1
|
Wang S, Qin JL, Yang LL, Ji YY, Huang HX, Gao XS, Zhou ZM, Guo ZR, Wu Y, Tian L, Ni HJ, Zhou ZH. Structural network communication differences in drug-naive depressed adolescents with non-suicidal self-injury and suicide attempts. World J Psychiatry 2025; 15:102706. [DOI: 10.5498/wjp.v15.i5.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Depression, non-suicidal self-injury (NSSI), and suicide attempts (SA) often co-occur during adolescence and are associated with long-term adverse health outcomes. Unfortunately, neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.
AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.
METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression. Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents, including 17 depressed adolescents without SA or NSSI (major depressive disorder group), 27 depressed adolescents with NSSI but no SA (NSSI group), and 41 depressed adolescents with SA and NSSI (NSSI + SA group).
RESULTS Significant differences in structural network communication were observed across the four groups, involving spatially widespread brain regions, particularly encompassing cortico-cortical connections (e.g., dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus; connections based on precentral gyrus) and cortico-subcortical circuits (e.g., the nucleus accumbens-frontal circuit). In addition, we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents. We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.
CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA, highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms. These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression.
Collapse
Affiliation(s)
- Shuai Wang
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Clinical Psychology, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Jiao-Long Qin
- Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lian-Lian Yang
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ying-Ying Ji
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Hai-Xia Huang
- Department of Medical Imaging, Huadong Sanatorium, Wuxi 214000, Jiangsu Province, China
| | - Xiao-Shan Gao
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Zi-Mo Zhou
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Zhen-Ru Guo
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lin Tian
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Huang-Jing Ni
- School of Computer Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, Jiangsu Province, China
| | - Zhen-He Zhou
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
2
|
Singleton SP, Timmermann C, Luppi AI, Eckernäs E, Roseman L, Carhart-Harris RL, Kuceyeski A. Network control energy reductions under DMT relate to serotonin receptors, signal diversity, and subjective experience. Commun Biol 2025; 8:631. [PMID: 40251353 PMCID: PMC12008288 DOI: 10.1038/s42003-025-08078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Psychedelics offer a profound window into the human brain through their robust effects on perception, subjective experience, and brain activity patterns. The serotonergic psychedelic N,N-dimethyltryptamine (DMT) induces a profoundly immersive altered state of consciousness lasting under 20 min, allowing the entire experience to be captured during a single functional magnetic resonance imaging (fMRI) scan. Using network control theory, we map energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. We find that global control energy is reduced after DMT injection compared to placebo. Longitudinal trajectories of global control energy correlate with longitudinal trajectories of electroencephalography (EEG) signal diversity (a measure of entropy) and subjective drug intensity ratings. At the regional level, spatial patterns of DMT's effects on these metrics correlate with serotonin 2a receptor density from positron emission tomography (PET) data. Using receptor distribution and pharmacokinetic information, we recapitulate DMT's effects on global control energy trajectories, demonstrating control models can predict pharmacological effects on brain dynamics.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| | - Christopher Timmermann
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | | | - Emma Eckernäs
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Fattal J, Giljen M, Vargas T, Damme KSF, Calkins ME, Pinkham AE, Mittal VA. A Developmental Perspective on Early and Current Motor Abnormalities and Psychotic-Like Symptoms. Schizophr Bull 2025; 51:522-530. [PMID: 38728386 PMCID: PMC11908870 DOI: 10.1093/schbul/sbae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Psychotic-like experiences (PLEs) are prevalent in the general population and, because they represent a lower end of the psychosis vulnerability spectrum, may be useful in informing mechanistic understanding. Although it is well-understood that motor signs characterize formal psychotic disorders, the developmental trajectory of these features and their relationships with PLEs are less well-understood. STUDY DESIGN Data from 7559 adolescents and young adults (age 11-21) in the Philadelphia Neurodevelopmental Cohort were used to investigate whether early-life milestone-attainment delays relate to current adolescent sensorimotor functioning and positive and negative PLEs. Current sensorimotor functioning was assessed using the Computerized Finger Tapping task (assessing motor slowing) and Mouse Practice task (assessing sensorimotor planning). STUDY RESULTS Early developmental abnormalities were related to current adolescent-aged motor slowing (t(7415.3) = -7.74, corrected-P < .001) and impaired sensorimotor planning (t(7502.5) = 5.57, corrected-P < .001). There was a significant interaction between developmental delays and current sensorimotor functioning on positive and negative PLEs (t = 1.67-4.51), such that individuals with early developmental delays had a stronger positive relationship between sensorimotor dysfunction and PLEs. Importantly, interaction models were significantly better at explaining current PLEs than those treating early and current sensorimotor dysfunction independently (χ2 = 4.89-20.34). CONCLUSIONS These findings suggest a relationship between early developmental delays and current sensorimotor functioning in psychosis proneness and inform an understanding of heterotypic continuity as well as a neurodevelopmental perspective of motor circuits. Furthermore, results indicate that motor signs are a clear factor in the psychosis continuum, suggesting that they may represent a core feature of psychosis vulnerability.
Collapse
Affiliation(s)
- Jessica Fattal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Maksim Giljen
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Teresa Vargas
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Pinkham
- Department of Psychology, University of Texas at Dallas, Richardson, TX, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Ceballos EG, Luppi AI, Castrillon G, Saggar M, Misic B, Riedl V. The control costs of human brain dynamics. Netw Neurosci 2025; 9:77-99. [PMID: 40161985 PMCID: PMC11949579 DOI: 10.1162/netn_a_00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 04/02/2025] Open
Abstract
The human brain is a complex system with high metabolic demands and extensive connectivity that requires control to balance energy consumption and functional efficiency over time. How this control is manifested on a whole-brain scale is largely unexplored, particularly what the associated costs are. Using the network control theory, here, we introduce a novel concept, time-averaged control energy (TCE), to quantify the cost of controlling human brain dynamics at rest, as measured from functional and diffusion MRI. Importantly, TCE spatially correlates with oxygen metabolism measures from the positron emission tomography, providing insight into the bioenergetic footing of resting-state control. Examining the temporal dimension of control costs, we find that brain state transitions along a hierarchical axis from sensory to association areas are more efficient in terms of control costs and more frequent within hierarchical groups than between. This inverse correlation between temporal control costs and state visits suggests a mechanism for maintaining functional diversity while minimizing energy expenditure. By unpacking the temporal dimension of control costs, we contribute to the neuroscientific understanding of how the brain governs its functionality while managing energy expenses.
Collapse
Affiliation(s)
- Eric G. Ceballos
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gabriel Castrillon
- Department of Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Research Group in Medical Imaging, SURA Ayudas Diagnósticas, Medellín, Colombia
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Valentin Riedl
- Department of Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Tang B, Cao H, Deng S, Zhang W, Zhao Y, Gong Q, Gu S, Lui S. Transdiagnostic white matter controllability deficits across patients with affective and anxiety spectrum disorders. J Affect Disord 2025; 370:268-276. [PMID: 39442704 DOI: 10.1016/j.jad.2024.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Affective and anxiety disorders including major depression disorder (MDD), post-traumatic stress disorder (PTSD), and social anxiety disorder (SAD) are characterized by network dysconnectivity. Network controllability quantifies the capability of specific brain regions to impact functional dynamics based on the underlying structural connectome. This study aimed to investigate transdiagnostic and illness-specific network controllability alterations across these three disorders. MATERIALS AND METHODS The study enrolled 233 currently untreated and non-comorbid subjects, including 68 MDD patients, 51 PTSD patients, 46 SAD patients, and 68 healthy controls (HCs). White matter network controllability was compared among the four groups, and its associations with symptom severity and duration of untreated illness were evaluated. RESULTS Compared with HCs, patients with PTSD, MDD and SAD exhibited reduced average controllability in the somatomotor, subcortical, and default mode network, notably in brain regions such as the superior frontal gyrus, postcentral gyrus, paracentral gyrus, pallidum, posterior cingulate, and putamen. MDD and SAD patients exhibited reduced average controllability in the left lateral occipital gyrus and bilateral accumbens. SAD patients showed reduced average controllability in the dorsal attention network. These controllability changes did not correlate with illness duration or symptom severity. LIMITATIONS The cross-sectional design limits causal inference, and adjusting for age and sex differences may not completely eliminate their influence on the results. CONCLUSION The present study revealed shared and specific alterations of network controllability in MDD, PTSD, and SAD, suggesting reduced ability of specific brain regions/networks in driving the brain system into different functional states across these disorders.
Collapse
Affiliation(s)
- Biqiu Tang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Institute of Behavior Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Shikuang Deng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Xue L, Wang H, Wang X, Shao J, Sun Y, Zhu R, Yao Z, Lu Q. The relationship between demographic factors and brain hierarchical changes following antidepressant treatment in patients remitted from depression. J Psychiatr Res 2025; 181:425-432. [PMID: 39662329 DOI: 10.1016/j.jpsychires.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
To investigate the associations between demographic factors and brain hierarchical changes following successful selective serotonin reuptake inhibitor (SSRI) treatment, 57 major depressive disorder (MDD) patients who achieved remission after a 12-week SSRI treatment and 39 healthy controls (HCs) were recruited. MDD patients underwent diffusion tensor imaging (DTI) scans before treatment and after the 12-week SSRI treatment. Depression severity was evaluated with the Hamilton Rating Scale for Depression (HAMD) using the total score and the subscales: retardation, cognitive impairment, anxiety, and sleep disturbance. All HCs also underwent DTI scans after enrollment. Building on gradient mapping techniques, we developed a set of measures to quantify the dispersion within functional communities and also studied demographic-relevant differences in the three-dimensional gradient space of remitted MDD patients. We defined the Z-scores of the gradients in the pre-treatment group relative to the HC group as the disease pattern, post-treatment group relative to the HC group as the recovery pattern. The results showed that the disease pattern of depression is associated with age, as older age groups exhibit more severe impairments in depression. A significant difference was detected in the dispersion of the frontoparietal network (FPN) between pre-treatment and post-treatment patients. With the moderating effect of the age of onset, the dispersion of the FPN was related to the improvement in cognitive impairment, the dorsal attention network (DAN) was related to the improvement in retardation symptoms. Our findings help clinicians be alert to the role of demographic effects on clinical efficacy when treating depressed patients.
Collapse
Affiliation(s)
- Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
7
|
Li Z, Liu Z, Gao Y, Tang B, Gu S, Luo C, Lui S. Functional brain controllability in Parkinson's disease and its association with motor outcomes after deep brain stimulation. Front Neurosci 2024; 18:1433577. [PMID: 39575098 PMCID: PMC11578951 DOI: 10.3389/fnins.2024.1433577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Considering the high economic burden and risks of deep brain stimulation (DBS) surgical failure, predicting the motor outcomes of DBS in Parkinson's disease (PD) is of significant importance in clinical decision-making. Functional controllability provides a rationale for combining the abnormal connections of the cortico-striato-thalamic-cortical (CSTC) motor loops and dynamic changes after medication in DBS outcome prediction. Methods In this study, we analyzed the association between preoperative delta functional controllability after medication within CSTC loops and motor outcomes of subthalamic nucleus DBS (STN-DBS) and globus pallidus interna DBS (GPi-DBS) and predicted motor outcomes in a Support Vector Regression (SVR) model using the delta controllability of focal regions. Results While the STN-DBS motor outcomes were associated with the delta functional controllability of the thalamus, the GPi-DBS motor outcomes were related to the delta functional controllability of the caudate nucleus and postcentral gyrus. In the SVR model, the predicted and actual motor outcomes were positively correlated, with p = 0.020 and R = 0.514 in the STN-DBS group, and p = 0.011 and R = 0.705 in the GPi- DBS group. Discussion Our findings indicate that different focal regions within the CSTC motor loops are involved in STN-DBS and GPi-DBS and support the feasibility of functional controllability in predicting DBS motor outcomes for PD in clinical decision-making.
Collapse
Affiliation(s)
- Ziyu Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Zhiqin Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| |
Collapse
|
8
|
Jamison KW, Gu Z, Wang Q, Tozlu C, Sabuncu MR, Kuceyeski A. Release the Krakencoder: A unified brain connectome translation and fusion tool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589274. [PMID: 38659856 PMCID: PMC11042193 DOI: 10.1101/2024.04.12.589274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here we present the Krakencoder, a joint connectome mapping tool that simultaneously, bidirectionally translates between structural (SC) and functional connectivity (FC), and across different atlases and processing choices via a common latent representation. These mappings demonstrate unprecedented accuracy and individual-level identifiability; the mapping between SC and FC has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This "fusion" representation i) better reflects familial relatedness, ii) preserves age- and sex-relevant information and iii) enhances cognition-relevant information. The Krakencoder can be applied without retraining to new, out-of-age-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a significant leap forward in capturing the relationship between multi-modal brain connectomes in an individualized, behaviorally- and demographically-relevant way.
Collapse
Affiliation(s)
- Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Zijin Gu
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Qinxin Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Mert R Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
9
|
Singleton SP, Velidi P, Schilling L, Luppi AI, Jamison K, Parkes L, Kuceyeski A. Altered Structural Connectivity and Functional Brain Dynamics in Individuals With Heavy Alcohol Use Elucidated via Network Control Theory. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1010-1018. [PMID: 38839036 PMCID: PMC11456392 DOI: 10.1016/j.bpsc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological information under one framework. METHODS Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in 130 individuals with a high amount of current alcohol use. We compared these alcohol-using individuals to 308 individuals with minimal use of any substances. RESULTS We found that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Furthermore, using separately acquired positron emission tomography data, we deployed an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with alcohol use disorder, may relate to our observed findings. CONCLUSIONS This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of heavy alcohol use.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Radiology, Weill Cornell Medicine, New York University, New York, New York.
| | - Puneet Velidi
- Department of Statistics and Data Science, Cornell University, Ithaca, New York
| | - Louisa Schilling
- Department of Radiology, Weill Cornell Medicine, New York University, New York, New York
| | - Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York University, New York, New York
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, New Jersey
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York University, New York, New York
| |
Collapse
|
10
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Stanford W, Mucha PJ, Dayan E. Age-related differences in network controllability are mitigated by redundancy in large-scale brain networks. Commun Biol 2024; 7:701. [PMID: 38849512 PMCID: PMC11161655 DOI: 10.1038/s42003-024-06392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The aging brain undergoes major changes in its topology. The mechanisms by which the brain mitigates age-associated changes in topology to maintain robust control of brain networks are unknown. Here we use diffusion MRI data from cognitively intact participants (n = 480, ages 40-90) to study age-associated differences in the average controllability of structural brain networks, topological features that could mitigate these differences, and the overall effect on cognitive function. We find age-associated declines in average controllability in control hubs and large-scale networks, particularly within the frontoparietal control and default mode networks. Further, we find that redundancy, a hypothesized mechanism of reserve, quantified via the assessment of multi-step paths within networks, mitigates the effects of topological differences on average network controllability. Lastly, we discover that average network controllability, redundancy, and grey matter volume, each uniquely contribute to predictive models of cognitive function. In sum, our results highlight the importance of redundancy for robust control of brain networks and in cognitive function in healthy-aging.
Collapse
Affiliation(s)
- William Stanford
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH, USA
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Betzel R, Puxeddu MG, Seguin C, Bazinet V, Luppi A, Podschun A, Singleton SP, Faskowitz J, Parakkattu V, Misic B, Markett S, Kuceyeski A, Parkes L. Controlling the human connectome with spatially diffuse input signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581006. [PMID: 38463980 PMCID: PMC10925126 DOI: 10.1101/2024.02.27.581006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.
Collapse
Affiliation(s)
- Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
- Program in Neuroscience, Indiana University, Bloomington IN 47401
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Andrea Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | | | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vibin Parakkattu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Astle DE, Bassett DS, Viding E. Understanding divergence: Placing developmental neuroscience in its dynamic context. Neurosci Biobehav Rev 2024; 157:105539. [PMID: 38211738 DOI: 10.1016/j.neubiorev.2024.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Neurodevelopment is not merely a process of brain maturation, but an adaptation to constraints unique to each individual and to the environments we co-create. However, our theoretical and methodological toolkits often ignore this reality. There is growing awareness that a shift is needed that allows us to study divergence of brain and behaviour across conventional categorical boundaries. However, we argue that in future our study of divergence must also incorporate the developmental dynamics that capture the emergence of those neurodevelopmental differences. This crucial step will require adjustments in study design and methodology. If our ultimate aim is to incorporate the developmental dynamics that capture how, and ultimately when, divergence takes place then we will need an analytic toolkit equal to these ambitions. We argue that the over reliance on group averages has been a conceptual dead-end with regard to the neurodevelopmental differences. This is in part because any individual differences and developmental dynamics are inevitably lost within the group average. Instead, analytic approaches which are themselves new, or simply newly applied within this context, may allow us to shift our theoretical and methodological frameworks from groups to individuals. Likewise, methods capable of modelling complex dynamic systems may allow us to understand the emergent dynamics only possible at the level of an interacting neural system.
Collapse
Affiliation(s)
- Duncan E Astle
- Department of Psychiatry, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
| | - Dani S Bassett
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, Neurology, and Psychiatry, University of Pennsylvania, United States; The Santa Fe Institute, United States
| | - Essi Viding
- Psychology and Language Sciences, University College London, United Kingdom
| |
Collapse
|
14
|
Singleton SP, Velidi P, Schilling L, Luppi AI, Jamison K, Parkes L, Kuceyeski A. Altered structural connectivity and functional brain dynamics in individuals with heavy alcohol use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568762. [PMID: 38077021 PMCID: PMC10705230 DOI: 10.1101/2023.11.27.568762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Heavy alcohol use and its associated conditions, such as alcohol use disorder (AUD), impact millions of individuals worldwide. While our understanding of the neurobiological correlates of AUD has evolved substantially, we still lack models incorporating whole-brain neuroanatomical, functional, and pharmacological information under one framework. Here, we utilize diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in N = 130 individuals with a high amount of current alcohol use. We compared these alcohol using individuals to N = 308 individuals with minimal use of any substances. We find that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Further, using separately acquired positron emission tomography (PET) data, we deploy an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with AUD, may relate to our observed findings. This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of AUD.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Puneet Velidi
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, U.S.A
| | - Louisa Schilling
- Montreal Neurological Institute, McGill Univeristy, Montreal, CA
| | - Andrea I Luppi
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| |
Collapse
|
15
|
Zhu J, Margulies D, Qiu A. White matter functional gradients and their formation in adolescence. Cereb Cortex 2023; 33:10770-10783. [PMID: 37727985 DOI: 10.1093/cercor/bhad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
It is well known that functional magnetic resonance imaging (fMRI) is a widely used tool for studying brain activity. Recent research has shown that fluctuations in fMRI data can reflect functionally meaningful patterns of brain activity within the white matter. We leveraged resting-state fMRI from an adolescent population to characterize large-scale white matter functional gradients and their formation during adolescence. The white matter showed gray-matter-like unimodal-to-transmodal and sensorimotor-to-visual gradients with specific cognitive associations and a unique superficial-to-deep gradient with nonspecific cognitive associations. We propose two mechanisms for their formation in adolescence. One is a "function-molded" mechanism that may mediate the maturation of the transmodal white matter via the transmodal gray matter. The other is a "structure-root" mechanism that may support the mutual mediation roles of the unimodal and transmodal white matter maturation during adolescence. Thus, the spatial layout of the white matter functional gradients is in concert with the gray matter functional organization. The formation of the white matter functional gradients may be driven by brain anatomical wiring and functional needs.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 45 Rue des Saint-Pères, 75006 Paris, France
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, No. 377 Linquan Street, Suzhou 215000, China
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr, Singapore 117456, Singapore
- Institute of Data Science, National University of Singapore, 3 Research Link, #04-06, Singapore 117602, Singapore
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
16
|
Parkes L, Bassett DS. Tracking Disordered Brain Dynamics in Psychiatry. Biol Psychiatry 2023; 94:528-530. [PMID: 37673516 DOI: 10.1016/j.biopsych.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Rutgers University, Piscataway, New Jersey
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
17
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
18
|
Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci 2023; 27:814-832. [PMID: 37286432 PMCID: PMC10476530 DOI: 10.1016/j.tics.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Depression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.
Collapse
Affiliation(s)
- Ya Chai
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Brain Science, Translation, Innovation and Modulation Center (brainSTIM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
19
|
Wilmskoetter J, Busby N, He X, Caciagli L, Roth R, Kristinsson S, Davis KA, Rorden C, Bassett DS, Fridriksson J, Bonilha L. Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity. Commun Biol 2023; 6:727. [PMID: 37452209 PMCID: PMC10349039 DOI: 10.1038/s42003-023-05119-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.
Collapse
Affiliation(s)
- Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Beijing, China
| | - Lorenzo Caciagli
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, New Mexico, NM, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
20
|
Kim CS. Free energy and inference in living systems. Interface Focus 2023; 13:20220041. [PMID: 37065269 PMCID: PMC10102732 DOI: 10.1098/rsfs.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 04/18/2023] Open
Abstract
Organisms are non-equilibrium, stationary systems self-organized via spontaneous symmetry breaking and undergoing metabolic cycles with broken detailed balance in the environment. The thermodynamic free-energy (FE) principle describes an organism's homeostasis as the regulation of biochemical work constrained by the physical FE cost. By contrast, recent research in neuroscience and theoretical biology explains a higher organism's homeostasis and allostasis as Bayesian inference facilitated by the informational FE. As an integrated approach to living systems, this study presents an FE minimization theory overarching the essential features of both the thermodynamic and neuroscientific FE principles. Our results reveal that the perception and action of animals result from active inference entailed by FE minimization in the brain, and the brain operates as a Schrödinger's machine conducting the neural mechanics of minimizing sensory uncertainty. A parsimonious model suggests that the Bayesian brain develops the optimal trajectories in neural manifolds and induces a dynamic bifurcation between neural attractors in the process of active inference.
Collapse
Affiliation(s)
- Chang Sub Kim
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Zorlu N, Bayrakçı A, Karakılıç M, Zalesky A, Seguin C, Tian Y, Gülyüksel F, Yalınçetin B, Oral E, Gelal F, Bora E. Abnormal Structural Network Communication Reflects Cognitive Deficits in Schizophrenia. Brain Topogr 2023; 36:294-304. [PMID: 36971857 DOI: 10.1007/s10548-023-00954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
Schizophrenia has long been thought to be a disconnection syndrome and several previous studies have reported widespread abnormalities in white matter tracts in individuals with schizophrenia. Furthermore, reductions in structural connectivity may also impair communication between anatomically unconnected pairs of brain regions, potentially impacting global signal traffic in the brain. Therefore, we used different communication models to examine direct and indirect structural connections (polysynaptic) communication in large-scale brain networks in schizophrenia. Diffusion-weighted magnetic resonance imaging scans were acquired from 62 patients diagnosed with schizophrenia and 35 controls. In this study, we used five network communication models including, shortest paths, navigation, diffusion, search information and communicability to examine polysynaptic communication in large-scale brain networks in schizophrenia. We showed less efficient communication between spatially widespread brain regions particulary encompassing cortico-subcortical basal ganglia network in schizophrenia group relative to controls. Then, we also examined whether reduced communication efficiency was related to clinical symptoms in schizophrenia group. Among different measures of communication efficiency, only navigation efficiency was associated with global cognitive impairment across multiple cognitive domains including verbal learning, processing speed, executive functions and working memory, in individuals with schizophrenia. We did not find any association between communication efficiency measures and positive or negative symptoms within the schizophrenia group. Our findings are important for improving our mechanistic understanding of neurobiological process underlying cognitive symptoms in schizophrenia.
Collapse
|
22
|
Luppi AI, Singleton SP, Hansen JY, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532981. [PMID: 36993597 PMCID: PMC10055141 DOI: 10.1101/2023.03.16.532981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, U.S.A
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, U.S.A
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Tang B, Zhang W, Liu J, Deng S, Hu N, Li S, Zhao Y, Liu N, Zeng J, Cao H, Sweeney JA, Gong Q, Gu S, Lui S. Altered controllability of white matter networks and related brain function changes in first-episode drug-naive schizophrenia. Cereb Cortex 2023; 33:1527-1535. [PMID: 36790361 DOI: 10.1093/cercor/bhac421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Understanding how structural connectivity alterations affect aberrant dynamic function using network control theory will provide new mechanistic insights into the pathophysiology of schizophrenia. The study included 140 drug-naive schizophrenia patients and 119 healthy controls (HCs). The average controllability (AC) quantifying capacity of brain regions/networks to shift the system into easy-to-reach states was calculated based on white matter connectivity and was compared between patients and HCs as well as functional network topological and dynamic properties. The correlation analysis between AC and duration of untreated psychosis (DUP) were conducted to characterize the controllability progression pattern without treatment effects. Relative to HCs, patients exhibited reduced AC in multiple nodes, mainly distributed in default mode network (DMN), visual network (VN), and subcortical regions, and increased AC in somatomotor network. These networks also had impaired functional topology and increased temporal variability in dynamic functional connectivity analysis. Longer DUP was related to greater reductions of AC in VN and DMN. The current study highlighted potential structural substrates underlying altered functional dynamics in schizophrenia, providing a novel understanding of the relationship of anatomic and functional network alterations.
Collapse
Affiliation(s)
- Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Jiang Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, Chengdu 611731, China
| | - Shikuang Deng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, Chengdu 611731, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Nian Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No 1 Maoyuan South Road, Shunqing District, Nanchong 637000, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY 11004, United States
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Cincinnati, OH 45219, United States
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, Chengdu 611731, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
24
|
Hahn T, Jamalabadi H, Nozari E, Winter NR, Ernsting J, Gruber M, Mauritz MJ, Grumbach P, Fisch L, Leenings R, Sarink K, Blanke J, Vennekate LK, Emden D, Opel N, Grotegerd D, Enneking V, Meinert S, Borgers T, Klug M, Leehr EJ, Dohm K, Heindel W, Gross J, Dannlowski U, Redlich R, Repple J. Towards a network control theory of electroconvulsive therapy response. PNAS NEXUS 2023; 2:pgad032. [PMID: 36874281 PMCID: PMC9982063 DOI: 10.1093/pnasnexus/pgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.
Collapse
Affiliation(s)
- Tim Hahn
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Erfan Nozari
- Department of Mechanical Engineering, University of California, 92521 Riverside, USA
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Jan Ernsting
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Marco J Mauritz
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Pascal Grumbach
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Kelvin Sarink
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Julian Blanke
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Leon Kleine Vennekate
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Daniel Emden
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Institute for Translational Neuroscience, University of Münster, 48149 Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Walter Heindel
- Institute of Clinical Radiology, University of Münster, 48149 Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, 48149 Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Department of Psychology, University of Halle, 06099 Halle (Saale), Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
25
|
Parkes L, Kim JZ, Stiso J, Calkins ME, Cieslak M, Gur RE, Gur RC, Moore TM, Ouellet M, Roalf DR, Shinohara RT, Wolf DH, Satterthwaite TD, Bassett DS. Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome. SCIENCE ADVANCES 2022; 8:eadd2185. [PMID: 36516263 PMCID: PMC9750154 DOI: 10.1126/sciadv.add2185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/10/2022] [Indexed: 05/30/2023]
Abstract
Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason Z. Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Stiso
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mathieu Ouellet
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R. Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Russell T. Shinohara
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H. Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
26
|
He X, Caciagli L, Parkes L, Stiso J, Karrer TM, Kim JZ, Lu Z, Menara T, Pasqualetti F, Sperling MR, Tracy JI, Bassett DS. Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. SCIENCE ADVANCES 2022; 8:eabn2293. [PMID: 36351015 PMCID: PMC9645718 DOI: 10.1126/sciadv.abn2293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asymmetric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of neural dynamics.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Teresa M. Karrer
- Personalized Health Care, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhixin Lu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommaso Menara
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | | | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Psychiatry, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
27
|
Menardi A, Momi D, Vallesi A, Barabási AL, Towlson EK, Santarnecchi E. Maximizing brain networks engagement via individualized connectome-wide target search. Brain Stimul 2022; 15:1418-1431. [PMID: 36252908 DOI: 10.1016/j.brs.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In recent years, the possibility to noninvasively interact with the human brain has led to unprecedented diagnostic and therapeutic opportunities. However, the vast majority of approved interventions and approaches still rely on anatomical landmarks and rarely on the individual structure of networks in the brain, drastically reducing the potential efficacy of neuromodulation. OBJECTIVE Here we implemented a target search algorithm leveraging on mathematical tools from Network Control Theory (NCT) and whole brain connectomics analysis. By means of computational simulations, we aimed to identify the optimal stimulation target(s)- at the individual brain level- capable of reaching maximal engagement of the stimulated networks' nodes. RESULTS At the model level, in silico predictions suggest that stimulation of NCT-derived cerebral sites might induce significantly higher network engagement, compared to traditionally employed neuromodulation sites, demonstrating NCT to be a useful tool in guiding brain stimulation. Indeed, NCT allows us to computationally model different stimulation scenarios tailored on the individual structural connectivity profiles and initial brain states. CONCLUSIONS The use of NCT to computationally predict TMS pulse propagation suggests that individualized targeting is crucial for more successful network engagement. Future studies will be needed to verify such prediction in real stimulation scenarios.
Collapse
Affiliation(s)
- Arianna Menardi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Davide Momi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy; Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, Canada
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Emma K Towlson
- Department of Computer Science, University of Calgary, Calgary, AB, Canada; Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Singleton SP, Luppi AI, Carhart-Harris RL, Cruzat J, Roseman L, Nutt DJ, Deco G, Kringelbach ML, Stamatakis EA, Kuceyeski A. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain's control energy landscape. Nat Commun 2022; 13:5812. [PMID: 36192411 PMCID: PMC9530221 DOI: 10.1038/s41467-022-33578-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Psychedelics including lysergic acid diethylamide (LSD) and psilocybin temporarily alter subjective experience through their neurochemical effects. Serotonin 2a (5-HT2a) receptor agonism by these compounds is associated with more diverse (entropic) brain activity. We postulate that this increase in entropy may arise in part from a flattening of the brain's control energy landscape, which can be observed using network control theory to quantify the energy required to transition between recurrent brain states. Using brain states derived from existing functional magnetic resonance imaging (fMRI) datasets, we show that LSD and psilocybin reduce control energy required for brain state transitions compared to placebo. Furthermore, across individuals, reduction in control energy correlates with more frequent state transitions and increased entropy of brain state dynamics. Through network control analysis that incorporates the spatial distribution of 5-HT2a receptors (obtained from publicly available positron emission tomography (PET) data under non-drug conditions), we demonstrate an association between the 5-HT2a receptor and reduced control energy. Our findings provide evidence that 5-HT2a receptor agonist compounds allow for more facile state transitions and more temporally diverse brain activity. More broadly, we demonstrate that receptor-informed network control theory can model the impact of neuropharmacological manipulation on brain activity dynamics.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| | - Andrea I Luppi
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - David J Nutt
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Emmanuel A Stamatakis
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
29
|
McGowan AL, Parkes L, He X, Stanoi O, Kang Y, Lomax S, Jovanova M, Mucha PJ, Ochsner KN, Falk EB, Bassett DS, Lydon-Staley DM. Controllability of Structural Brain Networks and the Waxing and Waning of Negative Affect in Daily Life. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:432-439. [PMID: 36324655 PMCID: PMC9616346 DOI: 10.1016/j.bpsgos.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background The waxing and waning of negative affect in daily life is normative, reflecting an adaptive capacity to respond flexibly to changing circumstances. However, understanding of the brain structure correlates of affective variability in naturalistic settings has been limited. Using network control theory, we examine facets of brain structure that may enable negative affect variability in daily life. Methods We used diffusion-weighted imaging data from 95 young adults (age [in years]: mean = 20.19, SD = 1.80; 56 women) to construct structural connectivity networks that map white matter fiber connections between 200 cortical and 14 subcortical regions. We applied network control theory to these structural networks to estimate the degree to which each brain region's pattern of structural connectivity facilitates the spread of activity to other brain systems. We examined how the average controllability of functional brain systems relates to negative affect variability, computed by taking the standard deviation of negative affect self-reports collected via smartphone-based experience sampling twice per day over 28 days as participants went about their daily lives. Results We found that high average controllability of the cingulo-insular system is associated with increased negative affect variability. We also found that greater negative affect variability is related to the presence of more depressive symptoms, yet average controllability of the cingulo-insular system was not associated with depressive symptoms. Conclusions Our results highlight the role that brain structure plays in affective dynamics as observed in the context of daily life, suggesting that average controllability of the cingulo-insular system promotes normative negative affect variability.
Collapse
Affiliation(s)
- Amanda L. McGowan
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linden Parkes
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong He
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Ovidia Stanoi
- Department of Psychology, Columbia University, New York, New York
| | - Yoona Kang
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Silicia Lomax
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mia Jovanova
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter J. Mucha
- Department of Mathematics and Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - Kevin N. Ochsner
- Department of Psychology, Columbia University, New York, New York
| | - Emily B. Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Santa Fe Institute, Santa Fe, New Mexico
| | - David M. Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Raj A, Verma P, Nagarajan S. Structure-function models of temporal, spatial, and spectral characteristics of non-invasive whole brain functional imaging. Front Neurosci 2022; 16:959557. [PMID: 36110093 PMCID: PMC9468900 DOI: 10.3389/fnins.2022.959557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
We review recent advances in using mathematical models of the relationship between the brain structure and function that capture features of brain dynamics. We argue the need for models that can jointly capture temporal, spatial, and spectral features of brain functional activity. We present recent work on spectral graph theory based models that can accurately capture spectral as well as spatial patterns across multiple frequencies in MEG reconstructions.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | | | | |
Collapse
|
31
|
Zhu J, Qiu A. Interindividual variability in functional connectivity discovers differential development of cognition and transdiagnostic dimensions of psychopathology in youth. Neuroimage 2022; 260:119482. [PMID: 35842101 DOI: 10.1016/j.neuroimage.2022.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive and psychological development during adolescence is different from one another, which is rooted in individual differences in maturational changes in the adolescent brain. This study employed multi-modal MRI data and characterized interindividual variability in functional connectivity (IVFC) and its associations with cognition and psychopathology using the Philadelphia Neurodevelopmental Cohort (PNC) of 755 youth. We employed resting state functional MRI (rs-fMRI) and diffusion weighted images (DWIs) to estimate brain structural and functional networks. We computed the IVFC of individuals and examined its relation with structural and functional organizations. We further employed sparse partial least squares (sparse-PLS) and meta-analysis to examine the developmental associations of the IVFC with cognition and transdiagnostic dimensions of psychopathology in early, middle, and late adolescence. Our results revealed that the IVFC spatial topography reflects the brain functional integration and structure-function decoupling. Age effects on the IVFC of association networks were mediated by the FC among the triple networks, including frontoparietal, salience, and default mode networks (DMN), while those of primary and cerebellar networks were mediated by the cerebello-cortical FC. The IVFC of the triple and cerebellar networks explained the variance of executive functions and externalizing behaviors in early adolescence and then the variance of emotion and internalizing and psychosis in middle and late adolescence. We further evaluated this finding via meta-analysis on task-based studies on cognition and psychopathology. These findings implicate the emerging importance of the IVFC of the triple and cerebellar networks in cognitive, emotional, and psychopathological development during adolescence.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 117583, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 117583, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; The N.1 Institute for Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore; Department of Biomedical Engineering, The Johns Hopkins University, United States.
| |
Collapse
|
32
|
Gur RE. Considering alternatives to the schizophrenia construct. Schizophr Res 2022; 242:49-51. [PMID: 35033392 DOI: 10.1016/j.schres.2021.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, United States of America.
| |
Collapse
|
33
|
Wilmskoetter J, He X, Caciagli L, Jensen JH, Marebwa B, Davis KA, Fridriksson J, Basilakos A, Johnson LP, Rorden C, Bassett D, Bonilha L. Language Recovery after Brain Injury: A Structural Network Control Theory Study. J Neurosci 2022; 42:657-669. [PMID: 34872927 PMCID: PMC8805614 DOI: 10.1523/jneurosci.1096-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
Aphasia recovery after stroke depends on the condition of the remaining, extralesional brain network. Network control theory (NCT) provides a unique, quantitative approach to assess the interaction between brain networks. In this longitudinal, large-scale, whole-brain connectome study, we evaluated whether controllability measures of language-related regions are associated with treated aphasia recovery. Using probabilistic tractography and controlling for the effects of structural lesions, we reconstructed whole-brain diffusion tensor imaging (DTI) connectomes from 68 individuals (20 female, 48 male) with chronic poststroke aphasia who completed a three-week language therapy. Applying principles of NCT, we computed regional (1) average and (2) modal controllability, which decode the ability of a region to (1) spread control input through the brain network and (2) to facilitate brain state transitions. We tested the relationship between pretreatment controllability measures of 20 language-related left hemisphere regions and improvements in naming six months after language therapy using multiple linear regressions and a parsimonious elastic net regression model with cross-validation. Regional controllability of the inferior frontal gyrus (IFG) pars opercularis, pars orbitalis, and the anterior insula were associated with treatment outcomes independently of baseline aphasia severity, lesion volume, age, education, and network size. Modal controllability of the IFG pars opercularis was the strongest predictor of treated aphasia recovery with cross-validation and outperformed traditional graph theory, lesion load, and demographic measures. Regional NCT measures can reflect the status of the residual language network and its interaction with the remaining brain network, being able to predict language recovery after aphasia treatment.SIGNIFICANCE STATEMENT Predicting and understanding language recovery after brain injury remains a challenging, albeit a fundamental aspect of human neurology and neuroscience. In this study, we applied network control theory (NCT) to fully harness the concept of brain networks as dynamic systems and to evaluate their interaction. We studied 68 stroke survivors with aphasia who underwent imaging and longitudinal behavioral assessments coupled with language therapy. We found that the controllability of the inferior frontal regional network significantly predicted recovery in language production six months after treatment. Importantly, controllability outperformed traditional demographic, lesion, and graph-theoretical measures. Our findings shed light on the neurobiological basis of human language and can be translated into personalized rehabilitation approaches.
Collapse
Affiliation(s)
- Janina Wilmskoetter
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Jens H Jensen
- Department of Neuroscience, College of Basic Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Barbara Marebwa
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Kathryn A Davis
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19014
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208
| | - Lorelei P Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| | - Danielle Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19014
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014
- Santa Fe Institute, Santa Fe, New Mexico, NM 87501
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
34
|
Age-associated network controllability changes in first episode drug-naïve schizophrenia. BMC Psychiatry 2022; 22:26. [PMID: 35012507 PMCID: PMC8744281 DOI: 10.1186/s12888-021-03674-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent neuroimaging studies revealed dysregulated neurodevelopmental, or/and neurodegenerative trajectories of both structural and functional connections in schizophrenia. However, how the alterations in the brain's structural connectivity lead to dynamic function changes in schizophrenia with age remains poorly understood. METHODS Combining structural magnetic resonance imaging and a network control theory approach, the white matter network controllability metric (average controllability) was mapped from age 16 to 60 years in 175 drug-naïve schizophrenia patients and 155 matched healthy controls. RESULTS Compared with controls, the schizophrenia patients demonstrated the lack of age-related decrease on average controllability of default mode network (DMN), as well as the right precuneus (a hub region of DMN), suggesting abnormal maturational development process in schizophrenia. Interestingly, the schizophrenia patients demonstrated an accelerated age-related decline of average controllability in the subcortical network, supporting the neurodegenerative model. In addition, compared with controls, the lack of age-related increase on average controllability of the left inferior parietal gyrus in schizophrenia patients also suggested a different pathway of brain development. CONCLUSIONS By applying the control theory approach, the present study revealed age-related changes in the ability of white matter pathways to control functional activity states in schizophrenia. The findings supported both the developmental and degenerative hypotheses of schizophrenia, and suggested a particularly high vulnerability of the DMN and subcortical network possibly reflecting an illness-related early marker for the disorder.
Collapse
|
35
|
Parkes L, Moore TM, Calkins ME, Cook PA, Cieslak M, Roalf DR, Wolf DH, Gur RC, Gur RE, Satterthwaite TD, Bassett DS. Transdiagnostic dimensions of psychopathology explain individuals' unique deviations from normative neurodevelopment in brain structure. Transl Psychiatry 2021; 11:232. [PMID: 33879764 PMCID: PMC8058055 DOI: 10.1038/s41398-021-01342-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Psychopathology is rooted in neurodevelopment. However, clinical and biological heterogeneity, together with a focus on case-control approaches, have made it difficult to link dimensions of psychopathology to abnormalities of neurodevelopment. Here, using the Philadelphia Neurodevelopmental Cohort, we built normative models of cortical volume and tested whether deviations from these models better predicted psychiatric symptoms compared to raw cortical volume. Specifically, drawing on the p-factor hypothesis, we distilled 117 clinical symptom measures into six orthogonal psychopathology dimensions: overall psychopathology, anxious-misery, externalizing disorders, fear, positive psychosis symptoms, and negative psychosis symptoms. We found that multivariate patterns of deviations yielded improved out-of-sample prediction of psychopathology dimensions compared to multivariate patterns of raw cortical volume. We also found that correlations between overall psychopathology and deviations in ventromedial prefrontal, inferior temporal, and dorsal anterior cingulate cortices were stronger than those observed for specific dimensions of psychopathology (e.g., anxious-misery). Notably, these same regions are consistently implicated in a range of putatively distinct disorders. Finally, we performed conventional case-control comparisons of deviations in a group of individuals with depression and a group with attention-deficit hyperactivity disorder (ADHD). We observed spatially overlapping effects between these groups that diminished when controlling for overall psychopathology. Together, our results suggest that modeling cortical brain features as deviations from normative neurodevelopment improves prediction of psychiatric symptoms in out-of-sample testing, and that p-factor models of psychopathology may assist in separating biomarkers that are disorder-general from those that are disorder-specific.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Philip A Cook
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|