM with mild cognitive impairment and insulin resistance: A prospective study. J Diabetes 2024; 16:e70029. [PMID: 39537579 PMCID: PMC11560383 DOI: 10.1111/1753-0407.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR) and is often accompanied by mild cognitive impairment (MCI). The detrimental effects of T2DM and IR on the hippocampus have been extensively demonstrated. Few studies have examined the effects of IR on structure and function of hippocampal subfields in T2DM-MCI patients. METHOD A total of 104 T2DM patients were recruited in this prospective study and divided into four groups (T2DM-MCI-higherIR, n = 17; T2DM-MCI-lowerIR, n = 32; T2DM-nonMCI-higherIR, n = 19; T2DM-nonMCI-lowerIR, n = 36). Structure and function MRI data were captured. Clinical variables and neuropsychological scores were determined for all participants. Hippocampal subfield volume and functional connectivity were compared among four groups. Partial correlation analysis was performed between imaging indicators, clinical variables, and neuropsychological scores in all patients. RESULTS T2DM-MCI-higher IR group had the smallest volumes of bilateral hippocampal tail, right subiculum-body, right GC-ML-DG-body, and right CA4-body. IR in right hippocampal tail, right subiculum-body, and right GC-ML-DG-body exerted main effect. Furthermore, elevated functional connectivity was found between right subiculum-body and bilateral dorsolateral prefrontal cortex and right anterior cingulate-medial prefrontal cortex. Hippocampal subfield volume positively correlates with total cholesterol and triglycerides and negatively correlates with fasting insulin. CONCLUSION The present study found that T2DM-MCI patients have structural and functional alterations in hippocampal subfields, and IR is a negative factor influencing the alteration of hippocampal subfields volume. These findings support the importance of IR in T2DM-MCI patients and might be potential neuroimaging biomarkers of cerebral impairment in T2DM-MCI patients.
Collapse
Affiliation(s)
- Chen Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Huiyan Zhang
- School of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Zihan Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Yanjun Fan
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Yanan Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Jian Tan
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Jing Tian
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Jiancang Cao
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Wenwen Zhang
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Gang Huang
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Lianping Zhao
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
7
|
Gurok MG, Aksoy DB, Mermi O, Korkmaz S, Tabara MF, Yildirim H, Atmaca M. Hippocampus and amygdala volumes are reduced in patients with schizoaffective disorder. Psychiatry Res Neuroimaging 2024; 342:111840. [PMID: 38875767 DOI: 10.1016/j.pscychresns.2024.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
We aimed to examine the hippocampus and amygdala volumes in patients with schizoaffective disorder with the notion that schizoaffective disorder has strong resemblance of clinical presentation with schizophrenia and bipolar disorder and that there have been studies on regions of interest volumes in patients with schizophrenia and bipolar disorder but not in patients with schizoaffective disorder. Eighteen patients with schizoaffective disorder and nineteen healthy controls were included into the study. Hippocampus and amygdala volumes were examined by using the MRI. Both hippocampus and amygdala volumes were statistically significantly reduced in patients with schizoaffective disorder compared to those of the healthy control comparisons (p<0.001 for the hippocampus and p<0.001 for the amygdala). In summary, our findings of the present study suggest that patients with schizoaffective disorder seem to have smaller volumes of the hippocampus and amygdala regions and that our results were in accordance with those obtained both in patients with schizophrenia and bipolar disorder, considering that schizoaffective disorder might have neuroanatomic similarities with both schizophrenia and bipolar disorder. Beacuse of some limitations aforementioned especially age, it is required to replicate our present results in this patient group.
Collapse
Affiliation(s)
- M Gurkan Gurok
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | - Dilek Bakis Aksoy
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey
| | - Osman Mermi
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | - Sevda Korkmaz
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | | | - Hanefi Yildirim
- Firat University School of Medicine Department of Radiology, Elazig, Turkey.
| | - Murad Atmaca
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| |
Collapse
|
8
|
Zhang T, Zhao L, Chen C, Yang C, Zhang H, Su W, Cao J, Shi Q, Tian L. Structural and Functional Alterations of Hippocampal Subfields in Patients With Adult-Onset Primary Hypothyroidism. J Clin Endocrinol Metab 2024; 109:1707-1717. [PMID: 38324411 DOI: 10.1210/clinem/dgae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
CONTEXT Hypothyroidism is often associated with cognitive and emotional dysregulation; however, the underlying neuropathological mechanisms remain elusive. OBJECTIVE The study aimed to characterize abnormal alterations in hippocampal subfield volumes and functional connectivity (FC) in patients with subclinical hypothyroidism (SCH) and overt hypothyroidism (OH). METHODS This cross-sectional observational study comprised 47 and 40 patients with newly diagnosed adult-onset primary SCH and OH, respectively, and 53 well-matched healthy controls (HCs). The demographics, clinical variables, and neuropsychological scale scores were collected. Next, the hippocampal subfield volumes and seed-based FC were compared between the groups. Finally, correlation analyses were performed. RESULTS SCH and OH exhibited significant alterations in cognitive and emotional scale scores. Specifically, the volumes of the right granule cell molecular layer of the dentate gyrus (GC-ML-DG) head, cornu ammonis (CA) 4, and CA3 head were reduced in the SCH and OH groups. Moreover, the volumes of the right molecular layer head, CA1 body, left GC-ML-DG head, and CA4 head were lower in SCH. In addition, the hippocampal subfield volumes decreased more significantly in SCH than OH. The seed-based FC decreased in SCH but increased in OH compared with HCs. Correlation analyses revealed thyroid hormone was negatively correlated with FC values in hypothyroidism. CONCLUSION Patients with SCH and OH might be at risk of cognitive decline, anxiety, or depression, and exhibited alterations in volume and FC in specific hippocampal subfields. Furthermore, the reduction in volume was more pronounced in SCH. This study provides novel insights into the neuropathological mechanisms of brain impairment in hypothyroidism.
Collapse
Affiliation(s)
- Taotao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Lianping Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Chen Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Huiyan Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Wenxiu Su
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Qian Shi
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Bahnsen K, Wronski M, Keeler JL, King JA, Preusker Q, Kolb T, Weidner K, Roessner V, Bernardoni F, Ehrlich S. Differential longitudinal changes of hippocampal subfields in patients with anorexia nervosa. Psychiatry Clin Neurosci 2024; 78:186-196. [PMID: 38018338 PMCID: PMC11488614 DOI: 10.1111/pcn.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/26/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a mental disorder characterized by dietary restriction, fear of gaining weight, and distorted body image. Recent studies indicate that the hippocampus, crucial for learning and memory, may be affected in AN, yet subfield-specific effects remain unclear. We investigated hippocampal subfield alterations in acute AN, changes following weight restoration, and their associations with leptin levels. METHODS T1-weighted magnetic resonance imaging scans were processed using FreeSurfer. We compared 22 left and right hemispheric hippocampal subfield volumes cross-sectionally and longitudinally in females with acute AN (n = 165 at baseline, n = 110 after partial weight restoration), healthy female controls (HCs; n = 271), and females after long-term recovery from AN (n = 79) using linear models. RESULTS We found that most hippocampal subfield volumes were significantly reduced in patients with AN compared with HCs (~-3.9%). Certain areas such as the subiculum exhibited no significant reduction in the acute state of AN, while other areas, such as the hippocampal tail, showed strong decreases (~-9%). Following short-term weight recovery, most subfields increased in volume. Comparisons between participants after long-term weight-recovery and HC yielded no differences. The hippocampal tail volume was positively associated with leptin levels in AN independent of body mass index. CONCLUSIONS Our study provides evidence of differential volumetric differences in hippocampal subfields between individuals with AN and HC and almost complete normalization after weight rehabilitation. These alterations are spatially inhomogeneous and more pronounced compared with other major mental disorders (e.g. major depressive disorder and schizophrenia). We provide novel insights linking hypoleptinemia to hippocampal subfield alterations hinting towards clinical relevance of leptin normalization in AN recovery.
Collapse
Affiliation(s)
- Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marie‐Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Neuroendocrine Unit, Department of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Johanna Louise Keeler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Quirina Preusker
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Theresa Kolb
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Barth C, Nerland S, Jørgensen KN, Haatveit B, Wortinger LA, Melle I, Haukvik UK, Ueland T, Andreassen OA, Agartz I. Altered Sex Differences in Hippocampal Subfield Volumes in Schizophrenia. Schizophr Bull 2024; 50:107-119. [PMID: 37354490 PMCID: PMC10754184 DOI: 10.1093/schbul/sbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS The hippocampus is a heterogenous brain structure that differs between the sexes and has been implicated in the pathophysiology of psychiatric illnesses. Here, we explored sex and diagnostic group differences in hippocampal subfield volumes, in individuals with schizophrenia spectrum disorder (SZ), bipolar disorders (BD), and healthy controls (CTL). STUDY DESIGN One thousand and five hundred and twenty-one participants underwent T1-weighted magnetic resonance imaging (SZ, n = 452, mean age 30.7 ± 9.2 [SD] years, males 59.1%; BD, n = 316, 33.7 ± 11.4, 41.5%; CTL, n = 753, 34.1 ± 9.1, 55.6%). Total hippocampal, subfield, and intracranial volumes were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple regression models were fitted to examine sex-by-diagnostic (sub)group interactions in volume. In SZ and BD, separately, associations between volumes and clinical as well as cognitive measures were examined between the sexes using regression models. STUDY RESULTS Significant sex-by-group interactions were found for the total hippocampus, dentate gyrus, molecular layer, presubiculum, fimbria, hippocampal-amygdaloid transition area, and CA4, indicating a larger volumetric deficit in male patients relative to female patients when compared with same-sex CTL. Subgroup analyses revealed that this interaction was driven by males with schizophrenia. Effect sizes were overall small (partial η < 0.02). We found no significant sex differences in the associations between hippocampal volumes and clinical or cognitive measures in SZ and BD. CONCLUSIONS Using a well-powered sample, our findings indicate that the pattern of morphological sex differences in hippocampal subfields is altered in individuals with schizophrenia relative to CTL, due to higher volumetric deficits in males.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Kjetil N Jørgensen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Beathe Haatveit
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Unn K Haukvik
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
12
|
Xiu M, Fan Y, Liu Q, Chen S, Wu F, Zhang X. Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia. Int J Clin Health Psychol 2023; 23:100402. [PMID: 37663043 PMCID: PMC10469074 DOI: 10.1016/j.ijchp.2023.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Previous studies have indicated that glucose metabolism and altered hippocampal structure and function play a pivotal role in cognitive deficits in schizophrenia (SZ). This study was designed to explore the inter-relationship between glucose metabolism, hippocampal subfield volume, and cognitive function in the antipsychotics-naive first episode (ANFE) SZ patients. Methods We chose the fasting insulin, glucose, and insulin resistance (HOMA-IR) index as biomarkers of glucose metabolism. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). The hippocampal subfield volume, glucose metabolism biomarkers, and cognitive function were evaluated in 43 ANFE SZ and 29 healthy controls (HCs). Results Compared with HCs, SZ patients had higher fasting blood glucose and insulin levels and HOMA-IR (all p < 0.05). Correlation analysis revealed that category fluency performance was positively associated with fasting glucose level. Fasting insulin or HOMA-IR was positively associated with the hippocampal subfield volume in patients (all p<0.05). Moreover, the spatial span index score was associated with the volume of the right presubiculum, subiculum, and right hippocampal tail. In addition, multiple regression analysis found that the interaction effects of insulin × right fimbria or insulin × left fimbria were independent predictors of the MCCB total score. Conclusions Our findings suggest that abnormal glucose metabolism and cognitive decline occur in the early stage of SZ. The interaction between abnormal glucose metabolism and hippocampal subfields was associated with cognitive functions in SZ.
Collapse
Affiliation(s)
- Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yong Fan
- Qingdao Mental Health Center, Qingdao, China
| | - Qinqin Liu
- Qingdao Mental Health Center, Qingdao, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Wang K, Li X, Wang X, Hommel B, Xia X, Qiu J, Fu Y, Zhou Z. In vivo analyses reveal hippocampal subfield volume reductions in adolescents with schizophrenia, but not with major depressive disorder. J Psychiatr Res 2023; 165:56-63. [PMID: 37459779 DOI: 10.1016/j.jpsychires.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Adult studies have reported atypicalities in the hippocampus and subfields in patients with schizophrenia (SCZ) and major depressive disorder (MDD). Both affective and psychotic disorders typically onset in adolescence, when human brain develops rapidly and shows increased susceptibility to adverse environments. However, few in vivo studies have investigated whether hippocampus subfield abnormalities occur in adolescence and whether they differ between SCZ and MDD cases. METHODS We recruited 150 adolescents (49 SCZ patients, 67 MDD patients, and 34 healthy controls) and obtained their structural images. We used FreeSurfer to automatically segment hippocampus into 12 subfields and analyzed subfield volumetric differences between groups by analysis of covariance, covarying for age, sex, and intracranial volume. Composite measures by summing subfield volumes were further compared across groups and analyzed in relation to clinical characteristic. RESULTS SCZ adolescents showed significant volume reductions in subfields of CA1, molecular layer, subiculum, parasubiculum, dentate gyrus and CA4 than healthy controls, and almost significant reductions, as compared to the MDD group, in left molecular layer, dentate gyrus, CA2/3 and CA4. Composite analyses showed smaller volumes in SCZ group than in healthy controls in all bilateral composite measures, and reduced volumes in comparison to MDD group in all left composite measures only. CONCLUSIONS SCZ adolescents exhibited both hippocampal subfield and composite volumes reduction, and also showed greater magnitude of deviance than those diagnosed with MDD, particularly in core CA regions. These results indicate a hippocampal disease process, suggesting a potential intervention marker of early psychotic patients and risk youths.
Collapse
Affiliation(s)
- Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, 250358, China; Shandong Mental Health Center, Shandong University, Jinan, 250014, China
| | - Xingyan Li
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Xiaotong Wang
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zheyi Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
15
|
Perez-Rando M, Penades-Gomiz C, Martinez-Marin P, García-Martí G, Aguilar EJ, Escarti MJ, Grasa E, Corripio I, Sanjuan J, Nacher J. Volume alterations of the hippocampus and amygdala in patients with schizophrenia and persistent auditory hallucinations. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2023:S1888-9891(23)00014-9. [PMID: 37495479 DOI: 10.1016/j.rpsm.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Auditory hallucinations (AH) are one of the most prevalent symptoms of schizophrenia. They might cause several brain alterations, especially changes in the volumes of hippocampus and amygdala, regions related to the relay and processing of auditory cues and emotional memories. MATERIAL AND METHODS We have recruited 41 patients with schizophrenia and persistent AH, 35 patients without AH, and 55 healthy controls. Using their MRIs, we have performed semiautomatic segmentations of the hippocampus and amygdala using Freesurfer. We have also performed bilateral correlations between the total PSYRATS score and the volumes of affected subregions and nuclei. RESULTS In the hippocampus, we found bilateral increases in the volume of its hippocampal fissure and decreases in the right fimbria in patients with and without AH. The volume of the right hippocampal tail and left head of the granule cell layer from the dentate gyrus were decreased in patients with AH. In the amygdala, we found its left total volume was shrunk, and there was a decrease of its left accessory basal nucleus in patients with AH. CONCLUSIONS We have detected volume alterations of different limbic structures likely due to the presence of AH. The volumes of the right hippocampal tail and left head of the granule cell layer from the dentate gyrus, and total volume of the amygdala and its accessory basal nucleus, were only affected in patients with AH. Bilateral volume alterations in the hippocampal fissure and right fimbria seem inherent of schizophrenia and due to traits not contemplated in our research.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Carlota Penades-Gomiz
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Pablo Martinez-Marin
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Gracián García-Martí
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Mental Health, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Mental Health, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Mental Health and Psychiatry Department, Vic Hospital Consortium, Catalonia, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
16
|
Won GH, Bae S, Kim HK, Choi TY. Subcortical volume analysis in non-suicidal self-injury adolescents: A pilot study. Psychiatry Res Neuroimaging 2023; 331:111617. [PMID: 36907098 DOI: 10.1016/j.pscychresns.2023.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Given the high prevalence of non-suicidal self-injury (NSSI) among teenagers worldwide, the underlying mechanisms promoting such behavior must be urgently investigated. This study aimed to investigate neurobiological changes in the regional brain in adolescents with NSSI by comparing the volumes of the subcortical structures of 23 female adolescents with NSSI and 23 healthy controls with no history of psychiatric diagnosis or treatment. The NSSI group comprised those who underwent inpatient treatment for non-suicidal self-harm behavior at the Department of Psychiatry at Daegu Catholic University Hospital from July 1, 2018, to December 31, 2018. The control group comprised healthy adolescents from the community. We compared differences in the volume of the bilateral thalamus, caudate, putamen, hippocampus, and amygdala. All statistical analyses were conducted using SPSS Statistics Version 25. The NSSI group exhibited decreased subcortical volume in the left amygdala and marginally decreased subcortical volume in the left thalamus. Our results provide important clues about adolescent NSSI's underlying biology. Analysis of subcortical volumes between the NSSI and normal groups revealed subcortical volume differences in the left amygdala and thalamus, part of the core cerebral regions responsible for emotional processing and regulation, which may help explain the neurobiological mechanism of NSSI.
Collapse
Affiliation(s)
- Geun Hui Won
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Sujin Bae
- Office of Research, Chung-Ang University, Seoul, Republic of Korea
| | - Ho Kyun Kim
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Tae Young Choi
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Huth F, Tozzi L, Marxen M, Riedel P, Bröckel K, Martini J, Berndt C, Sauer C, Vogelbacher C, Jansen A, Kircher T, Falkenberg I, Thomas-Odenthal F, Lambert M, Kraft V, Leicht G, Mulert C, Fallgatter AJ, Ethofer T, Rau A, Leopold K, Bechdolf A, Reif A, Matura S, Biere S, Bermpohl F, Fiebig J, Stamm T, Correll CU, Juckel G, Flasbeck V, Ritter P, Bauer M, Pfennig A, Mikolas P. Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes. Brain Sci 2023; 13:870. [PMID: 37371350 DOI: 10.3390/brainsci13060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2-74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0-71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.
Collapse
Affiliation(s)
- Fabian Huth
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Kyra Bröckel
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Julia Martini
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christina Berndt
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Cathrin Sauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christoph Vogelbacher
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, 35037 Marburg, Germany
- Translational Clinical Psychology, Philipps-University Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
| | - Andreas Jansen
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, 35037 Marburg, Germany
| | - Tilo Kircher
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, 35037 Marburg, Germany
| | - Irina Falkenberg
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, 35037 Marburg, Germany
| | - Florian Thomas-Odenthal
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, 35037 Marburg, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vivien Kraft
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Mulert
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and University Giessen, 35039 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Centre for Psychiatry, Justus-Liebig University Giessen, 35390 Gießen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tuebingen Center for Mental Health, University of Tuebingen, 72074 Tuebingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry, Tuebingen Center for Mental Health, University of Tuebingen, 72074 Tuebingen, Germany
| | - Anne Rau
- Department of Psychiatry, Tuebingen Center for Mental Health, University of Tuebingen, 72074 Tuebingen, Germany
| | - Karolina Leopold
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Andreas Bechdolf
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, 60323 Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, 60323 Frankfurt, Germany
| | - Silvia Biere
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, 60323 Frankfurt, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité University Medicine, 10117 Berlin, Germany
| | - Jana Fiebig
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité University Medicine, 10117 Berlin, Germany
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité University Medicine, 10117 Berlin, Germany
- Department of Clinical Psychiatry and Psychotherapy, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, NY 11004, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany
| | - Vera Flasbeck
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| | - Pavol Mikolas
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
18
|
Xia M, Wang Y, Su W, Tang Y, Zhang T, Cui H, Wei Y, Tang X, Xu L, Hu H, Guo Q, Qian Z, Wu X, Li C, Wang J. The effect of initial antipsychotic treatment on hippocampal and amygdalar volume in first-episode schizophrenia is influenced by age. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110780. [PMID: 37141986 DOI: 10.1016/j.pnpbp.2023.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Antipsychotic treatment has been shown to yield hippocampal and amygdalar volumetric changes in first-episode schizophrenia (FES). However, whether antipsychotic induced volumetric changes interact with age remains unclear. METHODS The current study includes data from 120 medication naïve FES patients and 110 matched healthy controls (HC). Patients underwent MRI scans before (T1) and after (T2) antipsychotic treatment. HCs underwent MRI scans at baseline only. The hippocampus and amygdala were segmented via Freesurfer 7. General linear models were conducted to investigate the effect of age by diagnosis interaction on baseline volume. Linear mixed models (LMM) were used to detect the effect of age on volumetric changes from pre to post treatment in FES. RESULTS GLM revealed a trending effect (F = 3.758, p = 0.054) of age by diagnosis interaction on the baseline volume of the left (whole) hippocampus, with older FES patients showing smaller hippocampal volumes, relative to HC, when controlled sex, education years, and ICV. LMM showed a significant age by time-point interaction effect (F = 4.194, estimate effect = -1.964, p = 0.043) on left hippocampal volume in all FES and significant time effect(F = 6.608,T1-T2(estimate effect) = 62.486, p = 0.011), whereby younger patients showed greater hippocampal volumetric decreases following treatment. At the subfield level, a significant time effect emerged in left molecular_layer_HP (F = 4.509,T1-T2(estimate effect) = 12.424, p = 0.032, FDR corrected) and left cornu ammonis(CA)4 (F = 4.800,T1-T2(estimate effect) = 7.527, p = 0.046, FDR corrected), implying volumetric reduction after treatment in these subfields. CONCLUSIONS Our findings suggest that age plays an important role in the neuroplastic mechanisms of initial antipsychotics on the hippocampus and amygdala of schizophrenia.
Collapse
Affiliation(s)
- Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yingchan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Hao Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xuming Wu
- Nantong Fourth People's Hospital & Nantong Brain Hospital, Jiangsu 226005, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
19
|
Li J, Zhang X, Yang H, Yang M, Sun H. Lack of correlation between hippocampal substructure atrophy and attention dysfunction in deficit schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:24. [PMID: 37080983 PMCID: PMC10119300 DOI: 10.1038/s41537-023-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Hippocampal abnormalities are an established finding in the neuroimaging study of schizophrenia. However, no studies have examined the possibility of regional hippocampal abnormalities specific to deficit schizophrenia (DS) and associations with the unique symptoms of this schizophrenia subtype. This study compared 33 DS and 39 non-deficit schizophrenia (NDS) patients and 38 healthy subjects for hippocampal subfield volumetry. Clinical symptoms were assessed by PANSS, cognition by the neurocognitive battery on the day of the MRI scan. The automatic hippocampal segmentation were preprocesses use FreeSurfer 7.2.0. Unfortunately, the associations between neurocognitive scores and hippocampal subfield volumes in the DS group were not significant after the Bonferroni correction. Our results did not support a causal relationship between hippocampal subregional atrophy and cognitive deficits in DS.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Hongyan Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China.
| |
Collapse
|
20
|
Senay O, Seethaler M, Makris N, Yeterian E, Rushmore J, Cho KIK, Rizzoni E, Heller C, Pasternak O, Szczepankiewicz F, Westin C, Losak J, Ustohal L, Tomandl J, Vojtisek L, Kudlicka P, Kikinis Z, Holt D, Lewandowski KE, Lizano P, Keshavan MS, Öngür D, Kasparek T, Breier A, Shenton ME, Seitz‐Holland J, Kubicki M. A preliminary choroid plexus volumetric study in individuals with psychosis. Hum Brain Mapp 2023; 44:2465-2478. [PMID: 36744628 PMCID: PMC10028672 DOI: 10.1002/hbm.26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Olcay Senay
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Magdalena Seethaler
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Psychotherapy, Campus Charité MittePsychiatric University Hospital Charité at St. Hedwig Hospital, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Edward Yeterian
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kang Ik K. Cho
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Elizabeth Rizzoni
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carina Heller
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| | - Ofer Pasternak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filip Szczepankiewicz
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carl‐Frederik Westin
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jan Losak
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Libor Ustohal
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Josef Tomandl
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Lubomir Vojtisek
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Peter Kudlicka
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Zora Kikinis
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daphne Holt
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Dost Öngür
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of MedicineMasaryk University and University Hospital BrnoBrnoCzech Republic
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martha E. Shenton
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Johanna Seitz‐Holland
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marek Kubicki
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
21
|
Abdolalizadeh A, Moradi K, Dabbagh Ohadi MA, Mirfazeli FS, Rajimehr R. Larger left hippocampal presubiculum is associated with lower risk of antisocial behavior in healthy adults with childhood conduct history. Sci Rep 2023; 13:6148. [PMID: 37061611 PMCID: PMC10105780 DOI: 10.1038/s41598-023-33198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/08/2023] [Indexed: 04/17/2023] Open
Abstract
Conduct Disorder (CD) is defined as aggressive, antisocial, and rule-breaking behavior during childhood. It is a major risk factor for developing antisocial personality disorder (ASPD) in adulthood. However, nearly half the CDs do not develop ASPD. Identification of reversion factors seems crucial for proper interventions. We identified 40 subjects with childhood history of CD (CC) and 1166 control subjects (HC) from Human Connectome Project. Their psychiatric, emotional, impulsivity, and personality traits were extracted. An emotion recognition task-fMRI analysis was done. We also did subregion analysis of hippocampus and amygdala in 35 CC and 69 demographically matched HCs. CC subjects scored significantly higher in antisocial-related evaluations. No differences in task-fMRI activation of amygdala and hippocampus were observed. CCs had larger subfields of the left hippocampus: presubiculum, CA3, CA4, and dentate gyrus. Further, an interaction model revealed a significant presubiculum volume × group association with antisocial, aggression, and agreeableness scores. Our study shows that healthy young adults with a prior history of CD still exhibit some forms of antisocial-like behavior with larger left hippocampal subfields, including presubiculum that also explains the variability in antisocial behavior. These larger left hippocampal subfield volumes may play a protective role against CD to ASPD conversion.
Collapse
Affiliation(s)
- AmirHussein Abdolalizadeh
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl Von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Mirfazeli
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Rajimehr
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. BIOLOGY 2023; 12:biology12030353. [PMID: 36979045 PMCID: PMC10045839 DOI: 10.3390/biology12030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Schizophrenia is a pathological condition characterized by delusions, hallucinations, and a lack of motivation. In this study, we performed a morphological analysis of regional biomarkers in early-onset schizophrenia, including cortical thicknesses, surface areas, surface curvature, and volumes extracted from T1-weighted structural magnetic resonance imaging (MRI) and compared these findings with a large cohort of neurotypical controls. Results demonstrate statistically significant abnormal presentation of the curvature of select brain regions in early-onset schizophrenia with large effect sizes, inclusive of the pars orbitalis, pars triangularis, posterior cingulate cortex, frontal pole, orbital gyrus, lateral orbitofrontal gyrus, inferior occipital gyrus, as well as in medial occipito-temporal, lingual, and insular sulci. We also observed reduced regional volumes, surface areas, and variability of cortical thicknesses in early-onset schizophrenia relative to neurotypical controls in the lingual, transverse temporal, cuneus, and parahippocampal cortices that did not reach our stringent standard for statistical significance and should be confirmed in future studies with higher statistical power. These results imply that abnormal neurodevelopment associated with early-onset schizophrenia can be characterized with structural MRI and may reflect abnormal and possibly accelerated pruning of the cortex in schizophrenia.
Collapse
|
23
|
Ristanovic I, Vargas TG, Damme KSF, Mittal VA. Hippocampal subfields, daily stressors, and resting cortisol in individuals at clinical high-risk for psychosis. Psychoneuroendocrinology 2023; 148:105996. [PMID: 36495626 PMCID: PMC9898196 DOI: 10.1016/j.psyneuen.2022.105996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The hippocampus, comprised of functionally distinct subfields, both regulates stress and is affected by it during psychosis pathogenesis. Hippocampal abnormalities are evident across psychosis spectrum and are associated with aberrant cortisol levels and greater environmental stressors exposure. These associations, particularly at the subfield-level, are poorly understood in individuals at clinical high-risk (CHR) for psychosis. This represents a significant literature gap given this critical pathogenetic period is characterized by an interplay between environmental stressors and biological susceptibility. METHODS A total of 121 participants including 51 CHR (mean age=18.61) and 70 healthy controls (HC; mean age=18.3) were enrolled in the study. Participants completed a structural scan, salivary cortisol assays, and a self-report measure assessing distress from daily stressors exposure (DSI). Hippocampal subfield segmentation was conducted using Freesurfer. RESULTS Smaller hippocampal subfields were associated with greater stress levels. Greater DSI was associated with lower volumes in CA1 (r = -0.38) and CA2/3 (r = -0.29), but not in CA4/DG (r = -0.28), presubiculum (r = -0.09), or subiculum (r = -0.17). Higher resting cortisol was associated with lower volumes in presubiculum (r = -0.4) but not subiculum (r = -0.22), CA1 (r = 0.08), CA2/3 (r = 0.1), or CA4/DG (r = -0.005). Regressions indicated effects for CA1 and DSI (β = 0.57, p = .03) and presubiculum and cortisol (β = 0.61, p = .02) are specific to CHR participants relative to HCs. CONCLUSIONS The findings provided insights into links between stress and brain vulnerability during psychosis-risk period. Regional differences highlighted potentially different mechanisms by which stress impacts specific subfields. Presubiculum may be more susceptible to the impact of early stress on HPA-axis and cornu amonis to acute stressors.
Collapse
Affiliation(s)
- Ivanka Ristanovic
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA.
| | - Teresa G Vargas
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA
| | - Katherine S F Damme
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA
| | - Vijay Anand Mittal
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Chicago, IL 60611, USA; Northwestern University, Medical Social Sciences, Chicago IL 60611, USA; Norhtwestern University, Institute for Policy Research, Evanston, IL 60208, USA
| |
Collapse
|
24
|
The Association of the Oral Microbiota with the Effects of Acid Stress Induced by an Increase of Brain Lactate in Schizophrenia Patients. Biomedicines 2023; 11:biomedicines11020240. [PMID: 36830777 PMCID: PMC9953675 DOI: 10.3390/biomedicines11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The altered cerebral energy metabolism central to schizophrenia can be linked to lactate accumulation. Lactic acid is produced by gastrointestinal bacteria, among others, and readily crosses the blood-brain barrier, leading to the brain acidity. This study aimed to examine the association of the oral microbiota with the effects of acid stress induced by an increase of brain lactate in schizophrenia patients. The study included patients with a diagnosis of acute polyphasic psychotic disorder meeting criteria for schizophrenia at 3-month follow-up. Results: Individuals with a significantly higher total score on the Positive and Negative Syndrome Scale had statistically significantly lower lactate concentrations compared to those with a lower total score and higher brain lactate. We observed a positive correlation between Actinomyces and lactate levels in the anterior cingulate cap and a negative correlation between bacteria associated with lactate metabolism and some clinical assessment scales. Conclusions: Shifts in the oral microbiota in favour of lactate-utilising bacterial genera may represent a compensatory mechanism in response to increased lactate production in the brain. Assessment of neuronal function mediated by ALA-LAC-dependent NMDA regulatory mechanisms may, thus, support new therapies for schizophrenia, for which acidosis has become a differentiating feature of individuals with schizophrenia endophenotypes.
Collapse
|
25
|
Categorical and Dimensional Deficits in Hippocampal Subfields Among Schizophrenia, Obsessive-Compulsive Disorder, Bipolar Disorder, and Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:91-101. [PMID: 35803485 DOI: 10.1016/j.bpsc.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The hippocampus is a core region of interest for all major mental disorders, and its subfields implement distinctive functions. It is unclear whether the mental disorders exhibit common patterns of hippocampal impairments, and we lack knowledge on whether and how hippocampal subfields represent deficit spectra across mental disorders. METHODS Using brain images of 1123 individuals scanned on a single magnetic resonance imaging scanner, we examined the commonality, specificity, and symptom associations of the volume of hippocampal subfields across patients with schizophrenia, patients with obsessive-compulsive disorder, patients with bipolar disorder, patients with major depressive disorder, and healthy control subjects. We further performed a transdiagnostic analysis of the individual variability of the volume of hippocampal subfields to reflect cross-disease gradients in the hippocampus. RESULTS We found common and disease-specific abnormalities in a few hippocampal fields and identified 2 reliable transdiagnostic factors in the hippocampal subfields, each reflecting a spectrum of mental disorders. The plane spanned by the 2 most reliable factors provided a clearer view of hippocampal volume abnormality spectra among the major mental disorders. In addition, functional and genetic enrichment analyses supported the different roles of the 2 hippocampal factors in mental disorders. CONCLUSIONS The volume of hippocampal subfields reflected some commonality and specificity among the 3 major mental disorders. We propose a new pathophysiological dimensional view of the hippocampus, reflecting at least 2 spectra of mental disorders, suggesting multivariate links among the diseases. This work highlights the value of the complementary categorical and dimensional views of the hippocampal deficits in mental disorders.
Collapse
|
26
|
Levman J, Jennings M, Rouse E, Berger D, Kabaria P, Nangaku M, Gondra I, Takahashi E. A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning. Front Neurosci 2022; 16:926426. [PMID: 36046472 PMCID: PMC9420897 DOI: 10.3389/fnins.2022.926426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
We have performed a morphological analysis of patients with schizophrenia and compared them with healthy controls. Our analysis includes the use of publicly available automated extraction tools to assess regional cortical thickness (inclusive of within region cortical thickness variability) from structural magnetic resonance imaging (MRI), to characterize group-wise abnormalities associated with schizophrenia based on a publicly available dataset. We have also performed a correlation analysis between the automatically extracted biomarkers and a variety of patient clinical variables available. Finally, we also present the results of a machine learning analysis. Results demonstrate regional cortical thickness abnormalities in schizophrenia. We observed a correlation (rho = 0.474) between patients' depression and the average cortical thickness of the right medial orbitofrontal cortex. Our leading machine learning technology evaluated was the support vector machine with stepwise feature selection, yielding a sensitivity of 92% and a specificity of 74%, based on regional brain measurements, including from the insula, superior frontal, caudate, calcarine sulcus, gyrus rectus, and rostral middle frontal regions. These results imply that advanced analytic techniques combining MRI with automated biomarker extraction can be helpful in characterizing patients with schizophrenia.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Center for Clinical Research, Nova Scotia Health Authority - Research, Innovation and Discovery, Halifax, NS, Canada
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
| | - Maxwell Jennings
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Ethan Rouse
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Derek Berger
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Priya Kabaria
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masahito Nangaku
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Iker Gondra
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Thapaliya K, Staines D, Marshall-Gradisnik S, Su J, Barnden L. Volumetric differences in hippocampal subfields and associations with clinical measures in myalgic encephalomyelitis/chronic fatigue syndrome. J Neurosci Res 2022; 100:1476-1486. [PMID: 35355311 PMCID: PMC9321967 DOI: 10.1002/jnr.25048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients suffer from a cognitive and memory dysfunction. Because the hippocampus plays a key role in both cognition and memory, we tested for volumetric differences in the subfields of the hippocampus in ME/CFS. We estimated hippocampal subfield volumes for 25 ME/CFS patients who met Fukuda criteria only (ME/CFSFukuda), 18 ME/CFS patients who met the stricter ICC criteria (ME/CFSICC), and 25 healthy controls (HC). Group comparisons with HC detected extensive differences in subfield volumes in ME/CFSICC but not in ME/CFSFukuda. ME/CFSICC patients had significantly larger volume in the left subiculum head (p < 0.001), left presubiculum head (p = 0.0020), and left fimbria (p = 0.004). Correlations of hippocampus subfield volumes with clinical measures were stronger in ME/CFSICC than in ME/CFSFukuda patients. In ME/CFSFukuda patients, we detected positive correlations between fatigue and hippocampus subfield volumes and a negative correlation between sleep disturbance score and the right CA1 body volume. In ME/CFSICC patients, we detected a strong negative relationship between fatigue and left hippocampus tail volume. Strong negative relationships were also detected between pain and SF36 physical scores and two hippocampal subfield volumes (left: GC‐ML‐DG head and CA4 head). Our study demonstrated that volumetric differences in hippocampal subfields have strong statistical inference for patients meeting the ME/CFSICC case definition and confirms hippocampal involvement in the cognitive and memory problems of ME/CFSICC patients.
Collapse
Affiliation(s)
- Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jiasheng Su
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
28
|
Zhang Y, Xu C. Effects of exosomes on adult hippocampal neurogenesis and neuropsychiatric disorders. Mol Biol Rep 2022; 49:6763-6777. [PMID: 35262819 DOI: 10.1007/s11033-022-07313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles originating from the endosomal system, which are involved in intercellular substance transfer and cell waste elimination. Recent studies implicate the roles of exosomes in adult hippocampal neurogenesis, a process through which new granule cells are generated in the dentate gyrus, and which is closely related to mood and cognition, as well as psychiatric disorders. As such, exosomes are recognized as potential biomarkers of neurologic and psychiatric disorders. This review briefly introduces the synthesis and secretion mechanism of exosomes, and discuss the relationship between exosomes and hippocampal neurogenesis, and their roles in regulating depression, epilepsy and schizophrenia. Finally, we discuss the prospects of their application in diagnosing disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ying Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chi Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China. .,Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
29
|
Ohi K, Ishibashi M, Torii K, Hashimoto M, Yano Y, Shioiri T. Differences in subcortical brain volumes among patients with schizophrenia and bipolar disorder and healthy controls. J Psychiatry Neurosci 2022; 47:E77-E85. [PMID: 35232800 PMCID: PMC8896343 DOI: 10.1503/jpn.210144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with schizophrenia and bipolar disorder have an overlapping polygenic architecture and clinical similarities, although the 2 disorders are distinct diagnoses with clinical dissimilarities. It remains unclear whether there are specific differences in subcortical volumes between schizophrenia and bipolar disorder, and whether the subcortical differences are affected by any clinical characteristics. We investigated differences in subcortical volumes bilaterally among patients with schizophrenia, patients with bipolar disorder and healthy controls. We also investigated the influences of clinical characteristics on specific subcortical volumes in these patient groups. METHODS We collected 3 T T 1-weighted MRI brain scans from 413 participants (157 with schizophrenia, 51 with bipolar disorder and 205 controls) with a single scanner at a single institute. We used FreeSurfer version 6.0 for processing the T 1-weighted images to segment the following subcortical brain volumes: thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala and nucleus accumbens. Differences in the 7 subcortical volumes were investigated among the groups. We also evaluated correlations between subcortical volumes and clinical variables in these patient groups. RESULTS Of 7 subcortical regions, patients with schizophrenia had significantly smaller volumes in the left thalamus (Cohen d = -0.29, p = 5.83 × 10-3), bilateral hippocampi (left, d = -0.36, p = 8.85 × 10-4; right, d = -0.41, p = 1.15 × 10-4) and left amygdala (d = -0.31, p = 4.02 × 10-3) than controls. Compared with controls, patients with bipolar disorder had bilateral reductions only in the hippocampal volumes (left, d = -0.52, p = 1.12 × 10-3; right, d = -0.58, p = 0.30 × 10-4). We also found that patients with schizophrenia had significantly smaller volumes in the bilateral amygdalae (left, d = -0.43, p = 4.22 × 10-3; right, d = -0.45, p = 4.56 × 10-3) than patients with bipolar disorder. We did not find any significant volumetric differences in the other 6 subcortical structures between patient groups (p > 0.05). Smaller left amygdalar volumes were significantly correlated with younger onset age only in patients with schizophrenia (r = 0.22, p = 5.78 × 10-3). LIMITATIONS We did not evaluate the differences in subcortical volumes between patients stratified based on clinical bipolar disorder subtype and a history of psychotic episodes because our sample size of patients with bipolar disorder was limited. CONCLUSION Our findings suggest that volumetric differences in the amygdala between patients with schizophrenia and those with bipolar disorder may be a putative biomarker for distinguishing 2 clinically similar diagnoses.
Collapse
Affiliation(s)
- Kazutaka Ohi
- From the Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan (Ohi, Shioiri); the Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan (Ohi); and the School of Medicine, Gifu University, Gifu, Japan (Ishibashi, Torii, Hashimoto, Yano)
| | | | | | | | | | | |
Collapse
|
30
|
Multi-Omics Analysis Reveals Myelin, Presynaptic and Nicotinate Alterations in the Hippocampus of G72/G30 Transgenic Mice. J Pers Med 2022; 12:jpm12020244. [PMID: 35207732 PMCID: PMC8878587 DOI: 10.3390/jpm12020244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
The primate-specific G72/G30 gene locus has been associated with major psychiatric disorders, such as schizophrenia and bipolar disorder. We have previously generated transgenic mice which carry the G72/G30 locus and express the longest G72 splice variant (LG72) protein encoded by this locus with schizophrenia-related symptoms. Here, we used a multi-omics approach, including quantitative proteomics and metabolomics to investigate molecular alterations in the hippocampus of G72/G30 transgenic (G72Tg) mice. Our proteomics analysis revealed decreased expression of myelin-related proteins and NAD-dependent protein deacetylase sirtuin-2 (Sirt2) as well as increased expression of the scaffolding presynaptic proteins bassoon (Bsn) and piccolo (Pclo) and the cytoskeletal protein plectin (Plec1) in G72Tg compared to wild-type (WT) mice. Metabolomics analysis indicated decreased levels of nicotinate in G72Tg compared to WT hippocampi. Decreased hippocampal protein expression for selected proteins, namely myelin oligodentrocyte glycoprotein (Mog), Cldn11 and myelin proteolipid protein (Plp), was confirmed with Western blot in a larger population of G72Tg and WT mice. The identified molecular pathway alterations shed light on the hippocampal function of LG72 protein in the context of neuropsychiatric phenotypes.
Collapse
|
31
|
Lang X, Wang D, Chen D, Xiu M, Zhou H, Wang L, Cao B, Zhang X. Association Between Hippocampal Subfields and Clinical Symptoms of First-Episode and Drug Naive Schizophrenia Patients During 12 Weeks of Risperidone Treatment. Neurotherapeutics 2022; 19:399-407. [PMID: 35099766 PMCID: PMC9130442 DOI: 10.1007/s13311-021-01174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Small hippocampal size may be implicated in the pathogenesis and psychopathology of schizophrenia (SCZ). However, does the volume of hippocampal subfields in SCZ patients affect response to antipsychotic treatment? In this study, we used risperidone to treat first-episode drug naïve (FEDN) SCZ patients for 12 weeks, and then explored the relationship between baseline hippocampal subfield volumes, as well as any changes in these hippocampal subfield volumes during treatment, and improvement in their psychopathological symptoms. By adopting a state-of the-art automated algorithm, the hippocampal subfields were segmented in 43 FEDN SCZ inpatients at baseline and after 12 weeks of risperidone monotherapy, as well as in 30 matched healthy controls. We adopted the Positive and Negative Syndrome Scale (PANSS) to assess psychopathological symptoms in patients at baseline and at post-treatment. Before treatment, SCZ patients had no significant differences in total or subfield hippocampal volumes compared with healthy volunteers. However, we found a significant correlation between a smaller left CA1 at baseline and a lower PANSS total score and general psychopathology sub-score at post-treatment (both p < 0.05). Furthermore, the left CA1 at baseline was significantly smaller in responders, who had >50% improvement in PANSS total score, than in non-responders (p < 0.05). Our results suggest that smaller left CA1 volume may be a predicator for improvement in psychotic symptoms of FEDN SCZ patients.
Collapse
Affiliation(s)
- Xiaoe Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Dongmei Wang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Huixia Zhou
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada.
| | - Xiangyang Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
The association of matrix metalloproteinase 9 (MMP9) with hippocampal volume in schizophrenia: a preliminary MRI study. Neuropsychopharmacology 2022; 47:524-530. [PMID: 33833403 PMCID: PMC8674225 DOI: 10.1038/s41386-021-00997-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 02/02/2023]
Abstract
Matrix metalloproteinases 9 (MMP9) are enzymes involved in regulating neuroplasticity in the hippocampus. This, combined with evidence for disrupted hippocampal structure and function in schizophrenia, has prompted our current investigation into the relationship between MMP9 and hippocampal volumes in schizophrenia. 34 healthy individuals (mean age = 32.50, male = 21, female = 13) and 30 subjects with schizophrenia (mean age = 33.07, male = 19, female = 11) underwent a blood draw and T1-weighted magnetic resonance imaging. The hippocampus was automatically segmented utilizing FreeSurfer. MMP9 plasma levels were measured with ELISA. ANCOVAs were conducted to compare MMP9 plasma levels (corrected for age and sex) and hippocampal volumes between groups (corrected for age, sex, total intracranial volume). Spearman correlations were utilized to investigate the relationship between symptoms, medication, duration of illness, number of episodes, and MMP9 plasma levels in patients. Last, we explored the correlation between MMP9 levels and hippocampal volumes in patients and healthy individuals separately. Patients displayed higher MMP9 plasma levels than healthy individuals (F(1, 60) = 21.19, p < 0.0001). MMP9 levels correlated with negative symptoms in patients (R = 0.39, p = 0.035), but not with medication, duration of illness, or the number of episodes. Further, patients had smaller left (F(1,59) = 9.12, p = 0.0040) and right (F(1,59) = 6.49, p = 0.013) hippocampal volumes. Finally, left (R = -0.39, p = 0.034) and right (R = -0.37, p = 0.046) hippocampal volumes correlated negatively with MMP9 plasma levels in patients. We observe higher MMP9 plasma levels in SCZ, associated with lower hippocampal volumes, suggesting involvement of MMP9 in the pathology of SCZ. Future studies are needed to investigate how MMP9 influences the pathology of SCZ over the lifespan, whether the observed associations are specific for schizophrenia, and if a therapeutic modulation of MMP9 promotes neuroprotective effects in SCZ.
Collapse
|
33
|
Robinson JL, Zhou X, Bird RT, Leavitt MJ, Nichols SJ, Blaine SK, Deshpande G. Neurofunctional Segmentation Shifts in the Hippocampus. Front Hum Neurosci 2021; 15:729836. [PMID: 34790106 PMCID: PMC8592061 DOI: 10.3389/fnhum.2021.729836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is one of the most phylogenetically preserved structures in the mammalian brain. Engaged in a host of diverse cognitive processes, there has been increasing interest in understanding how the hippocampus dynamically supports these functions. One of the lingering questions is how to reconcile the seemingly disparate cytoarchitectonic organization, which favors a dorsal-ventral layering, with the neurofunctional topography, which has strong support for longitudinal axis (anterior-posterior) and medial-lateral orientation. More recently, meta-analytically driven (e.g., big data) approaches have been employed, however, the question remains whether they are sensitive to important task-specific features such as context, cognitive processes recruited, or the type of stimulus being presented. Here, we used hierarchical clustering on functional magnetic resonance imaging (fMRI) data acquired from healthy individuals at 7T using a battery of tasks that engage the hippocampus to determine whether stimulus or task features influence cluster profiles in the left and right hippocampus. Our data suggest that resting state clustering appears to favor the cytoarchitectonic organization, while task-based clustering favors the neurofunctional clustering. Furthermore, encoding tasks were more sensitive to stimulus type than were recognition tasks. Interestingly, a face-name paired associate task had nearly identical clustering profiles for both the encoding and recognition conditions of the task, which were qualitatively morphometrically different than simple encoding of words or faces. Finally, corroborating previous research, the left hippocampus had more stable cluster profiles compared to the right hippocampus. Together, our data suggest that task-based and resting state cluster profiles are different and may account for the disparity or inconsistency in results across studies.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Xinyu Zhou
- Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Quora Inc., Mountain View, CA, United States
| | - Ryan T Bird
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Mackenzie J Leavitt
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Sara K Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Key Lab for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Center for Brain Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
34
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
35
|
Evermann U, Gaser C, Meller T, Pfarr J, Grezellschak S, Nenadić I. Nonclinical psychotic-like experiences and schizotypy dimensions: Associations with hippocampal subfield and amygdala volumes. Hum Brain Mapp 2021; 42:5075-5088. [PMID: 34302409 PMCID: PMC8449098 DOI: 10.1002/hbm.25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Schizotypy and psychotic-like experiences (PLE) form part of the wider psychosis continuum and may have brain structural correlates in nonclinical cohorts. This study aimed to compare the effects of differential schizotypy dimensions, PLE, and their interaction on hippocampal subfields and amygdala volumes in the absence of clinical psychopathology. In a cohort of 367 psychiatrically healthy individuals, we assessed schizotypal traits using the Oxford-Liverpool Inventory of Life Experiences (O-LIFE) and PLE using the short form of the Prodromal Questionnaire (PQ-16). Based on high-resolution structural MRI scans, we used automated segmentation to estimate volumes of limbic structures. Sex and total intracranial volume (Step 1), PLE and schizotypy dimensions (Step 2), and their interaction terms (Step 3) were entered as regressors for bilateral amygdala and hippocampal subfield volumes in hierarchical multiple linear regression models. Positive schizotypy, but not PLE, was negatively associated with left amygdala and subiculum volumes. O-LIFE Impulsive Nonconformity, as well as the two-way interaction between positive schizotypy and PLE, were associated with larger left subiculum volumes. None of the estimators for right hemispheric hippocampal subfield volumes survived correction for multiple comparisons. Our findings support differential associations of hippocampus subfield volumes with trait dimensions rather than PLE, and support overlap and interactions between psychometric positive schizotypy and PLE. In a healthy cohort without current psychosis risk syndromes, the positive association between PLE and hippocampal subfield volume occurred at a high expression of positive schizotypy. Further studies combining stable, transient, and genetic parameters are required.
Collapse
Affiliation(s)
- Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and PsychotherapyPhilipps‐Universität MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)MarburgGermany
| | - Christian Gaser
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
- Department of NeurologyJena University HospitalJenaGermany
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and PsychotherapyPhilipps‐Universität MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)MarburgGermany
| | - Julia‐Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and PsychotherapyPhilipps‐Universität MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)MarburgGermany
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and PsychotherapyPhilipps‐Universität MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)MarburgGermany
- Marburg University HospitalUKGMMarburgGermany
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and PsychotherapyPhilipps‐Universität MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)MarburgGermany
- Marburg University HospitalUKGMMarburgGermany
| |
Collapse
|
36
|
Mnemonic Discrimination Deficits in First-Episode Psychosis and a Ketamine Model Suggest Dentate Gyrus Pathology Linked to NMDA Receptor Hypofunction. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1185-1192. [PMID: 34649019 DOI: 10.1016/j.bpsc.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Converging evidence from neuroimaging and postmortem studies suggests that hippocampal subfields are differentially affected in schizophrenia. Recent studies report dentate gyrus dysfunction in chronic schizophrenia, but the underlying mechanisms remain to be elucidated. Here, we sought to examine if this deficit is already present in first-episode psychosis and if NMDA receptor hypofunction, a putative central pathophysiological mechanism in schizophrenia, experimentally induced by ketamine, would result in a similar abnormality. METHODS We applied a mnemonic discrimination task selectively taxing pattern separation in two experiments: 1) a group of 23 patients with first-episode psychosis and 23 matched healthy volunteers and 2) a group of 19 healthy volunteers before and during a ketamine challenge (0.27 mg/kg over 10 min, then 0.25 mg/kg/hour for 50 min, 0.01 mL/s). We calculated response bias-corrected pattern separation and recognition scores. We also examined the relationships between task performance and symptom severity as well as ketamine levels. RESULTS We reported a deficit in pattern separation performance in patients with first-episode psychosis compared with healthy volunteers (p = .04) and in volunteers during the ketamine challenge compared with baseline (p = .003). Pattern recognition was lower in patients with first-episode psychosis than in control subjects (p < .01). Exploratory analyses revealed no correlation between task performance and Repeatable Battery for the Assessment of Neuropsychological Status total scores or positive symptoms in patients with first-episode psychosis or with ketamine serum levels. CONCLUSIONS We observed a mnemonic discrimination deficit in both datasets. Our findings suggest a tentative mechanistic link between dentate gyrus dysfunction in first-episode psychosis and NMDA receptor hypofunction.
Collapse
|
37
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
38
|
Andreou D, Jørgensen KN, Nerland S, Engen K, Yolken RH, Andreassen OA, Agartz I. Cytomegalovirus infection associated with smaller dentate gyrus in men with severe mental illness. Brain Behav Immun 2021; 96:54-62. [PMID: 34010712 DOI: 10.1016/j.bbi.2021.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
Cytomegalovirus (CMV) infection is usually inapparent in healthy adults but persists for life. Neural progenitor/stem cells are main CMV targets, and dentate gyrus (DG) a major neurogenic niche. Smaller DG volume has been repeatedly reported in severe mental illness (SMI). Considering the suggested immune system, blood-brain barrier and DG disturbances in SMI, we hypothesized that CMV exposure is associated with smaller DG volume in patients, but not healthy controls (HC). Due to the differential male and female immune response to CMV, we hypothesized sex-dependent associations. 381 adult patients with SMI (schizophrenia spectrum or bipolar spectrum disorders) and 396 HC were included. MRI scans were obtained with 1.5T Siemens MAGNETOM Sonata scanner or 3T General Electric Signa HDxt scanner, and processed with FreeSurfer v6.0. CMV immunoglobulin G antibody concentrations were measured by solid phase immunoassay. We investigated main and interaction effects of CMV status (antibody positivity/CMV + vs. negativity/CMV-) and sex on DG in patients and HC. Among patients, there was a significant CMV-by-sex interaction on DG (p = 0.009); CMV + male patients had significantly smaller DG volume than CMV- male patients (p = 0.001, 39 mm3 volume difference) whereas no CMV-DG association was found in female patients. Post-hoc analysis among male patients showed that the CMV-DG association was present in both hemispheres and in both patients with schizophrenia spectrum and bipolar spectrum disorders, and further, that higher CMV antibody titers were associated with smaller DG. No CMV-DG association was found in HC. The results indicate a DG vulnerability to CMV infection in men with SMI.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kristine Engen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
39
|
Roeske MJ, Konradi C, Heckers S, Lewis AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 2021; 26:3524-3535. [PMID: 32724199 PMCID: PMC7854798 DOI: 10.1038/s41380-020-0853-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large-sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Christine Konradi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
40
|
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry 2021; 26:2440-2456. [PMID: 33398088 PMCID: PMC9129103 DOI: 10.1038/s41380-020-00981-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
Collapse
|
41
|
Koch SBJ, van Ast VA, Kaldewaij R, Hashemi MM, Zhang W, Klumpers F, Roelofs K. Larger dentate gyrus volume as predisposing resilience factor for the development of trauma-related symptoms. Neuropsychopharmacology 2021; 46:1283-1292. [PMID: 33479507 PMCID: PMC8134447 DOI: 10.1038/s41386-020-00947-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Early interventions to improve resilience require the identification of objective risk biomarkers for PTSD symptom development. Although altered hippocampal and amygdala volumes are consistently observed in PTSD, it remains currently unknown whether they represent a predisposing vulnerability factor for PTSD symptom development or an acquired consequence of trauma exposure and/or the disorder. We conducted a longitudinal, prospective study in 210 police recruits at high risk for trauma exposure (56 females(26.7%); mean[SD] age = 24.02[5.19]). Structural MRI scans and trauma-related symptom severity were assessed at pre-trauma baseline and at 16-month follow-up. Between assessments, police recruits were exposed to various potentially traumatic events during their police training. Police recruits reported a significant increase in police-related trauma exposure and stress-related symptoms between assessments. Smaller hippocampal left dentate gyrus (DG) volumes at baseline predicted increase in self-reported PTSD symptoms (B[SE] = -0.21[0.08], p = 0.011), stress symptoms (B[SE] = -0.16[0.07], p = 0.024) and negative affect (B[SE] = -0.21[0.07], p = 0.005) upon trauma exposure. Amount of police-related trauma exposure between assessments was positively associated with an increase in left basal amygdala nucleus volume (B[SE] = 0.11[0.05], p = 0.026). Taken together, smaller DG-volumes pre-trauma may represent a predisposing neurobiological vulnerability factor for development of trauma-related symptoms. On the other hand, amount of trauma exposure between assessments was positively associated with increased amygdala basal nucleus volume, suggesting acquired neural effects. These findings suggest that preventive interventions for PTSD aimed at improving resilience could be targeted at increasing DG-volume and potentially its functioning.
Collapse
Affiliation(s)
- Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinoud Kaldewaij
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mahur M Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wei Zhang
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Hoang D, Lizano P, Lutz O, Zeng V, Raymond N, Miewald J, Montrose D, Keshavan M. Thalamic, Amygdalar, and hippocampal nuclei morphology and their trajectories in first episode psychosis: A preliminary longitudinal study ✰. Psychiatry Res Neuroimaging 2021; 309:111249. [PMID: 33484937 PMCID: PMC7904670 DOI: 10.1016/j.pscychresns.2021.111249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022]
Abstract
The thalamus, amygdala, and hippocampus play important pathophysiologic roles in psychosis. Few studies have prospectively examined subcortical nuclei in relation to predicting clinical outcomes after a first-episode of psychosis (FEP). Here, we examined volumetric differences and trajectories among subcortical nuclei in FEP patients and their associations with illness severity. Clinical and brain volume measures were collected using a 1.5T MRI scanner and processed using FreeSurfer 6.0 from a prospective study of antipsychotic-naïve FEP patients of FEP-schizophrenia (FEP-SZ) (baseline, n = 38; follow-up, n = 17), FEP non-schizophrenia (FEP-NSZ) (baseline, n = 23; follow-up, n = 13), and healthy controls (HCs) (baseline, n = 47; follow-up, n = 29). Compared to FEP-NSZ and HCs, FEP-SZ had significantly smaller thalamic anterior nuclei volume at baseline. Longitudinally, FEP-SZ showed a positive rate of change in the amygdala compared to controls or FEP-NSZ, as well as in the basal, central and accessory basal nuclei compared to FEP-NSZ. Enlargement in the thalamic anterior nuclei predicted a worsening in overall psychosis symptoms. Baseline thalamic anterior nuclei alterations further specify key subcortical regions associated with FEP-SZ pathophysiology. Longitudinally, anterior nuclei volume enlargement may signal symptomatic worsening. The amygdala and thalamus structures may show diagnostic differences between schizophrenia and non-schizophrenia psychoses, while the thalamus changes may reflect disease or treatment related changes in clinical outcome.
Collapse
Affiliation(s)
- Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| | - Olivia Lutz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nicolas Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jean Miewald
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah Montrose
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Bond DJ, Silveira LE, Torres IJ, Lam RW, Yatham LN. Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: a longitudinal magnetic resonance spectroscopy study. Psychol Med 2021; 52:1-9. [PMID: 33706825 DOI: 10.1017/s0033291721000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We previously reported that bipolar disorder (BD) patients with clinically significant weight gain (CSWG; ⩾7% of baseline weight) in the 12 months after their first manic episode experienced greater limbic brain volume loss than patients without CSWG. It is unknown whether CSWG is also a risk factor for progressive neurochemical abnormalities. METHODS We investigated whether 12-month CSWG predicted greater 12-month decreases in hippocampal N-acetylaspartate (NAA) and greater increases in glutamate + glutamine (Glx) following a first manic episode. In BD patients (n = 58) and healthy comparator subjects (HS; n = 34), we measured baseline and 12-month hippocampal NAA and Glx using bilateral 3-Tesla single-voxel proton magnetic resonance spectroscopy. We used general linear models for repeated measures to investigate whether CSWG predicted neurochemical changes. RESULTS Thirty-three percent of patients and 18% of HS experienced CSWG. After correcting for multiple comparisons, CSWG in patients predicted a greater decrease in left hippocampal NAA (effect size = -0.52, p = 0.005). CSWG also predicted a greater decrease in left hippocampal NAA in HS with a similar effect size (-0.53). A model including patients and HS found an effect of CSWG on Δleft NAA (p = 0.007), but no diagnosis effect and no diagnosis × CSWG interaction, confirming that CSWG had similar effects in patients and HS. CONCLUSION CSWG is a risk factor for decreasing hippocampal NAA in BD patients and HS. These results suggest that the well-known finding of reduced NAA in BD may result from higher body mass index in patients rather than BD diagnosis.
Collapse
Affiliation(s)
- David J Bond
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Leonardo E Silveira
- Laboratory of Molecular Psychiatry, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre, and INCT for Translational Medicine, Porto Alegre, RS, Brazil
| | - Ivan J Torres
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Pin G, Coupé P, Nadal L, Manjon JV, Helmer C, Amieva H, Mazoyer B, Dartigues JF, Catheline G, Planche V. Distinct Hippocampal Subfields Atrophy in Older People With Vascular Brain Injuries. Stroke 2021; 52:1741-1750. [PMID: 33657856 DOI: 10.1161/strokeaha.120.031743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Many neurological or psychiatric diseases affect the hippocampus during aging. The study of hippocampal regional vulnerability may provide important insights into the pathophysiological mechanisms underlying these processes; however, little is known about the specific impact of vascular brain damage on hippocampal subfields atrophy. METHODS To analyze the effect of vascular injuries independently of other pathological conditions, we studied a population-based cohort of nondemented older adults, after the exclusion of people who were diagnosed with neurodegenerative diseases during the 14-year clinical follow-up period. Using an automated segmentation pipeline, 1.5T-magnetic resonance imaging at inclusion and 4 years later were assessed to measure both white matter hyperintensities and hippocampal subfields volume. Annualized rates of white matter hyperintensity progression and annualized rates of hippocampal subfields atrophy were then estimated in each participant. RESULTS We included 249 participants in our analyses (58% women, mean age 71.8, median Mini-Mental State Evaluation 29). The volume of the subiculum at baseline was the only hippocampal subfield volume associated with total, deep/subcortical, and periventricular white matter hyperintensity volumes, independently of demographic variables and vascular risk factors (β=-0.17, P=0.011; β=-0.25, P=0.020 and β=-0.14, P=0.029, respectively). In longitudinal measures, the annualized rate of subiculum atrophy was significantly higher in people with the highest rate of deep/subcortical white matter hyperintensity progression, independently of confounding factors (β=-0.32, P=0.014). CONCLUSIONS These cross-sectional and longitudinal findings highlight the links between vascular brain injuries and a differential vulnerability of the subiculum within the hippocampal loop, unbiased of the effect of neurodegenerative diseases, and particularly when vascular injuries affect deep/subcortical structures.
Collapse
Affiliation(s)
- Grégoire Pin
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| | - Pierrick Coupé
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire Bordelais de Recherche en Informatique, UMR 5800, PICTURA, Talence, France (P.C.)
| | - Louis Nadal
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| | - Jose V Manjon
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Spain (J.V.M.)
| | - Catherine Helmer
- University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Hélène Amieva
- University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Bernard Mazoyer
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.)
| | - Jean-François Dartigues
- Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.).,University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Gwénaëlle Catheline
- EPHE, PSL, Bordeaux, France (G.C.).,University of Bordeaux, CNRS, UMR 5287, Institut de Neurosciences cognitives et intégratives d'Aquitaine, France (G.C.)
| | - Vincent Planche
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| |
Collapse
|
45
|
Neuroprogression as an Illness Trajectory in Bipolar Disorder: A Selective Review of the Current Literature. Brain Sci 2021; 11:brainsci11020276. [PMID: 33672401 PMCID: PMC7926350 DOI: 10.3390/brainsci11020276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Bipolar disorder (BD) is a chronic and disabling psychiatric condition that is linked to significant disability and psychosocial impairment. Although current neuropsychological, molecular, and neuroimaging evidence support the existence of neuroprogression and its effects on the course and outcome of this condition, whether and to what extent neuroprogressive changes may impact the illness trajectory is still poorly understood. Thus, this selective review was aimed toward comprehensively and critically investigating the link between BD and neurodegeneration based on the currently available evidence. According to the most relevant findings of the present review, most of the existing neuropsychological, neuroimaging, and molecular evidence demonstrates the existence of neuroprogression, at least in a subgroup of BD patients. These studies mainly focused on the most relevant effects of neuroprogression on the course and outcome of BD. The main implications of this assumption are discussed in light of specific shortcomings/limitations, such as the inability to carry out a meta-analysis, the inclusion of studies with small sample sizes, retrospective study designs, and different longitudinal investigations at various time points.
Collapse
|
46
|
Brain morphology does not clearly map to cognition in individuals on the bipolar-schizophrenia-spectrum: a cross-diagnostic study of cognitive subgroups. J Affect Disord 2021; 281:776-785. [PMID: 33246649 DOI: 10.1016/j.jad.2020.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Characterisation of brain morphological features common to cognitively similar individuals with bipolar disorder (BD) and schizophrenia spectrum disorders (SSD) may be key to understanding their shared neurobiological deficits. In the current study we examined whether three previously characterised cross-diagnostic cognitive subgroups differed among themselves and in comparison to healthy controls across measures of brain morphology. METHOD T1-weighted structural magnetic resonance imaging scans were obtained for 143 individuals; 65 healthy controls and 78 patients (SSD, n = 40; BD I, n = 38) classified into three cross-diagnostic cognitive subgroups: Globally Impaired (n = 24), Selectively Impaired (n = 32), and Superior/Near-Normal (n = 22). Cognitive subgroups were compared to each other and healthy controls on three separate analyses investigating (1) global, (2) regional, and (3) vertex-wise comparisons of brain volume, thickness, and surface area. RESULTS No significant subgroup differences were evident in global measures of brain morphology. In region of interest analyses, the Selectively Impaired subgroup had greater right accumbens volume than those Superior/Near-Normal subgroup and healthy controls, and the Superior/Near-Normal subgroup had reduced volume of the left entorhinal region compared to all other groups. In vertex-wise comparisons, the Globally Impaired subgroup had greater right precentral volume than the Selectively Impaired subgroup, and thicker cortex in the postcentral region relative to the Superior/Near-Normal subgroup. LIMITATIONS Exploration of medication effects was limited in our data. CONCLUSIONS Although some differences were evident in this sample, generally cross-diagnostic cognitive subgroups of individuals with SSD and BD did not appear to be clearly distinguished by patterns in brain morphology.
Collapse
|
47
|
Ott CV, Knorr U, Jespersen A, Obenhausen K, Røen I, Purdon SE, Kessing LV, Miskowiak KW. Norms for the Screen for Cognitive Impairment in Psychiatry and cognitive trajectories in bipolar disorder. J Affect Disord 2021; 281:33-40. [PMID: 33285390 DOI: 10.1016/j.jad.2020.11.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The International Society for Bipolar Disorders Targeting Cognition Task Force recommends screening for and monitoring of cognitive impairments in patients with bipolar disorder (BD) with the Screen for Cognitive Impairment in Psychiatry (SCIP). The study aimed to provide the first demographically adjusted norms and change norms for the SCIP and to compare the cognitive trajectory over one year in remitted BD patients with normative cognitive change. METHODS Patients with fully or partially remitted BD and healthy controls (HC) were assessed with the SCIP at baseline and at a one-year follow-up. Regression-based models were used to determine demographically adjusted norms and change norms. Using the change models, predicted follow-up scores were calculated for BD and HC, and independent t-tests were used to compare deviations of the observed from the predicted follow-up scores for BD vs. HC to assess differences in cognitive trajectories. RESULTS Baseline data were collected for n=273 HC and n=218 BD, and follow-up data for n=139 HC and n=74 BD. Baseline norm models included age, sex and years of education, while change models included baseline SCIP scores and age. Patients with follow-up data showed selective impairments within verbal learning and recall at baseline. They followed the normative cognitive trajectories for all cognitive domains but verbal learning. LIMITATIONS Cognition was assessed with a screening tool. CONCLUSIONS We recommend implementing demographically adjusted norms and change norms for the SCIP in clinical and research settings. Change norms seem sensitive to subtle and selective cognitive decline over one year in remitted BD.
Collapse
Affiliation(s)
- Caroline V Ott
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulla Knorr
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Jespersen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kia Obenhausen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Isabella Røen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Scot E Purdon
- Alberta Hospital Edmonton and the Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Wang Y, Zuo C, Wang W, Xu Q, Hao L. Reduction in hippocampal volumes subsequent to heavy cannabis use: a 3-year longitudinal study. Psychiatry Res 2021; 295:113588. [PMID: 33261923 DOI: 10.1016/j.psychres.2020.113588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Cannabis exposure is related to neuroanatomical changes in brain regions rich in cannabinoid receptors, such as the hippocampus. However, researchers have not clearly determined whether persistent heavy cannabis use leads to morphological changes in the hippocampus or whether an earlier age of onset of first cannabis use and/or higher doses of cannabis exposure exacerbate these alterations. In this longitudinal study, we investigated whether continued heavy cannabis use in young adults is associated with an altered hippocampal volume. Twenty heavy cannabis users (CBs) and 22 healthy controls (HCs) underwent a comprehensive psychological assessment and a T1 structural scan at baseline and at a 3-year follow-up visit. Volumes of the hippocampus and its subregions were estimated using volBrain software. Except for the cornu ammonis 2 (CA2)/CA3 subregions, age had significant effects on all hippocampal subregions in both the CB and HC groups. The relative right hippocampal volume and absolute and relative right CA1 volumes displayed a greater rate of decrease in CBs compared to HCs. In addition, we explored the relationship between alterations in hippocampal volume and cannabis use characteristics. Changes in the relative right hippocampal volume and the relative right CA1 volume were related to age at first cannabis use but not to age at onset of frequent cannabis use. Alterations in the relative right hippocampal volume and absolute and relative right CA1 volumes were associated with Cannabis Use Disorder Identification Test (CUDIT) scores. Based on these results, heavy cannabis use in early adulthood is a risk factor for a greater rate of decrease in the volume of the right hippocampus (particularly the right CA1).
Collapse
Affiliation(s)
- Yanpei Wang
- Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenyi Zuo
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Wenchao Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Qinfang Xu
- Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Lei Hao
- Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
49
|
Sasabayashi D, Yoshimura R, Takahashi T, Takayanagi Y, Nishiyama S, Higuchi Y, Mizukami Y, Furuichi A, Kido M, Nakamura M, Noguchi K, Suzuki M. Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis. Front Psychiatry 2021; 12:642048. [PMID: 33828496 PMCID: PMC8019805 DOI: 10.3389/fpsyt.2021.642048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryo Yoshimura
- Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
50
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|