1
|
Harhangi MS, Simons SH, Bijma HH, Nguyen A, Nguyen TV, Kaitu’u-Lino T, Reiss IK, Jan Danser A, Broekhuizen M. Placental Endocannabinoid System: Focus on Preeclampsia and Cannabis Use. Hypertension 2025; 82:804-815. [PMID: 40238905 PMCID: PMC12002044 DOI: 10.1161/hypertensionaha.125.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The endocannabinoid system (ECS) plays an important role in the early stages of pregnancy, while cannabis use during pregnancy associates with a greater risk of preeclampsia. This study quantified the placental ECS component mRNA levels in gestational age-matched healthy pregnant women, women with preeclampsia, and women who used cannabis throughout their pregnancy. Next, it compared the effects of the endogenous ECS agonists anandamide and 2-arachidonoylglycerol with those of the cannabinoid receptor type 1 and 2 agonists HU-210 and HU-308 in chorionic plate arteries. METHODS Placental mRNA levels were quantified by quantitative polymerase chain reaction. Vascular reactivity was studied with and without selective cannabinoid receptor type 1 and 2 antagonists. RESULTS mRNA levels of 1,2-diacylglycerol lipase α, responsible for 2-arachidonoylglycerol generation, were lowered in preeclampsia, while mRNA levels of the anandamide-synthesizing enzyme N-acyl phosphatidylethanolamine-specific phospholipase D were upregulated in cannabis users. Anandamide-induced relaxation in healthy pregnancy was mediated via cannabinoid receptors type 1 and 2, while 2-arachidonoylglycerol induced relaxation via cannabinoid receptor type 1. In preeclampsia, the effects of anandamide and 2-arachidonoylglycerol were unaltered but no longer involved cannabinoid receptors, while in cannabis users their effects were absent. HU-210 and HU-308 relaxed healthy, but not preeclamptic vessels. The NO donor sodium nitroprusside similarly relaxed healthy and preeclamptic vessels, while its effects in cannabis users were greatly reduced. CONCLUSIONS The ECS is disturbed in preeclampsia, and endogenous ECS agonists lose their capacity to dilate in cannabis users, while such use also diminishes NO signaling. These data provide mechanistic evidence against cannabis use during pregnancy.
Collapse
Affiliation(s)
- Madhavi S. Harhangi
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Obstetrics and Fetal Medicine (M.S.H., H.H.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sinno H.P. Simons
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hilmar H. Bijma
- Division of Obstetrics and Fetal Medicine (M.S.H., H.H.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Nguyen
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Tuong-Vi Nguyen
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Tu’uhevaha Kaitu’u-Lino
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Pereira CF, Boileau I, Kloiber S. Effects of pharmacological inhibition of fatty acid amide hydrolase on corticosterone release: a systematic review of preclinical studies. DISCOVER MENTAL HEALTH 2025; 5:51. [PMID: 40195219 PMCID: PMC11977098 DOI: 10.1007/s44192-025-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/02/2025] [Indexed: 04/09/2025]
Abstract
Psychiatric conditions are often linked to dysfunction of the Hypothalamic-Pituitary-Adrenal (HPA) axis. The Endocannabinoid System (ECS) plays a significant role in stress and anxiety and interacts with the HPA axis. The ECS metabolizing enzyme, Fatty Acid Amide Hydrolase (FAAH), may be integral for HPA axis response to stress by reducing levels of the endocannabinoid anandamide (AEA). However, there is conflicting evidence regarding the effects of FAAH inhibition on stress-related hormone changes, and no comprehensive evaluation of this literature exists. This review aims to synthesize the literature on the impact of pharmacological FAAH inhibition on corticosterone levels in rodents. A systematic search of PubMed/MEDLINE, APA PsychInfo, and Embase up to July 2024 was conducted. Articles reporting the effects of FAAH inhibition on corticosterone levels in rodents were included. Risk of Bias was assessed using SYRCLE's Risk of Bias tool. This review included 21 articles. FAAH inhibition showed limited effects depending on type of FAAH inhibitor, stress exposure, and rodent age. Selective FAAH inhibition did not significantly affect corticosterone levels in the absence of stress and showed minimal effects following acute stress. After chronic stress, these compounds showed more pronounced effects, reducing corticosterone in 40% of studies. Limited studies employing flavonoid-based and dual FAAH/TRPV1 inhibitors suggested blunted corticosterone after acute, but not chronic stress. This review found that FAAH inhibition has inconsistent effects on corticosterone regulation, highlighting the complex and context-dependent role of FAAH inhibition in modulating stress hormone responses, warranting further investigation to clarify its therapeutic potential in stress-related disorders.
Collapse
Affiliation(s)
- Christina F Pereira
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Jones MR, Haggarty CJ, Petrie GN, Lunge AR, Morrison I, Hill MN, Heilig M, Mayo LM. Endocannabinoid contributions to the perception of socially relevant, affective touch in humans. Neuropsychopharmacology 2025; 50:849-855. [PMID: 39843850 PMCID: PMC11914470 DOI: 10.1038/s41386-025-02053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Social relationships are central to well-being. A subgroup of afferent nerve fibers, C-tactile (CT) afferents, are primed to respond to affective, socially relevant touch and may mitigate the effects of stress. The endocannabinoid ligand anandamide (AEA) modulates both social reward and stress. We thus hypothesized that AEA levels would be associated with the perceived pleasantness of affective touch in humans. Across two studies, we explored perceptions of affective, socially relevant touch and general affective stimuli. In study 1, adult participants (N = 101) were recruited based on presence (CM+) or absence (CM-) of documented childhood maltreatment (N = 52 CM+; N = 49 CM-). In study 2, healthy individuals were randomized to receive an inhibitor of fatty acid amide hydrolase (FAAH; PF-04457845) to increase AEA levels (n = 16) or placebo (n = 29). Outcomes included self-report ratings of touch pleasantness and intensity, valence and arousal ratings of affective images, and plasma levels of endocannabinoids AEA and 2-AG, cortisol, and oxytocin. In study 1, higher AEA levels were associated with a reduced preference for affective, CT-optimal touch. In study 2, pharmacological elevation of AEA resulted in reduced preference for affective touch. These effects were specific to social processing, as AEA levels were not related to ratings of affective images. In contrast to our hypothesis, elevated AEA was associated with reduced pleasantness ratings of CT-optimal, affective touch. This provides novel, in-human data linking AEA to social processing, adding nuance to the rationale for its use as a potential novel therapeutic target in disordered in social processing.
Collapse
Affiliation(s)
- Madeleine R Jones
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Connor J Haggarty
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Gavin N Petrie
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Abigail R Lunge
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - India Morrison
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Matthew N Hill
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Markus Heilig
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Leah M Mayo
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Elliott GO, Petrie GN, Kroll SL, Roche DJO, Mayo LM. Changes in peripheral endocannabinoid levels in substance use disorders: a review of clinical evidence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2025; 51:152-164. [PMID: 40197861 DOI: 10.1080/00952990.2025.2456499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 04/10/2025]
Abstract
Background: The endocannabinoid (eCB) system is a key modulator of stress and reward and is impacted by alcohol and drug use. Recently, the eCB system has been highlighted as a potential novel target in the treatment of substance use disorders (SUDs).Objectives: Understanding how chronic substance use impacts the function of the eCB system can provide a mechanistic rationale for targeting this system in the treatment of SUDs.Methods: A comprehensive review of studies assessing concentrations of eCB ligands N-arachidonoyl ethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) in individuals with a SUD diagnosis was performed using all EBSCO databases, PubMed, and Google Scholar. Methods and results related to eCB concentrations, diagnosis, and other factors (e.g. treatment status) were extracted from papers written in English and published in peer-reviewed journals before May 22, 2024.Results: Fifteen studies were reviewed; three in alcohol use disorder (AUD), three in cannabis use disorder (CUD), four in cocaine use disorder, one in opioid use disorder (OUD) and four across SUDs. Generally, AEA concentrations were usually, but not always, increased in AUD, CUD, OUD, and cocaine use disorder. 2-AG concentrations were measured less often but were increased in CUD and decreased in cocaine use disorder.Conclusions: Studies generally support the hypothesis that chronic substance use can impact eCB levels, most often with increased AEA and decreased (or not quantified) 2-AG concentrations, though results were often conflicting. Variability in methodology and study design may limit generalizability across studies.
Collapse
Affiliation(s)
- Georgia O Elliott
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Gavin N Petrie
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Sara L Kroll
- University Hospital of Psychiatry, Adult Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Daniel J O Roche
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland Baltimore, Baltimore, MD, USA
| | - Leah M Mayo
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2025; 37:e14911. [PMID: 39223918 PMCID: PMC11872018 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Anatomy and Cell BiologySchulich School of Medicine & Dentistry, Western UniversityLondonOntarioCanada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
6
|
Weidenauer A, Garani R, Campos Oller P, Belén Blasco M, Rusjan PM, Mizrahi R. Impact of Stress on the Endocannabinoid System: A [ 11C]-CURB Positron Emission Tomography Study in Early Psychosis: Les effets du stress sur le système endocannabinoïde : étude par tomographie par émission de positons avec l'indicateur radioactif [11C-CURB] dans la psychose précoce. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:251-259. [PMID: 39632555 PMCID: PMC11622212 DOI: 10.1177/07067437241300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Stress and traumatic experiences are well-established risk factors for psychiatric disorders. Stressful events can induce symptoms of anxiety and depression and may lead to overt psychosis, especially when there is an innate biological vulnerability. This study explores the role of the stress-regulating endocannabinoid system, specifically the activity of the enzyme fatty acid amid hydrolase (FAAH), a key regulatory enzyme for endocannabinoids, in association with stress by analysing data from healthy individuals and patients with psychosis. METHODS We performed a post-hoc exploratory analysis on 65 positron emission tomography scans using the selective FAAH radioligand [11C]CURB, encompassing 30 patients with psychosis (6 female) and 35 healthy controls (19 female). The study aimed to examine the association between FAAH activity and stressful life events, assessed through the Recent Life Events, Survey of Life Experiences, and Hassles and Uplifts Scale. RESULTS There was a significant difference regarding the number of recent stressors with higher levels in patients compared to healthy subjects (Survey of Life Experiences: t = 4.88, p < 0.001, hassles: t = 3.14, p = 0.003), however there was no significant relationship of brain FAAH activity and stressful life events in any of the applied scales across groups (Recent Life Events: F1,57 = 0.07, p = 0.80; Survey of Life Experiences: F1,57 = 1.75, p = 0.19; hassles: F1,56 = 1.06, p = 0.31). Linear mixed models performed separately for each group revealed that there was a positive association between FAAH activity and Recent Life Events in patients with psychosis only (F1,25 = 8.07, p = 0.009). CONCLUSIONS Our data reveal a significant disparity in recent stressors between the two groups, and a correlation between brain FAAH activity and stressful life events in patients with psychosis only. This suggests a complex interplay between stress and the endocannabinoid system. PLAIN LANGUAGE SUMMARY TITLE How Stress Affects the Brain’s Endocannabinoid System in Early Psychosis: A PET Study.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ranjini Garani
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Paula Campos Oller
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Maira Belén Blasco
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Rajasekera TA, Joseph A, Pan H, Dreyfuss JM, Fida D, Wilson J, Behee M, Fichorova RN, Cinar R, Spagnolo PA. Sex Differences in Endocannabinoid and Inflammatory Markers Associated with Posttraumatic Stress Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.13.25320467. [PMID: 39974010 PMCID: PMC11838936 DOI: 10.1101/2025.01.13.25320467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Posttraumatic stress disorder (PTSD) is one of the most sex-polarized psychiatric disorders, with women exhibiting twice the prevalence of men. The biological mechanisms underlying this sex disparity are not fully understood. Growing evidence suggests that alterations of the stress-buffering endocannabinoid (eCB) system and heightened inflammation are central to PTSD pathophysiology and may contribute to sex-biases in PTSD risk and severity. Here, we examined sex-differences in levels of circulating eCBs and peripheral pro-inflammatory markers in a cohort of men and women with PTSD and non-psychiatric controls. Methods 88 individuals with PTSD and 85 sex- and age- matched controls (HC) were retrospectively selected from the Mass General Brigham Biobank. Serum was assayed to measure circulating eCBs [anandamide (AEA), 2-arachidonyl glycerol (2-AG), oleoylethanolamide (OEA), and arachidonic acid (AA] and inflammatory markers [interleukin-1β (IL-1β), IL-6, IL-8, IL-18, tumor necrosis factor-alpha (TNFα), and C-reactive Protein (CRP)]. Linear regression was used to predict differential abundance of each analyte by disease state (PTSD/HC) within the male and female subgroups. Two-sided t-tests with Benjamini-Hochberg correction were used to examine differences across subgroups. Analyses were repeated in those with comorbid major depressive disorder. Results Male PTSD patients showed a significant decrease in AEA, AA and OEA levels compared to male controls (p's < .001) and to female subgroups (PTSD and HCs) (p< .001). In contrast, among females, PTSD patients showed elevated levels of IL-6 (p<.05) and IL-8 (p<.05). Both male and female PTSD patients exhibited an increase in TNFα concentrations (p<.05), compared to HCs. Similar results were obtained in the subgroup of individuals with comorbid MDD and after controlling for the FAAH 385A genotype. Conclusions Our findings show for the first time that decrease in eCB levels is absent in women with PTSD, who in turn exhibit a broader increase in inflammatory markers, thus suggesting that biological perturbations underlying PTSD may vary by sex.
Collapse
Affiliation(s)
- Therese A Rajasekera
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anna Joseph
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Hui Pan
- Harvard Catalyst, Boston, MA, USA
| | | | - Doruntina Fida
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Wilson
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Madeline Behee
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Raina N Fichorova
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Primavera A Spagnolo
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Vera-López KJ, Aguilar-Pineda JA, Moscoso-Palacios RM, Davila-Del-Carpio G, Manrique-Murillo JL, Gómez B, González-Melchor M, Nieto-Montesinos R. Anticonvulsant Effects of Synthetic N-(3-Methoxybenzyl)oleamide and N-(3-Methoxybenzyl)linoleamide Macamides: An In Silico and In Vivo Study. Molecules 2025; 30:333. [PMID: 39860203 PMCID: PMC11767965 DOI: 10.3390/molecules30020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Epilepsy is a chronic neurological disorder that affects nearly 50 million people worldwide. Experimental evidence suggests that epileptic neurons are linked to the endocannabinoid system and that inhibition of the FAAH enzyme could have neuroprotective effects by increasing the levels of endogenous endocannabinoid anandamide. In this context, the use of macamides as therapeutic agents in neurological diseases has increased in recent years. With a similar structure to anandamide, several theories point to the FAAH-macamide interaction as a possible cause of FAAH enzymatic inhibition. In this work, we used in silico and in vivo techniques to analyze the potential therapeutic effect of three synthetic macamides in the treatment of epilepsy: N-3-methoxybenzyl-oleamide (3-MBO), N-3-methoxybenzyl-linoleamide (3-MBL), and N-3-methoxybenzyl-linolenamide (3-MBN). In the first stage, an in silico analysis was conducted to explore the energetic affinity of these macamides with rFAAH and their potential inhibitory effect. MD simulations, molecular docking, and MM/PBSA calculations were used for these purposes. Based on our results, we selected the two best macamides and performed an in vivo study to analyze their therapeutic effect in male Sprague Dawley rat models. Rats were subjected to an in vivo induction of epileptic status by the intraperitoneal injection of pilocarpine and analyzed according to the Racine scale. In silico results showed an energetic affinity of three macamides and a possible "plugging" effect of the membrane access channel to the active site as a potential cause of FAAH inhibition. On the other hand, the in vivo results showed an anticonvulsant effect of both macamides, with 3-MBL being the most active, resulting in a higher survival probability in the rats. This work represents one of the first studies on the use of macamides for the treatment of epilepsy.
Collapse
Affiliation(s)
- Karin Jannet Vera-López
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (R.M.M.-P.); (G.D.-D.-C.); (B.G.)
| | - Jorge Alberto Aguilar-Pineda
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Av. San Claudio, Cd. Universitaria, Apdo. Postal J-48, Puebla 72570, Mexico;
| | - Rodrigo Martín Moscoso-Palacios
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (R.M.M.-P.); (G.D.-D.-C.); (B.G.)
| | - Gonzalo Davila-Del-Carpio
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (R.M.M.-P.); (G.D.-D.-C.); (B.G.)
| | - José Luis Manrique-Murillo
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Badhin Gómez
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (R.M.M.-P.); (G.D.-D.-C.); (B.G.)
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Minerva González-Melchor
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Av. San Claudio, Cd. Universitaria, Apdo. Postal J-48, Puebla 72570, Mexico;
| | - Rita Nieto-Montesinos
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (R.M.M.-P.); (G.D.-D.-C.); (B.G.)
| |
Collapse
|
9
|
Ferger MD, Sigrist C, Brodesser S, Kaess M, Koenig J. Alterations of the endocannabinoid system in adolescents with non-suicidal self-injury as a function of childhood maltreatment. Transl Psychiatry 2024; 14:491. [PMID: 39695136 DOI: 10.1038/s41398-024-03205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Non-suicidal self-injury (NSSI) is a highly prevalent phenomenon in adolescence, often associated with prior traumatic experiences. The development and maintenance of NSSI is associated with dysregulation of the stress response, and evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays an important role. The endocannabinoid system is a neuromodulatory system in close functional interaction with the HPA axis. Several studies have reported alterations of the endocannabinoid system in adult patients with post-traumatic stress disorder. However, the role of the endocannabinoid system in children and adolescents with NSSI is less clear, and previously no study examined endocannabinoids in youth with experiences of maltreatment. N-arachidonyl ethanolamide (AEA) and 2-arachidonyl glycerol (2-AG) were quantified alongside sociodemographic and clinical characteristics in n = 148 adolescents (12-17 years of age). Analyses addressed group differences comparing healthy controls (HC, n = 38), patients with NSSI without (NSSI - CMT, n = 42) and with a history of childhood maltreatment (NSSI + CMT, n = 68). We show that AEA is reduced in adolescents with NSSI independent of childhood maltreatment. Further, we present first evidence for a negative association between AEA and NSSI frequency as well as AEA and the severity of childhood maltreatment. This is the first study providing evidence for alterations in the endocannabinoid system in children and adolescents engaging in repetitive NSSI. Findings from the study support current endocannabinoid-hypotheses on the neurobiology of trauma and adversity, extending existing findings of altered endocannabinoid signaling following exposure to traumatic events to a well-powered sample of children and adolescents.
Collapse
Affiliation(s)
- Marc D Ferger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christine Sigrist
- Department of General Psychiatry, Centre for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Kaess
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany.
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Sippel LM, Hamblen JL, Kelmendi B, Alpert JE, Carpenter LL, Grzenda A, Kraguljac N, McDonald WM, Rodriguez CI, Widge AS, Nemeroff CB, Schnurr PP, Holtzheimer PE. Novel Pharmacologic and Other Somatic Treatment Approaches for Posttraumatic Stress Disorder in Adults: State of the Evidence. Am J Psychiatry 2024; 181:1045-1058. [PMID: 39616450 DOI: 10.1176/appi.ajp.20230950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent psychiatric disorder that can become chronic and debilitating when left untreated. The most commonly recommended first-line treatments for PTSD among adults are individual trauma-focused psychotherapies. Other evidence-based treatments include specific antidepressant medications and non-trauma-focused psychotherapies. Despite the effectiveness of these available treatments, many patients' symptoms do not remit. This has led to the search for novel treatments for PTSD. In this review, the authors critically evaluate the data supporting several emerging pharmacological and other somatic interventions in the categories of medication-assisted psychotherapy, novel medication monotherapy strategies, and neuromodulation, selected because of the salience of their mechanisms of action to the pathophysiology of PTSD (e.g., MDMA-assisted psychotherapy, ketamine, cannabidiol, transcranial magnetic stimulation). The authors also evaluate the evidence for treatments that are the focus of increasing scientific or public interest (i.e., hyperbaric oxygen therapy, stellate ganglion block, neurofeedback). To date, the evidence supporting most novel pharmacological and somatic treatments for PTSD is preliminary and highly variable; however, the data for several specific treatments, such as transcranial magnetic stimulation, are encouraging.
Collapse
Affiliation(s)
- Lauren M Sippel
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Jessica L Hamblen
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Benjamin Kelmendi
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Jonathan E Alpert
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Linda L Carpenter
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Adrienne Grzenda
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Nina Kraguljac
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - William M McDonald
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Carolyn I Rodriguez
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Alik S Widge
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Charles B Nemeroff
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Paula P Schnurr
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Paul E Holtzheimer
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| |
Collapse
|
11
|
Marusak HA, Ely SL, Zundel CG, Gowatch LC, Shampine M, Carpenter C, Tamimi R, Jaster AM, Shakir T, May L, deRoon-Cassini TA, Hillard CJ. Endocannabinoid dysregulation and PTSD in urban adolescents: Associations with anandamide concentrations and FAAH genotype. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06717-3. [PMID: 39547971 DOI: 10.1007/s00213-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The endocannabinoid system, which regulates fear- and anxiety-related behaviors, is dysregulated in adults with posttraumatic stress disorder (PTSD), as indicated by higher circulating anandamide (AEA) concentrations. The C385A (rs324420) polymorphism in the fatty acid amide hydrolase (FAAH) gene, which catabolizes AEA, is linked to higher AEA concentrations and greater PTSD symptoms in adults. Given that adolescence is a critical period during which trauma and psychiatric disorders emerge, understanding this relationship in youth is essential. This study examines PTSD symptoms, AEA concentrations, and FAAH genotype in a diverse adolescent sample. METHODS This study included 102 Detroit-area adolescents (M ± SD = 13.33 ± 2.21 years, 54.9% female) and their parents/guardians. The sample consisted of 40.2% White Non-Hispanic, 34.3% Black Non-Hispanic, 6.9% White Hispanic, 4.9% Asian/Pacific Islander, and 12.7% Biracial adolescents. Trauma exposure and PTSD symptoms were assessed using the UCLA PTSD Reaction Index for DSM-5. Plasma concentrations of AEA were measured by liquid chromatography-tandem mass spectrometry, and FAAH genotype was determined from saliva samples and high-throughput screening. RESULTS The majority (90%) of adolescents reported trauma exposure, and 20% met PTSD criteria. Higher AEA concentrations were associated with more severe PTSD symptoms (p = 0.009), especially hyperarousal. The FAAH A-allele (present in 52.5% of participants) was associated with higher AEA concentrations (2.11 ± 0.69 pmol/ml, p = 0.013) and greater PTSD severity (22.65 ± 15.931, p = 0.027), particularly those with the reexperiencing cluster, compared to the CC genotype (1.79 ± 0.66 pmol/ml and 15.87 ±+ 13.043, respectively). CONCLUSION Elevated AEA concentrations and the FAAH A-allele were associated with greater PTSD symptom severity in urban adolescents. These findings suggest endocannabinoid dysregulation may play a role in adolescent PTSD, highlighting the need for further research and targeted interventions.
Collapse
Affiliation(s)
- Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Merrill Palmer Skillman Institute for Child and Family Development, Detroit, MI, USA.
| | - Samantha L Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Detroit, MI, USA
| | - Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Leah C Gowatch
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - MacKenna Shampine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Carmen Carpenter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Reem Tamimi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Alaina M Jaster
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Tehmina Shakir
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Suite 2B, Detroit, MI, 48201, USA
| | - Len May
- Endocanna Health, Burbank, CA, USA
| | | | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Zabik NL, Iadipaolo A, Peters CA, Baglot SL, Hill MN, Rabinak CA. Dose-dependent effect of acute THC on extinction memory recall and fear renewal: a randomized, double-blind, placebo-controlled study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06702-w. [PMID: 39412674 PMCID: PMC12000385 DOI: 10.1007/s00213-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
RATIONALE Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD. OBJECTIVES The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD. METHODS Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses. RESULTS Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal. CONCLUSIONS These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.
Collapse
Affiliation(s)
- Nicole L Zabik
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Allesandra Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Craig A Peters
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Samantha L Baglot
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Matthew N Hill
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Christine A Rabinak
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Mazurka R, Harkness KL, Hassel S, Stensson N, Nogovitsyn N, Poppenk J, Foster JA, Squires SD, Rowe J, Milev RV, Wynne-Edwards KE, Turecki G, Strother SC, Arnott SR, Lam RW, Rotzinger S, Kennedy SH, Frey BN, Mayo LM. Endocannabinoid concentrations in major depression: effects of childhood maltreatment and relation to hippocampal volume. Transl Psychiatry 2024; 14:431. [PMID: 39394160 PMCID: PMC11470058 DOI: 10.1038/s41398-024-03151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Evidence from preclinical animal models suggests that the stress-buffering function of the endocannabinoid (eCB) system may help protect against stress-related reductions in hippocampal volume, as is documented in major depressive disorder (MDD). However, stress exposure may also lead to dysregulation of this system. Thus, pathways from marked stress histories, such as childhood maltreatment (CM), to smaller hippocampal volumes and MDD in humans may depend on dysregulated versus intact eCB functioning. We examined whether the relation between MDD and peripheral eCB concentrations would vary as a function of CM history. Further, we examined whether eCBs moderate the relation of CM/MDD and hippocampal volume. Ninety-one adults with MDD and 62 healthy comparison participants (HCs) were recruited for a study from the Canadian Biomarker Integration Network in Depression program (CAN-BIND-04). The eCBs, anandamide (AEA) and 2-arachidonylglycerol (2-AG), were assessed from blood plasma. Severe CM history was assessed retrospectively via contextual interview. MDD was associated with eCBs, though not all associations were moderated by CM or in the direction expected. Specifically, MDD was associated with higher AEA compared to HCs regardless of CM history, a difference that could be attributed to psychotropic medications. MDD was also associated with higher 2-AG, but only for participants with CM. Consistent with hypotheses, we found lower left hippocampal volume in participants with versus without CM, but only for those with lower AEA, and not moderate or high AEA. Our study presents the first evidence in humans implicating eCBs in stress-related mechanisms involving reduced hippocampal volume in MDD.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Providence Care Hospital, Kingston, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Reseach and Education, University of Calgary, Calgary, AB, Canada
| | - Niclas Stensson
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Occupational and Environmental Medicine Centre, Department of Health, Medicine and Caring Sciences, Unit of Clinical Medicine, Linköping University, Linköping, Sweden
| | - Nikita Nogovitsyn
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Scott D Squires
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jessie Rowe
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Roumen V Milev
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Providence Care Hospital, Kingston, ON, Canada
| | - Katherine E Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Susan Rotzinger
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Benicio N Frey
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Leah M Mayo
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Reseach and Education, University of Calgary, Calgary, AB, Canada.
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
14
|
Gowatch LC, Evanski JM, Ely SL, Zundel CG, Bhogal A, Carpenter C, Shampine MM, O'Mara E, Mazurka R, Barcelona J, Mayo LM, Marusak HA. Endocannabinoids and Stress-Related Neurospsychiatric Disorders: A Systematic Review and Meta-Analysis of Basal Concentrations and Response to Acute Psychosocial Stress. Cannabis Cannabinoid Res 2024; 9:1217-1234. [PMID: 38683635 PMCID: PMC11535454 DOI: 10.1089/can.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Dysregulation of the endocannabinoid (eCB) system is implicated in various stress-related neuropsychiatric disorders (SRDs), including anxiety, depression, and post-traumatic stress disorder (PTSD). In this systematic review and meta-analysis, our objectives were to characterize circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations at rest and in response to acute laboratory-based psychosocial stress in individuals with SRDs and without (controls). Our primary aims were to assess the effects of acute psychosocial stress on eCB concentrations in controls (Aim 1), compare baseline (prestress) eCB concentrations between individuals with SRDs and controls (Aim 2), and explore differential eCB responses to acute psychosocial stress in individuals with SRDs compared with controls (Aim 3). Methods: On June 8, 2023, a comprehensive review of the MEDLINE (PubMed) database was conducted to identify original articles meeting inclusion criteria. A total of 1072, 1341, and 400 articles were screened for inclusion in Aims 1, 2, and 3, respectively. Results: Aim 1, comprised of seven studies in controls, revealed that most studies reported stress-related increases in AEA (86%, with 43% reporting statistical significance) and 2-AG (83%, though none were statistically significant except for one study in saliva). However, meta-analyses did not support these patterns (p's>0.05). Aim 2, with 20 studies, revealed that most studies reported higher baseline concentrations of both AEA (63%, with 16% reporting statistical significance) and 2-AG (60%, with 10% reporting statistical significance) in individuals with SRDs compared with controls. Meta-analyses confirmed these findings (p's<0.05). Aim 3, which included three studies, had only one study that reported statistically different stress-related changes in 2-AG (but not AEA) between individuals with PTSD (decrease) and controls (increase), which was supported by the meta-analysis (p<0.001). Meta-analyses showed heterogeneity across studies and aims (I2=14-97%). Conclusion: Despite substantial heterogeneity in study characteristics, samples, and methodologies, consistent patterns emerged, including elevated baseline AEA and 2-AG in individuals with SRDs compared with controls, as well as smaller stress-related increases in 2-AG in individuals with SRDs compared with controls. To consider eCBs as reliable biomarkers and potential intervention targets for SRDs, standardized research approaches are needed to clarify the complex relationships between eCBs, SRDs, and psychosocial stress.
Collapse
Affiliation(s)
- Leah C. Gowatch
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Julia M. Evanski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha L. Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
| | - Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Amanpreet Bhogal
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Carmen Carpenter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - MacKenna M. Shampine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Emilie O'Mara
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeanne Barcelona
- Center for Health and Community Impact, College of Education, Wayne State University, Detroit, Michigan, USA
| | - Leah M. Mayo
- Hotchkiss Brain Institute and Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
15
|
Szente L, Balla GY, Varga ZK, Toth B, Biro L, Balogh Z, Hill MN, Toth M, Mikics E, Aliczki M. Endocannabinoid and neuroplasticity-related changes as susceptibility factors in a rat model of posttraumatic stress disorder. Neurobiol Stress 2024; 32:100662. [PMID: 39183773 PMCID: PMC11341941 DOI: 10.1016/j.ynstr.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Traumatic experiences result in the development of posttraumatic stress disorder (PTSD) in 10-25% of exposed individuals. While human clinical studies suggest that susceptibility is potentially linked to endocannabinoid (eCB) signaling, neurobiological PTSD susceptibility factors are poorly understood. Employing a rat model of contextual conditioned fear, we characterized distinct resilient and susceptible subpopulations based on lasting generalized fear, a core symptom of PTSD. In these groups, we assessed i.) eCB levels by mass spectrometry and ii.) expression variations of eCB system- and iii.) neuroplasticity-related genes by real-time quantitative PCR in the circuitry relevant in trauma-induced changes. Furthermore, employing unsupervised and semi-supervised machine learning based statistical analytical models, we assessed iv.) gene expression patterns with the most robust predictive power regarding PTSD susceptibility. According to our findings, in our model, generalized fear responses occurred with sufficient variability to characterize distinct resilient and susceptible subpopulations. Resilient subjects showed elevated prelimbic and lower ventral hippocampal levels of eCB 2-arachidonoyl-glycerol (2-AG) compared to resilient and non-shocked control subjects. Ventral hippocampal 2-AG content positively correlated with the strength of fear generalization. Furthermore, susceptibility was associated with i.) prefrontal, hippocampal and amygdalar neuronal hypoactivity, ii.) marked decrease in the expression of genes of transcription factors modulating neuroplasticity and iii.) an altered expression pattern of eCB-related genes, including enzymes involved in eCB metabolism. Unsupervised and semi-supervised statistical approaches highlighted that hippocampal gene expression patterns possess strong predictive power regarding susceptibility. Taken together, the marked eCB and neuroplasticity changes in susceptible individuals associated with abnormal activity patterns in the fear circuitry possibly contribute to context coding deficits, resulting in generalized fear.
Collapse
Affiliation(s)
- Laszlo Szente
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Gyula Y. Balla
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Zoltan K. Varga
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Blanka Toth
- Department of Inorganic and Analytical Chemistry, University of Technology and Economics, Budapest, Hungary
| | - Laszlo Biro
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Zoltan Balogh
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mate Toth
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Eva Mikics
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Mano Aliczki
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
16
|
Kroll SL, Meier P, Mayo LM, Gertsch J, Quednow BB. Endocannabinoids and related lipids linked to social exclusion in individuals with chronic non-medical prescription opioid use. Neuropsychopharmacology 2024; 49:1630-1639. [PMID: 38773316 PMCID: PMC11319498 DOI: 10.1038/s41386-024-01881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
Opioid-related overdose deaths are still on the rise in North America, emphasizing the need to better understand the underlying neurobiological mechanisms regarding the development of opioid use disorder (OUD). Recent evidence from preclinical and clinical studies indicate that the endocannabinoid system (ECS) may play a crucial role in stress and reward, both involved in the development and maintenance of substance use disorders. Animal models demonstrate a specific crosstalk between the ECS and the endogenous opioid system. However, translational studies in humans are scarce. Here, we investigated basal plasma levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyglycerol (2-AG), and eight endocannabinoid-related lipids, including oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), as well as whole blood fatty acid amide hydrolase (FAAH) activity in chronic non-medical prescription opioid users (NMPOU; n = 21) compared to opioid-naïve healthy controls (n = 29) considering age, sex, and cannabis use as potential confounders. Additionally, the association of endocannabinoids and related lipids with the participants' response to experimentally induced social exclusion was examined. We found significantly elevated basal AEA, OEA, and PEA levels in NMPOU compared to controls, but no differences in FAAH activity, 2-AG, or other endocannabinoid-related lipids. Within NMPOU, higher AEA levels were associated with lower perception of social exclusion. Robust positive correlations within N-acylethanolamines (i.e., AEA, OEA, and PEA) indicate strong metabolic associations. Together with our recent findings of elevated basal 2-AG levels in dependent cocaine users, present results indicate substance-specific alterations of the ECS that may have implications in the search for novel therapeutic interventions for these populations.
Collapse
Affiliation(s)
- Sara L Kroll
- Social and Affective Neuropsychopharmacology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Experimental and Clinical Pharmacopsychology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Leah M Mayo
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, and Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
17
|
Guida CR, Maia JM, Ferreira LFR, Rahdar A, Branco LGS, Soriano RN. Advancements in addressing drug dependence: A review of promising therapeutic strategies and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111070. [PMID: 38908501 DOI: 10.1016/j.pnpbp.2024.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Substance dependence represents a pervasive global concern within the realm of public health. Presently, it is delineated as a persistent and recurrent neurological disorder stemming from drug-triggered neuroadaptations in the brain's reward circuitry. Despite the availability of various therapeutic modalities, there has been a steady escalation in the mortality rate attributed to drug overdoses. Substantial endeavors have been directed towards the exploration of innovative interventions aimed at mitigating cravings and drug-induced repetitive behaviors. Within this review, we encapsulate the most auspicious contemporary treatment methodologies, accentuating meta-analyses of efficacious pharmacological and non-pharmacological approaches: including gabapentin, topiramate, prazosin, physical exercise regimens, and cerebral stimulation techniques.
Collapse
Affiliation(s)
- Clara Rodrigues Guida
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil.
| |
Collapse
|
18
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
19
|
O'Donohue MP, Amir Hamzah K, Nichols D, Ney LJ. Trauma film viewing and intrusive memories: Relationship between salivary alpha amylase, endocannabinoids, and cortisol. Psychoneuroendocrinology 2024; 164:107007. [PMID: 38503195 DOI: 10.1016/j.psyneuen.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.
Collapse
Affiliation(s)
- Matthew P O'Donohue
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| |
Collapse
|
20
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Ornelas LC, Besheer J. Predator odor stress reactivity, alcohol drinking and the endocannabinoid system. Neurobiol Stress 2024; 30:100634. [PMID: 38623398 PMCID: PMC11016807 DOI: 10.1016/j.ynstr.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
22
|
Desai S, Zundel CG, Evanski JM, Gowatch LC, Bhogal A, Ely S, Carpenter C, Shampine M, O'Mara E, Rabinak CA, Marusak HA. Genetic variation in endocannabinoid signaling: Anxiety, depression, and threat- and reward-related brain functioning during the transition into adolescence. Behav Brain Res 2024; 463:114925. [PMID: 38423255 PMCID: PMC10977105 DOI: 10.1016/j.bbr.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The endocannabinoid system modulates neural activity throughout the lifespan. In adults, neuroimaging studies link a common genetic variant in fatty acid amide hydrolase (FAAH C385A)-an enzyme that regulates endocannabinoid signaling-to reduced risk of anxiety and depression, and altered threat- and reward-related neural activity. However, limited research has investigated these associations during the transition into adolescence, a period of substantial neurodevelopment and increased psychopathology risk. METHODS This study included FAAH genotype and longitudinal neuroimaging and neurobehavioral data from 4811 youth (46% female; 9-11 years at Baseline, 11-13 years at Year 2) from the Adolescent Brain Cognitive DevelopmentSM Study. Linear mixed models examined the effects of FAAH and the FAAH x time interaction on anxiety and depressive symptoms, amygdala reactivity to threatening faces, and nucleus accumbens (NAcc) response to happy faces during the emotional n-back task. RESULTS A significant main effect of FAAH on depressive symptoms was observed, such that depressive symptoms were lower across both timepoints in those with the AA genotype compared to both AC and CC genotypes (p's<0.05). There were no significant FAAH x time interactions for anxiety, depression, or neural responses (p's>0.05). Additionally, there were no main effects of FAAH on anxiety or neural responses (p's>0.05). CONCLUSIONS Our findings add to emerging evidence linking the FAAH C385A variant to lower risk of psychopathology, and extend these findings to a developmental sample. In particular, we found lower depressive symptoms in FAAH AA genotypes compared to AC and CC genotypes. Future research is needed to characterize the role of the FAAH variant and the eCB system more broadly in neurodevelopment and psychiatric risk.
Collapse
Affiliation(s)
- Shreya Desai
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Clara G Zundel
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Julia M Evanski
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Leah C Gowatch
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Amanpreet Bhogal
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Samantha Ely
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Carmen Carpenter
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - MacKenna Shampine
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Emilie O'Mara
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Christine A Rabinak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacy Practice, Wayne State University, USA
| | - Hilary A Marusak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacology, Wayne State University School of Medicine, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, USA.
| |
Collapse
|
23
|
Wang Y, Olsson S, Lipp OV, Ney LJ. Renewal in human fear conditioning: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105606. [PMID: 38431150 DOI: 10.1016/j.neubiorev.2024.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Renewal is a 'return of fear' manipulation in human fear conditioning to investigate learning processes underlying anxiety and trauma. Even though renewal paradigms are widely used, no study has compared the strength of different renewal paradigms. We conduct a systematic review (N = 80) and meta-analysis (N = 23) of human fear conditioning studies assessing renewal. Our analysis shows that the classic ABA design is the most effective paradigm, compared to ABC and ABBA designs. We present evidence that conducting extinction in multiple contexts and increasing the similarity between acquisition and extinction contexts reduce renewal. Furthermore, we show that additional cues can be used as safety and 'protection from extinction' cues. The review shows that alcohol weakens the extinction process and that older adults appear less sensitive to context changes and thus show less renewal. The large variability in approaches to study renewal in humans suggests that standardisation of fear conditioning procedures across laboratories would be of great benefit to the field.
Collapse
Affiliation(s)
- Yi Wang
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Sarah Olsson
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| |
Collapse
|
24
|
Kwee CMB, van der Flier FE, Duits P, van Balkom AJLM, Cath DC, Baas JMP. Effects of cannabidiol on fear conditioning in anxiety disorders: decreased threat expectation during retention, but no enhanced fear re-extinction. Psychopharmacology (Berl) 2024; 241:833-847. [PMID: 38044339 DOI: 10.1007/s00213-023-06512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
RATIONALE Preclinical research suggests that pharmacologically elevating cannabinoid levels may attenuate fear memory expression and enhance fear extinction. OBJECTIVES We studied the effects of cannabidiol (CBD) on fear memory expression and fear re-extinction in 69 patients with panic disorder with agoraphobia or with social anxiety disorder. Moderation by sex, diagnosis, and serotonergic antidepressant (AD) use was explored. METHODS A cued fear conditioning paradigm was applied before the first treatment session with 300 mg CBD/placebo augmented exposure therapy. Study medication was administered orally preceding 8 weekly sessions. Fear acquisition and suboptimal extinction took place prior to the first medication ingestion (T0). After the first medication ingestion (T1), we investigated effects on fear memory expression at retention and fear re-extinction. Subjective fear, shock expectancy, skin conductance, and startle responses to conditioned (CS+) and safety stimulus (CS-) were measured. RESULTS Across the sample, CBD reduced shock expectancy at retention under low and ambiguous threat of shock, but fear re-extinction at T1 was unaffected by CBD. However, in AD users, re-extinction of subjective fear was impaired in the CBD condition compared to placebo. In female AD users, CBD interfered with safety learning measured with fear-potentiated startle. CONCLUSIONS The current findings provide no evidence for enhanced fear re-extinction by CBD. However, CBD acutely decreased threat expectation at retention, without affecting other indices of fear. More studies are needed to elucidate possible interactions with AD use and sex, as well as potential effects of CBD on threat expectancies.
Collapse
Affiliation(s)
- C M B Kwee
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands.
- Altrecht Academic Anxiety Center, Utrecht, The Netherlands.
| | - F E van der Flier
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Duits
- Altrecht Academic Anxiety Center, Utrecht, The Netherlands
| | - A J L M van Balkom
- Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Centre and GGZ inGeest, Amsterdam, the Netherlands
| | - D C Cath
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Specialist Trainings, GGZ Drenthe, Assen, The Netherlands
| | - J M P Baas
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Rosas-Vidal LE, Naskar S, Mayo LM, Perini I, Altemus M, Engelbrektsson H, Jagasia P, Heilig M, Patel S. PREFRONTAL CORRELATES OF FEAR GENERALIZATION DURING ENDOCANNABINOID DEPLETION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577847. [PMID: 38352388 PMCID: PMC10862899 DOI: 10.1101/2024.01.30.577847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Maladaptive fear generalization is one of the hallmarks of trauma-related disorders. The endocannabinoid 2-arachidonoylglycerol (2-AG) is crucial for modulating anxiety, fear, and stress adaptation but its role in balancing fear discrimination versus generalization is not known. To address this, we used a combination of plasma endocannabinoid measurement and neuroimaging from a childhood maltreatment exposed and non-exposed mixed population combined with human and rodent fear conditioning models. Here we show that 2-AG levels are inversely associated with fear generalization at the behavioral level in both mice and humans. In mice, 2-AG depletion increases the proportion of neurons, and the similarity between neuronal representations, of threat-predictive and neutral stimuli within prelimbic prefrontal cortex ensembles. In humans, increased dorsolateral prefrontal cortical-amygdala resting state connectivity is inversely correlated with fear generalization. These data provide convergent cross-species evidence that 2-AG is a key regulator of fear generalization and suggest 2-AG deficiency could represent a trauma-related disorder susceptibility endophenotype.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Saptarnab Naskar
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Leah M Mayo
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Irene Perini
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Megan Altemus
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Hilda Engelbrektsson
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Puja Jagasia
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Markus Heilig
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Sachin Patel
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| |
Collapse
|
27
|
Leen N, de Weijer A, Boks M, Baas J, Vermetten E, Geuze E. The Role of Genetic Variations in the FAAH rs324420 Polymorphism and its Interaction with CRHR1 rs110402 and CNR1 rs2180619 in Anxiety and- Trauma Related Symptoms After Military Deployment. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2024; 8:24705470241285828. [PMID: 39484094 PMCID: PMC11526235 DOI: 10.1177/24705470241285828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/19/2024] [Indexed: 11/03/2024]
Abstract
Background During military deployment, stress regulation is vital to protect against the development of anxiety and trauma-related symptoms. Brain endocannabinoids play an important role in stress regulation and previous research has shown that genetic variations in the FAAH rs324420 polymorphism demonstrate protective effects during stress. In addition, this polymorphism shows interactions with the CRHR1 and CNR1 polymorphisms on anxiety. The present study examines whether genetic variations of the FAAH, CRHR1 and CNR1 polymorphisms interact with the development of anxiety and trauma related symptoms in military veterans. Methods Veterans (N = 949) who went on military deployment and experienced a stressful event were genotyped for FAAH rs324420, CRHR1 rs110402 and CNR1 rs2180619. Anxiety and trauma symptoms were measured pre-deployment and 6 months after deployment. Anxiety was measured with the anxiety subscale of the Symptom Checklist-90 (SCL-90) and trauma with the Self-Rating Inventory for PTSD (SRIP). Results Covariance Pattern Models demonstrated no significant relation of genetic variations in FAAH rs324420 on anxiety and PTSD symptoms from pre-deployment to 6 months after military deployment. Additionally, we investigated interactions between the FAAH s324420, CRHR1 rs110402 and CNR1 rs2180619 polymorphisms. This also demonstrated no significant effects on anxiety and PTSD symptoms pre- to post deployment. However, the covariate of childhood trauma that was included in the models was significant in all these models. Conclusion Genetic variations in FAAH rs324420 and its interactions with CRHR1 rs110402 and CNR1 rs2180619 are not related to the development of anxiety and trauma-related symptoms. The study however, indicates the importance of considering childhood trauma in the investigation of the effects of polymorphisms that are related to the endocannabinoid system on the development of anxiety and PTSD symptoms.
Collapse
Affiliation(s)
- Nadia Leen
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
- Faculty of Social and Behavioral Sciences, Utrecht University Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Antoin de Weijer
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Marco Boks
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johanna Baas
- Faculty of Social and Behavioral Sciences, Utrecht University Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical CenterLeiden, Zuid-Holland, The Netherlands
| | - Elbert Geuze
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| |
Collapse
|
28
|
Spohrs J, Kühnle V, Mikusky D, Sanhüter N, Macchia A, Nickel S, Abler B. Plasma Endocannabinoid Levels in Patients with Borderline Personality Disorder and Healthy Controls. Int J Mol Sci 2023; 24:17452. [PMID: 38139281 PMCID: PMC10743563 DOI: 10.3390/ijms242417452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Borderline personality disorder (BPD) is a highly prevalent psychiatric disorder and presents a complex therapeutic challenge due to limited treatment modalities. Recent focus has converged on the endocannabinoid system (ECS) as a prospective modulator of psychopathological processes in BPD. To address this hypothesis, we analysed plasma endocannabinoid concentrations, specifically anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in a cohort of 49 female BPD patients and 32 matched healthy controls (HC). Additionally, we examined the effect of the FAAH polymorphism rs324420 and correlates with psychopathology. The results indicate heightened AEA levels and, by trend, augmented 2-AG levels within the patient group, as compared to the HC group. Significant between group differences in AEA levels were evident in the CC genotype (FAAH_rs324420) but not in A-allele carriers while the commonly observed difference in AEA levels between A-allele carriers as compared to the CC genotype was not evident in patients. An effect of genotype was found with higher ratings of depression (Beck's depression inventory, BDI-II) in the CC genotype compared to A-allele carriers (FAAH_rs32442), particularly in the patients. Significant alterations in AEA (and by trend in 2-AG) in patients with BPD may relate to compensatory ECS activity. The finding that the effect is most pronounced in CC homozygotes, might point towards a countermeasure to balance physiologically lower baseline AEA levels. The findings warrant further research to develop potentially beneficial psychopharmacological therapies.
Collapse
Affiliation(s)
- Jennifer Spohrs
- Department for Child and Adolescent Psychiatry and Psychotherapy, Ulm University Medical Centre, 89075 Ulm, Germany;
- Department of Psychiatry, Psychotherapy and Psychotraumatology, Military Medical Centre, 89081 Ulm, Germany
| | - Valentin Kühnle
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - David Mikusky
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Niklas Sanhüter
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Ana Macchia
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Sandra Nickel
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| | - Birgit Abler
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Centre, 89075 Ulm, Germany; (V.K.); (D.M.); (N.S.); (A.M.); (S.N.)
| |
Collapse
|
29
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Marusak HA, Evanski J, Desai S, Rabinak CA. Impact of Childhood Trauma Exposure, Genetic Variation in Endocannabinoid Signaling, and Anxiety on Frontolimbic Pathways in Children. Cannabis Cannabinoid Res 2023; 8:1079-1089. [PMID: 35944262 PMCID: PMC10714120 DOI: 10.1089/can.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in modulating brain development, including myelination processes. Recent studies link a common variant (C385A, rs324420) in the fatty acid amide hydrolase (FAAH) gene to higher circulating eCB levels, lower anxiety, and altered frontolimbic development. Frontolimbic pathways, which demonstrate a protracted maturational course across childhood and adolescence, are associated with anxiety, and are vulnerable to environmental stressors such as trauma exposure. Here, we examined the impact of trauma exposure, FAAH genotype, and anxiety on frontolimbic white matter microstructure in children. Materials and Methods: We leveraged baseline data from the Adolescent Brain Cognitive Development (ABCD) study (n=9969; mean±standard deviation age=9.92±0.62 years; 47.1% female). Saliva samples were used for genotyping, and caregivers reported on their child's anxiety symptoms and trauma exposure. Fractional anisotropy (FA), a nonspecific measure of white matter integrity, was estimated for frontolimbic tracts. Results: Thirty-six percent of youth experienced one or more potentially traumatic events according to DSM-5 Criterion A (64% controls), and 45% were FAAH A-allele carriers (55% noncarriers). Relative to controls, trauma-exposed youth demonstrated higher anxiety and higher FA of the left uncinate. The FAAH A-allele (vs. CC) was associated with lower FA in the left fornix and left parahippocampal cingulum, and there was an indirect effect of FAAH genotype on anxiety through FA of the left fornix. Moreover, genotype moderated the association between FA of the left cingulum and anxiety. Conclusions: Our findings demonstrate distinct effects of trauma exposure and the FAAH C385A variant on frontolimbic pathways and subsequent anxiety risk in preadolescent children. This line of work may provide important insights into neurodevelopmental mechanisms leading to anxiety risk, and potential targets for intervention.
Collapse
Affiliation(s)
- Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Translational Neuroscience Graduate Program, Wayne State University School of Medicine, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Julia Evanski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christine A. Rabinak
- Translational Neuroscience Graduate Program, Wayne State University School of Medicine, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
31
|
Petrie GN, Balsevich G, Füzesi T, Aukema RJ, Driever WPF, van der Stelt M, Bains JS, Hill MN. Disruption of tonic endocannabinoid signalling triggers cellular, behavioural and neuroendocrine responses consistent with a stress response. Br J Pharmacol 2023; 180:3146-3159. [PMID: 37482931 DOI: 10.1111/bph.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid (eCB) signalling gates many aspects of the stress response, including the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is controlled by corticotropin releasing hormone (CRH) producing neurons in the paraventricular nucleus of the hypothalamus (PVN). Disruption of eCB signalling increases drive to the HPA axis, but the mechanisms subserving this process are poorly understood. EXPERIMENTAL APPROACH Using an array of cellular, endocrine and behavioural readouts associated with activation of CRH neurons in the PVN, we evaluated the contributions of tonic eCB signalling to the generation of a stress response. KEY RESULTS The CB1 receptor antagonist/inverse agonist AM251, neutral antagonist NESS243 and NAPE PLD inhibitor LEI401 all uniformly increased Fos in the PVN, unmasked stress-linked behaviours, such as grooming, and increased circulating CORT, recapitulating the effects of stress. Similar effects were also seen after direct administration of AM251 into the PVN, while optogenetic inhibition of PVN CRH neurons ameliorated stress-like behavioural changes produced by disruption of eCB signalling. CONCLUSIONS AND IMPLICATIONS These data indicate that under resting conditions, constitutive eCB signalling restricts activation of the HPA axis through local regulation of CRH neurons in the PVN.
Collapse
Affiliation(s)
- Gavin N Petrie
- Neuroscience Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert J Aukema
- Neuroscience Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Wouter P F Driever
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
33
|
Bergunde L, Karl M, Schälicke S, Weise V, Mack JT, von Soest T, Gao W, Weidner K, Garthus-Niegel S, Steudte-Schmiedgen S. Childbirth-related posttraumatic stress symptoms - examining associations with hair endocannabinoid concentrations during pregnancy and lifetime trauma. Transl Psychiatry 2023; 13:335. [PMID: 37907467 PMCID: PMC10618290 DOI: 10.1038/s41398-023-02610-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Evidence has linked alterations of the endocannabinoid system with trauma exposure and posttraumatic stress disorder (PTSD). Childbirth-related PTSD symptoms (CB-PTSS) affect about every eighth woman and can negatively influence the entire family. While aetiological models of CB-PTSD include psychological risk factors such as maternal trauma history and negative subjective birth experience (SBE), they lack biological risk indicators. We investigated whether lifetime trauma and CB-PTSS were associated with long-term endocannabinoid concentrations during pregnancy. Further, we tested endocannabinoids as mediators between lifetime trauma and CB-PTSS and whether SBE moderated such mediational paths. Within the prospective cohort study DREAMHAIR, 263 expectant mothers completed trauma assessments and provided hair samples for quantification of long-term endocannabinoid levels (anandamide [AEA], 2-arachidonoylglycerol [1-AG/2-AG], and N-acyl-ethanolamides [NAE]) prior to their anticipated birth date. Two months postpartum, CB-PTSS and SBE were measured. Regression models controlling for relevant confounders showed no association between lifetime trauma and hair endocannabinoids during pregnancy, yet higher number of lifetime trauma events and lower hair AEA were significantly associated with CB-PTSS, with the latter finding not remaining significant when Bonferroni corrections due to multiple testing were applied. While hair AEA did not mediate the association between lifetime trauma and CB-PTSS, the effect of lower hair AEA on CB-PTSS was stronger upon negative SBE. Results suggest greater lifetime trauma and reduced maternal hair AEA during pregnancy may be associated with increased risk for CB-PTSS, particularly upon negative SBE. Findings confirm lifetime trauma as a CB-PTSS risk factor and add important preliminary insights on the role of endocannabinoid ligand alterations and SBE in CB-PTSS pathology.
Collapse
Affiliation(s)
- Luisa Bergunde
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Marlene Karl
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sarah Schälicke
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Victoria Weise
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Judith T Mack
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tilmann von Soest
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Wei Gao
- Institute of Biological Psychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Susan Garthus-Niegel
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Systems Medicine (ISM), Faculty of Medicine, Medical School Hamburg MSH, Hamburg, Germany
- Department of Childhood and Families, Norwegian Institute of Public Health, Oslo, Norway
| | - Susann Steudte-Schmiedgen
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
35
|
Boachie N, Gaudette E, Bazinet RP, Lin L, Tyndale RF, Mansouri E, Huestis MA, Tong J, Le Foll B, Kish SJ, George TP, Boileau I. Circulating Endocannabinoids and N-Acylethanolamines in Individuals with Cannabis Use Disorder-Preliminary Findings. Brain Sci 2023; 13:1375. [PMID: 37891745 PMCID: PMC10605789 DOI: 10.3390/brainsci13101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive lipids with important physiological functions and putative roles in mental health and addictions. Although chronic cannabis use is associated with endocannabinoid system changes, the status of circulating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain. METHODS Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC) provided plasma for measurement by high-performance liquid chromatography-mass spectrometry of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine (OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A) which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). RESULTS In overnight abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31-40%; p < 0.05) and concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC. There were no significant correlations between endocannabinoids/NAE concentrations and cannabis analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was inversely related with marijuana craving (r = -0.86; p = 0.001). Genotype had no significant effect on plasma endocannabinoids/NAE concentrations. CONCLUSIONS Our preliminary findings, requiring replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis users. It is unclear whether this elevation is a compensatory response or a predating state. Studies examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of DHEA in craving are warranted.
Collapse
Affiliation(s)
- Nadia Boachie
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Erin Gaudette
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Anatomy and Neurobiology, Faculty of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Esmaeil Mansouri
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Severna Park, Philadelphia, PA 19144, USA
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| | - Stephen J. Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tony P. George
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| |
Collapse
|
36
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. Functional Variation in the FAAH Gene Is Directly Associated with Subjective Well-Being and Indirectly Associated with Problematic Alcohol Use. Genes (Basel) 2023; 14:1826. [PMID: 37761966 PMCID: PMC10530831 DOI: 10.3390/genes14091826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that degrades anandamide, an endocannabinoid that modulates mesolimbic dopamine release and, consequently, influences states of well-being. Despite these known interactions, the specific role of FAAH in subjective well-being remains underexplored. Since well-being is a dynamic trait that can fluctuate over time, we hypothesized that we could provide deeper insights into the link between FAAH and well-being using longitudinal data. To this end, we analyzed well-being data collected three years apart using the WHO (Ten) Well-Being Index and genotyped a functional polymorphism in the FAAH gene (rs324420, Pro129Thr) in a sample of 2822 individuals. We found that the A-allele of rs324420, which results in reduced FAAH activity and elevated anandamide levels, was associated with lower well-being scores at both time points (Wave I, B: -0.52, p = 0.007; Wave II, B: -0.41, p = 0.03, adjusted for age and sex). A subsequent phenome-wide association study (PheWAS) affirmed our well-being findings in the UK Biobank (N = 126,132, alternative C-allele associated with elevated happiness, p = 0.008) and revealed an additional association with alcohol dependence. In our cohort, using lagged longitudinal mediation analyses, we uncovered evidence of an indirect association between rs324420 and problematic alcohol use (AUDIT-P) through the pathway of lower well-being (indirect effect Boot: 0.015, 95% CI [0.003, 0.030], adjusted for AUDIT in Wave I). We propose that chronically elevated anandamide levels might influence disruptions in the endocannabinoid system-a biological contributor to well-being-which could, in turn, contribute to increased alcohol intake, though multiple factors may be at play. Further genetic studies and mediation analyses are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden;
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Philippe A. Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|
37
|
Best LM, Hendershot CS, Buckman JF, Jagasar S, McPhee MD, Muzumdar N, Tyndale RF, Houle S, Logan R, Sanches M, Kish SJ, Le Foll B, Boileau I. Association Between Fatty Acid Amide Hydrolase and Alcohol Response Phenotypes: A Positron Emission Tomography Imaging Study With [ 11C]CURB in Heavy-Drinking Youth. Biol Psychiatry 2023; 94:405-415. [PMID: 36868890 DOI: 10.1016/j.biopsych.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reductions in fatty acid amide hydrolase (FAAH), the catabolic enzyme for the endocannabinoid anandamide, may play a role in drinking behavior and risk for alcohol use disorder. We tested the hypotheses that lower brain FAAH levels in heavy-drinking youth are related to increased alcohol intake, hazardous drinking, and differential response to alcohol. METHODS FAAH levels in the striatum, prefrontal cortex, and whole brain were determined using positron emission tomography imaging of [11C]CURB in heavy-drinking youth (N = 31; 19-25 years of age). C385A FAAH genotype (rs324420) was determined. Behavioral (n = 29) and cardiovascular (n = 22) responses to alcohol were measured during a controlled intravenous alcohol infusion. RESULTS Lower [11C]CURB binding was not significantly related to frequency of use but was positively associated with hazardous drinking and reduced sensitivity to the negative effects of alcohol. During alcohol infusion, lower [11C]CURB binding related to greater self-reported stimulation and urges and lower sedation (p < .05). Lower heart rate variability was related to both greater alcohol-induced stimulation and lower [11C]CURB binding (p < .05). Family history of alcohol use disorder (n = 14) did not relate to [11C]CURB binding. CONCLUSIONS In line with preclinical studies, lower FAAH in the brain was related to a dampened response to the negative, impairing effects of alcohol, increased drinking urges, and alcohol-induced arousal. Lower FAAH might alter positive or negative effects of alcohol and increase urges to drink, thereby contributing to the addiction process. Determining whether FAAH influences motivation to drink through increased positive/arousing effects of alcohol or greater tolerance should be investigated.
Collapse
Affiliation(s)
- Laura M Best
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christian S Hendershot
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey; Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Matthew D McPhee
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neel Muzumdar
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Renee Logan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Community and Family Medicine, University of Toronto, Toronto, Ontario, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
39
|
Ney LJ, Nichols DS, Lipp OV. Fear conditioning depends on the nature of the unconditional stimulus and may be related to hair levels of endocannabinoids. Psychophysiology 2023; 60:e14297. [PMID: 36959707 PMCID: PMC10909444 DOI: 10.1111/psyp.14297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The replicability of fear conditioning research has come under recent scrutiny, with increasing acknowledgment that the use of differing materials and methods may lead to incongruent results. Direct comparisons between the main two unconditional stimuli used in fear conditioning - an electric shock or a loud scream-are scarce, and yet these stimuli are usually used interchangeably. In the present study, we tested whether a scream, a shock, or an unpredictable combination of the two affected fear acquisition, extinction, and return of fear amongst healthy participants (N = 109, 81 female). We also collected hair samples and tested the relationship between fear conditioning and hair endocannabinoid levels. Our findings suggest that, although subjective ratings of pleasantness, arousal, and anxiety were similar regardless of the unconditional stimuli used, skin conductance responses were significantly lower for stimuli paired with the scream compared to a shock alone. Further, reducing the predictability of the unconditional stimulus reduced habituation of skin conductance responses during acquisition and reacquisition, but did not produce stronger conditioning compared to shock alone. Exploratory analyses suggested that hair endocannabinoids were associated with overall physiological arousal during fear conditioning, as well as higher return of fear to the threat cue, but not to the safety cue. These findings have multiple implications for the design and replicability of fear conditioning research and provide the first evidence for an association between hair levels of endocannabinoids and human fear conditioning.
Collapse
Affiliation(s)
- Luke J. Ney
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - David S. Nichols
- Central Science LaboratoryUniversity of TasmaniaHobartTasmaniaAustralia
| | - Ottmar V. Lipp
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
40
|
Ney LJ, Akosile W, Davey C, Pitcher L, Felmingham KL, Mayo LM, Hill MN, Strodl E. Challenges and considerations for treating PTSD with medicinal cannabis: the Australian clinician's perspective. Expert Rev Clin Pharmacol 2023; 16:1093-1108. [PMID: 37885234 DOI: 10.1080/17512433.2023.2276309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Preclinical and experimental research have provided promising evidence that medicinal cannabis may be efficacious in the treatment of posttraumatic stress disorder (PTSD). However, implementation of medicinal cannabis into routine clinical therapies may not be straightforward. AREAS COVERED In this review, we describe some of the clinical, practical, and safety challenges that must be addressed for cannabis-based treatment of PTSD to be feasible in a real-world setting. These issues are especially prevalent if medicinal cannabis is to be combined with trauma-focused psychotherapy. EXPERT OPINION Future consideration of the clinical and practical considerations of cannabis use in PTSD therapy will be essential to both the efficacy and safety of the treatment protocols that are being developed. These issues include dose timing and titration, potential for addiction, product formulation, windows of intervention, and route of administration. In particular, exposure therapy for PTSD involves recall of intense emotions, and the interaction between cannabis use and reliving of trauma memories must be explored in terms of patient safety and impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Wole Akosile
- Greater Brisbane Clinical School, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Chris Davey
- Department of Psychiatry, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Esben Strodl
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
41
|
Perini I, Mayo LM, Capusan AJ, Paul ER, Yngve A, Kampe R, Gauffin E, Mazurka R, Ghafouri B, Stensson N, Asratian A, Hamilton JP, Kastbom Å, Gustafsson PA, Heilig M. Resilience to substance use disorder following childhood maltreatment: association with peripheral biomarkers of endocannabinoid function and neural indices of emotion regulation. Mol Psychiatry 2023; 28:2563-2571. [PMID: 37041416 PMCID: PMC10611562 DOI: 10.1038/s41380-023-02033-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Childhood maltreatment (CM) is a risk factor for substance use disorders (SUD) in adulthood. Understanding the mechanisms by which people are susceptible or resilient to developing SUD after exposure to CM is important for improving intervention. This case-control study investigated the impact of prospectively assessed CM on biomarkers of endocannabinoid function and emotion regulation in relation to the susceptibility or resilience to developing SUD. Four groups were defined across the dimensions of CM and lifetime SUD (N = 101 in total). After screening, participants completed two experimental sessions on separate days, aimed at assessing the behavioral, physiological, and neural mechanisms involved in emotion regulation. In the first session, participants engaged in tasks assessing biochemical (i.e., cortisol, endocannabinoids), behavioral, and psychophysiological indices of stress and affective reactivity. During the second session, the behavioral and brain mechanisms associated with emotion regulation and negative affect were investigated using magnetic resonance imaging. CM-exposed adults who did not develop SUD, operationally defined as resilient to developing SUD, had higher peripheral levels of the endocannabinoid anandamide at baseline and during stress exposure, compared to controls. Similarly, this group had increased activity in salience and emotion regulation regions in task-based measures of emotion regulation compared to controls, and CM-exposed adults with lifetime SUD. At rest, the resilient group also showed significantly greater negative connectivity between ventromedial prefrontal cortex and anterior insula compared to controls and CM-exposed adults with lifetime SUD. Collectively, these peripheral and central findings point to mechanisms of potential resilience to developing SUD after documented CM exposure.
Collapse
Affiliation(s)
- Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden.
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden.
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Robin Kampe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Raegan Mazurka
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Niclas Stensson
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - J Paul Hamilton
- Department of Biological and Medical Psychology University of Bergen, Bergen, Norway
| | - Åsa Kastbom
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per A Gustafsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
42
|
Ney LJ, Cooper J, Lam GN, Moffitt K, Nichols DS, Mayo LM, Lipp OV. Hair endocannabinoids predict physiological fear conditioning and salivary endocannabinoids predict subjective stress reactivity in humans. Psychoneuroendocrinology 2023; 154:106296. [PMID: 37216738 DOI: 10.1016/j.psyneuen.2023.106296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
On the basis of substantial preclinical evidence, the endogenous cannabinoid system has been proposed to be closely involved in stress reactivity and extinction of fear. Existing human research supports this proposal to some extent, but existing studies have used only a narrow range of tools and biomatrices to measure endocannabinoids during stress and fear experiments. In the present study we collected hair and saliva samples from 99 healthy participants who completed a fear conditioning and intrusive memory task. Subjective, physiological and biological stress reactivity to a trauma film, which later served as unconditional stimulus during fear conditioning, was also measured. We found that salivary endocannabinoid concentrations predicted subjective responses to stress, but not cortisol stress reactivity, and replicated previous findings demonstrating a sex dimorphism in hair and salivary endocannabinoid levels. Hair 2-arachidonoyl glycerol levels were significantly associated with better retention of safety learning during extinction and renewal phases of fear conditioning, while hair concentrations of oleoylethanolamide and palmitoylethanolamide were associated with overall physiological arousal, but not conditional learning, during fear conditioning. This study is the first to test the relationship between hair and salivary endocannabinoids and these important psychological processes. Our results suggest that these measures may serve as biomarkers of dysregulation in human fear memory and stress.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Jack Cooper
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Gia Nhi Lam
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Kaylee Moffitt
- Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Ottmar V Lipp
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
43
|
Tevosian M, Todorov H, Lomazzo E, Bindila L, Ueda N, Bassetti D, Warm D, Kirischuk S, Luhmann HJ, Gerber S, Lutz B. NAPE-PLD deletion in stress-TRAPed neurons results in an anxiogenic phenotype. Transl Psychiatry 2023; 13:152. [PMID: 37149657 PMCID: PMC10164145 DOI: 10.1038/s41398-023-02448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Margaryta Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Davide Bassetti
- Department of Mathematics, Technical University of Kaiserslautern, Kaiserslautern, Germany
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
44
|
Fotio Y, Mabou Tagne A, Jung KM, Piomelli D. Fatty acid amide hydrolase inhibition alleviates anxiety-like symptoms in a rat model used to study post-traumatic stress disorder. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06358-y. [PMID: 37017699 DOI: 10.1007/s00213-023-06358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND AIM Post-traumatic stress disorder (PTSD), a chronic debilitating condition that affects nearly 5-10% of American adults, is treated with a handful of FDA-approved drugs that provide at best symptomatic relief and exert multiple side effects. Preclinical and clinical evidence shows that inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which deactivates the endocannabinoid anandamide, exhibit anxiolytic-like properties in animal models. In the present study, we investigated the effects of two novel brain-permeable FAAH inhibitors - the compounds ARN14633 and ARN14280 - in a rat model of predator stress-induced long-term anxiety used to study PTSD. METHODS We exposed male Sprague-Dawley rats to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile constituent of fox feces, and assessed anxiety-like behaviors in the elevated plus maze (EPM) test seven days later. We measured FAAH activity using a radiometric assay and brain levels of FAAH substrates by liquid chromatography/tandem mass spectrometry. RESULTS Rats challenged with TMT developed persistent (≥ 7 days) anxiety-like symptoms in the EPM test. Intraperitoneal administration of ARN14633 or ARN14280 1 h before testing suppressed TMT-induced anxiety-like behaviors with median effective doses (ED50) of 0.23 and 0.33 mg/kg, respectively. The effects were negatively correlated (ARN14663: R2 = 0.455; ARN14280: R2 = 0.655) with the inhibition of brain FAAH activity and were accompanied by increases in brain FAAH substrate levels. CONCLUSIONS The results support the hypothesis that FAAH-regulated lipid signaling serves important regulatory functions in the response to stress and confirm that FAAH inhibitors may be useful for the management of PTSD.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
45
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
46
|
Steiger LJ, Tsintsadze T, Mattheisen GB, Smith SM. Somatic and terminal CB1 receptors are differentially coupled to voltage-gated sodium channels in neocortical neurons. Cell Rep 2023; 42:112247. [PMID: 36933217 PMCID: PMC10106091 DOI: 10.1016/j.celrep.2023.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Endogenous cannabinoid signaling is vital for important brain functions, and the same pathways can be modified pharmacologically to treat pain, epilepsy, and posttraumatic stress disorder. Endocannabinoid-mediated changes to excitability are predominantly attributed to 2-arachidonoylglycerol (2-AG) acting presynaptically via the canonical cannabinoid receptor, CB1. Here, we identify a mechanism in the neocortex by which anandamide (AEA), another major endocannabinoid, but not 2-AG, powerfully inhibits somatically recorded voltage-gated sodium channel (VGSC) currents in the majority of neurons. This pathway involves intracellular CB1 that, when activated by anandamide, decreases the likelihood of recurrent action potential generation. WIN 55,212-2 similarly activates CB1 and inhibits VGSC currents, indicating that this pathway is also positioned to mediate the actions of exogenous cannabinoids on neuronal excitability. The coupling between CB1 and VGSCs is absent at nerve terminals, and 2-AG does not block somatic VGSC currents, indicating functional compartmentalization of the actions of two endocannabinoids.
Collapse
Affiliation(s)
- Luke J Steiger
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timur Tsintsadze
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Glynis B Mattheisen
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen M Smith
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
47
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Uzuneser TC, Szkudlarek HJ, Jones MJ, Nashed MG, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Identification of a novel fatty acid binding protein-5-CB2 receptor-dependent mechanism regulating anxiety behaviors in the prefrontal cortex. Cereb Cortex 2023; 33:2470-2484. [PMID: 35650684 PMCID: PMC10016066 DOI: 10.1093/cercor/bhac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew J Jones
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mina G Nashed
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Mental Health Care Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Steven R Laviolette
- Corresponding author: Department of Anatomy and Cell Biology, University of Western Ontario, 468 Medical Science Building, London, ON N6A 3K7, Canada.
| |
Collapse
|
49
|
Walther A, Kirschbaum C, Wehrli S, Rothe N, Penz M, Wekenborg M, Gao W. Depressive symptoms are negatively associated with hair N-arachidonoylethanolamine (anandamide) levels: A cross-lagged panel analysis of four annual assessment waves examining hair endocannabinoids and cortisol. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110658. [PMID: 36252885 DOI: 10.1016/j.pnpbp.2022.110658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The endocannabinoid system (ECS) is increasingly being recognized as key regulatory system coupled with the glucocorticoid system implicated in the pathophysiology of major depressive disorder (MDD). However, prior studies examining the ECS in MDD have been inconclusive, of small sample size or of cross-sectional nature limiting interpretation of causal inferences or time-dependent effects. METHODS In a prospective community-based cohort study including 128 individuals (women: 108), depressive symptoms (PHQ-9) as well as hair cortisol and endocannabinoids were measured annually over four years (T1-T4). Cortisol, N-arachidonoylethanolamine (AEA), and 2-arachidonoyl-sn-glycerol/1-arachidonoyl-sn-glycerol (2-AG/1-AG) were extracted from 3 cm hair segments reflecting cumulative concentrations of the last three months prior sampling. RESULTS Cross-sectional group comparisons at baseline revealed reduced AEA and cortisol levels in the group with a positive MDD screening compared to individuals with low depressive symptomatology (both p < .05). Cross-lagged panel models showed that AEA levels at T2 were negatively associated with depressive symptoms at T3 (p < .05). Also, depressive symptoms at T3 were negatively associated with AEA levels at T4 (p < .01). The direction of association was reversed for 2-AG/1-AG, as 2-AG/1-AG levels at T1 were positively associated with depressive symptoms at T2 (p < .01). CONCLUSIONS While cross-sectional analyses suggest higher depressive symptomatology to be associated with reduced AEA and cortisol release, longitudinal analyses reveal that primarily AEA levels are negatively associated with depressive symptoms. These longitudinal associations elucidate time-dependent relationships between depressive symptomatology and the ECS and further highlight AEA as potential treatment target in MDD.
Collapse
Affiliation(s)
- Andreas Walther
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland; Biopsychology, TU Dresden, Dresden, Germany
| | | | - Susanne Wehrli
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland; Biopsychology, TU Dresden, Dresden, Germany; Child and Adolescent Health Psychology, University of Zurich, Zurich, Switzerland
| | | | - Marlene Penz
- Institute for Education and Psychology, Johannes Kepler University Linz, Linz, Austria
| | | | - Wei Gao
- Biopsychology, TU Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, Cisler JM. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord 2023; 94:102680. [PMID: 36773486 PMCID: PMC10084922 DOI: 10.1016/j.janxdis.2023.102680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with heightened emotional responding, avoidance of trauma related stimuli, and physical health concerns (e.g., metabolic syndrome, type 2 diabetes, cardiovascular disease). Existing treatments such as exposure-based therapies (e.g., prolonged exposure) aim to reduce anxiety symptoms triggered by trauma reminders, and are hypothesized to work via mechanisms of extinction learning. However, these conventional gold standard psychotherapies do not address physical health concerns frequently presented in PTSD. In addition to widely documented physical and mental health benefits of exercise, emerging preclinical and clinical evidence supports the hypothesis that precisely timed administration of aerobic exercise can enhance the consolidation and subsequent recall of fear extinction learning. These findings suggest that aerobic exercise may be a promising adjunctive strategy for simultaneously improving physical health while enhancing the effects of exposure therapies, which is desirable given the suboptimal efficacy and remission rates. Accordingly, this review 1) encompasses an overview of preclinical and clinical exercise and fear conditioning studies which form the basis for this claim; 2) discusses several plausible mechanisms for enhanced consolidation of fear extinction memories following exercise, and 3) provides suggestions for future research that could advance the understanding of the potential importance of incorporating exercise into the treatment of PTSD.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America.
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY 40506-0044, United States of America; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, United States of America
| | - Joseph E Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Benjamin N Greenwood
- University of Colorado Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, United States of America
| | - Jasper A Smits
- The University of Texas at Austin, Department of Psychology, 108 E Dean Keeton St., Austin, TX 78712, United States of America
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| |
Collapse
|