1
|
An D, You Y, Ma Q, Xu Z, Liu Z, Liao R, Chen H, Wang Y, Wang Y, Dai H, Li H, Jiang L, Chen Z, Hu W. Deficiency of histamine H 2 receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention. Neuron 2025; 113:572-589.e6. [PMID: 39788124 DOI: 10.1016/j.neuron.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H2 receptor (H2R) in parvalbumin-positive neurons in substantia nigra pars recticulata (PVSNr) attenuates PV+ neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased H2R expression was observed in PVSNr in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by H2R agonist treatment. Dysfunction of PVSNr efferents to the substantia nigra pars compacta dopaminergic neurons and superior colliculus differently contributes to H2R-deficiency-induced behavioral disorders. Collectively, our results demonstrate that H2R deficiency in PV+ neurons contributes to hyperactivity, impulsivity, and inattention by dampening PVSNr activity and involving different efferents in mice. It may enhance understanding of the molecular and circuit-level basis of ADHD and afford new potential therapeutic targets for ADHD-like psychiatric diseases.
Collapse
Affiliation(s)
- Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengyi Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruichu Liao
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiquan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou 310013, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haohong Li
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhu H, Lou W, Jiang Y, Ciobanu A, Fang C, Liu C, Yang Y, Cao J, Shan L, Zhuang Q. Histamine Modulation of the Basal Ganglia Circuitry in the Motor Symptoms of Parkinson's Disease. CNS Neurosci Ther 2025; 31:e70308. [PMID: 40013534 PMCID: PMC11866051 DOI: 10.1111/cns.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is characterized by dopaminergic system dysfunction that results from the degeneration of neurons in the substantia nigra. However, studies suggest that other neurotransmitters, especially histamine, may also play a role in the development of PD. RECENT FINDINGS Numerous studies show that histamine levels in the basal ganglia significantly change in PD pathology, correlating with motor symptoms observed in animal models of PD. Histamine activates H1R or H4R on microglia in the substantia nigra, triggering an inflammatory response and promoting dopaminergic neuron degeneration. Additionally, histamine modulates neuronal excitability and firing activity (firing rate and pattern) by activating H1R, H2R, or H3R on neurons in the basal ganglia nucleus, ultimately impacting normal motor behavior as well as motor symptoms in models of PD. SUMMARY This review presents the role of histamine and its receptor ligands in the basal ganglia nuclei, along with downstream ion channels linked to histamine receptors that influence immune response, neuronal excitability, and firing activity in PD. It highlights their effects on neuronal firing and their connection to PD motor symptoms. Investigating new ligands targeting basal ganglia histamine receptors and associated ion channels may facilitate the development of novel treatments for PD.
Collapse
Affiliation(s)
- Hui‐Xian Zhu
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Wei‐Wei Lou
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Yi‐Miao Jiang
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Alina Ciobanu
- Department of Neuropsychiatric DisordersNetherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamthe Netherlands
| | - Chen‐Xin Fang
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Cheng‐Ye Liu
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Yan‐Li Yang
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Jing‐Yang Cao
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| | - Ling Shan
- Department of Neuropsychiatric DisordersNetherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamthe Netherlands
| | - Qian‐Xing Zhuang
- Department of Physiology, School of MedicineNantong UniversityNantongJiangsuChina
| |
Collapse
|
3
|
Peeters LD, Grueter BA. Wrapping Our Minds Around Perineuronal Nets: Brevican Influences Nucleus Accumbens Parvalbumin Interneuron Synaptic and Behavioral Plasticity. Biol Psychiatry 2024; 96:686-688. [PMID: 39357966 DOI: 10.1016/j.biopsych.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Loren D Peeters
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brad A Grueter
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
4
|
Riveros ME, Leibold NK, Retamal MA, Ezquer F. Role of histaminergic regulation of astrocytes in alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111009. [PMID: 38653364 DOI: 10.1016/j.pnpbp.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Alcohol use disorder (AUD) is a severe, yet not fully understood, mental health problem. It is associated with liver, pancreatic, and gastrointestinal diseases, thereby highly increasing the morbidity and mortality of these individuals. Currently, there is no effective and safe pharmacological therapy for AUD. Therefore, there is an urgent need to increase our knowledge about its neurophysiological etiology to develop new treatments specifically targeted at this health condition. Recent findings have shown an upregulation in the histaminergic system both in alcohol dependent individuals and in animals with high alcohol preference. The use of H3 histaminergic receptor antagonists has given promising therapeutic results in animal models of AUD. Interestingly, astrocytes, which are ubiquitously present in the brain, express the three main histamine receptors (H1, H2 and H3), and in the last few years, several studies have shown that astrocytes could play an important role in the development and maintenance of AUD. Accordingly, alterations in the density of astrocytes in brain areas such as the prefrontal cortex, ventral striatum, and hippocampus that are critical for AUD-related characteristics have been observed. These characteristics include addiction, impulsivity, motor function, and aggression. In this work, we review the current state of knowledge on the relationship between the histaminergic system and astrocytes in AUD and propose that histamine could increase alcohol tolerance by protecting astrocytes from ethanol-induced oxidative stress. This increased tolerance could lead to high levels of alcohol intake and therefore could be a key factor in the development of alcohol dependence.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Programa de Comunicación Celular en Cáncer, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago. Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
5
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Feng J, Zhuo S, Liu D, Peng H, Guo D, Li N, Sun H, Zhang C, Zhao J. H 2S inhibits LiCl/pilocarpine-induced seizures and promotes neuroprotection by regulating TRPV2 expression via the AC3/cAMP/PKA pathway. Neurochem Int 2024; 174:105677. [PMID: 38290616 DOI: 10.1016/j.neuint.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
It is widely acknowledged that epilepsy is a neurological disorder characterized by recurrent and atypical neuronal discharges, resulting in transient dysfunction within the brain. The protective role of hydrogen sulfide (H2S) in epilepsy has been elucidated by recent studies, but the underlying mechanisms remain poorly understood. To investigate this, the concentration of H2S was measured by spectrophotometry and a fluorescent probe in LiCl/Pilocarpine (LiCl/Pilo)-induced seizures in rats. The localization of proteins was examined using immunofluorescence. Electroencephalogram and behavioral tests were employed to evaluate the occurrence of seizures. Neuropathological changes in the hippocampus were examined by hematoxylin-eosin staining, Nissl staining, and transmission electron microscopy. Through proteomics and bioinformatics analysis, we identified the differential proteins in the hippocampus of rats following H2S intervention. Protein changes were detected through western blotting. The results showed that H2S treatment significantly alleviated seizures and minimized post-seizures neurological damage in rats. Proteomics analysis revealed adenylate cyclase 3 (AC3) as a protein potentially targeted by H2S. Moreover, the AC3 activator forskolin reversed the downregulation effect of H2S on the AC3/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/transient receptor potential vanilloid 2 (TRPV2) signaling pathway. In conclusion, H2S targets and downregulates the expression of AC3, thereby modulating the AC3/cAMP/PKA signaling pathway to regulate the expression of TRPV2 in LiCl/Pilo-induced seizures, ultimately leading to seizure inhibition and neuroprotection.
Collapse
Affiliation(s)
- Jigao Feng
- Department of Neurosurgery, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China; Department of Neurosurgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Dayuan Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hao Peng
- Department of Neurosurgery, the Second People's Hospital of Hainan Province, Haikou, Hainan, China
| | - Dachuang Guo
- Department of Neurosurgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Ning Li
- Department of Neurosurgery, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hu Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caicai Zhang
- Department of Physiology, Hainan Medical University, Haikou, Hainan, China.
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China.
| |
Collapse
|
7
|
Yang H, Zhang X, Zhang M, Lu Y, Xie B, Sun S, Yu H, Cong B, Luo Y, Ma C, Wen D. Roles of lncLingo2 and its derived miR-876-5p in the acquisition of opioid reinforcement. Addict Biol 2024; 29:e13375. [PMID: 38380802 PMCID: PMC10898844 DOI: 10.1111/adb.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.
Collapse
Affiliation(s)
- Hongyu Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiuning Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Department of GeneticsQiqihar Medical UniversityQiqiharHeilongjiang ProvinceChina
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei ProvinceHebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
8
|
Fang Z, Chen J, Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for Memory Regulation: An Emotional Perspective. Curr Neuropharmacol 2024; 22:1846-1869. [PMID: 38288837 PMCID: PMC11284729 DOI: 10.2174/1570159x22666240128003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 07/23/2024] Open
Abstract
Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Zhuowen Fang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Chen Z, Zhou T, Li Y, Li T, Ding Z, Liu L. Paraventricular Mast Cell-Derived Histamine Activates CRH Neurons to Mediate Adult Visceral Hypersensitivity Induced by Neonatal Maternal Separation. Brain Sci 2023; 13:1595. [PMID: 38002554 PMCID: PMC10670437 DOI: 10.3390/brainsci13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Neonatal maternal separation (NMS) is an early-life stress (ELS) that can result in adult visceral hypersensitivity, which is usually manifested as chronic visceral pain. Although mast cells and corticotropin-releasing hormone (CRH) neurons are involved in stress response, whether there is an interaction between mast cells and CRH neurons in hypothalamic paraventricular nucleus (PVN) during the ELS-induced visceral hypersensitivity remains elusive. Herein, we established an NMS model by separating neonatal mice from their mothers, and observed that these mice presented visceral hypersensitivity in adulthood, as indicated by elevated abdominal withdrawal reflex and lowered visceral pain threshold. The NMS-induced adult visceral hypersensitivity was accompanied by activation of mast cells and CRH neurons in PVN. Also, NMS increased the histamine content (an inflammatory mediator mainly released by mast cells) and histamine H2 receptor (H2R) expression of CRH neurons in PVN. Remarkably, intra-PVN administration with mast cell stabilizer attenuated the NMS-induced CRH neuronal activation and adult visceral pain, while histamine administration showed the opposite effects. Moreover, intra-PVN injection with H2R antagonist alleviated the NMS-induced CRH neuronal activation, PKA and CREB phosphorylation, and importantly, adult visceral pain. Together, our findings revealed a role of an interaction between paraventricular mast cells and CRH neurons in NMS-induced adult visceral hypersensitivity, thereby providing a perspective for the management of visceral pain.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Zhou
- Department of Anesthesiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliate with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yunfan Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| |
Collapse
|
10
|
Kondev V, Najeed M, Loomba N, Brown J, Winder DG, Grueter BA, Patel S. Synaptic and cellular endocannabinoid signaling mechanisms regulate stress-induced plasticity of nucleus accumbens somatostatin neurons. Proc Natl Acad Sci U S A 2023; 120:e2300585120. [PMID: 37590414 PMCID: PMC10450650 DOI: 10.1073/pnas.2300585120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
Interneuron populations within the nucleus accumbens (NAc) orchestrate excitatory-inhibitory balance, undergo experience-dependent plasticity, and gate-motivated behavior, all biobehavioral processes heavily modulated by endogenous cannabinoid (eCB) signaling. While eCBs are well known to regulate synaptic plasticity onto NAc medium spiny neurons and modulate NAc function at the behavioral level, how eCBs regulate NAc interneuron function is less well understood. Here, we show that eCB signaling differentially regulates glutamatergic and feedforward GABAergic transmission onto NAc somatostatin-expressing interneurons (NAcSOM+) in an input-specific manner, while simultaneously increasing postsynaptic excitability of NAcSOM+ neurons, ultimately biasing toward vHPC (ventral hippocampal), and away from BLA (basolateral amygdalalar), activation of NAcSOM+ neurons. We further demonstrate that NAcSOM+ are activated by stress in vivo and undergo stress-dependent plasticity, evident as a global increase in intrinsic excitability and an increase in excitation-inhibition balance specifically at vHPC, but not BLA, inputs onto NAcSOM+ neurons. Importantly, both forms of stress-induced plasticity are dependent on eCB signaling at cannabinoid type 1 receptors. These findings reveal eCB-dependent mechanisms that sculpt afferent input and excitability of NAcSOM+ neurons and demonstrate a key role for eCB signaling in stress-induced plasticity of NAcSOM+-associated circuits.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232
| | | | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232
| | - Jordan Brown
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN27323
| | - Brad A. Grueter
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN27323
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN37232
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
11
|
Robison AJ. Histamine Regulates Accumbens Microcircuits: An Arousing Finding for Addiction Research. Biol Psychiatry 2023; 93:964-965. [PMID: 37197836 DOI: 10.1016/j.biopsych.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
12
|
Manz KM, Zepeda JC, Zurawski Z, Hamm HE, Grueter BA. SNAP25 differentially contributes to G i/o-coupled receptor function at glutamatergic synapses in the nucleus accumbens. Front Cell Neurosci 2023; 17:1165261. [PMID: 37206665 PMCID: PMC10188356 DOI: 10.3389/fncel.2023.1165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
The nucleus accumbens (NAc) guides reward-related motivated behavior implicated in pathological behavioral states, including addiction and depression. These behaviors depend on the precise neuromodulatory actions of Gi/o-coupled G-protein-coupled receptors (GPCRs) at glutamatergic synapses onto medium spiny projection neurons (MSNs). Previous work has shown that discrete classes of Gi/o-coupled GPCR mobilize Gβγ to inhibit vesicular neurotransmitter release via t-SNARE protein, SNAP25. However, it remains unknown which Gαi/o systems in the NAc utilize Gβγ-SNARE signaling to dampen glutamatergic transmission. Utilizing patch-clamp electrophysiology and pharmacology in a transgenic mouse line with a C-terminal three-residue deletion of SNAP25 (SNAP25Δ3) weaking the Gβγ-SNARE interaction, we surveyed a broad cohort of Gi/o-coupled GPCRs with robust inhibitory actions at glutamatergic synapses in the NAc. We find that basal presynaptic glutamate release probability is reduced in SNAP25Δ3 mice. While κ opioid, CB1, adenosine A1, group II metabotropic glutamate receptors, and histamine H3 receptors inhibit glutamatergic transmission onto MSNs independent of SNAP25, we report that SNAP25 contributes significantly to the actions of GABAB, 5-HT1B/D, and μ opioid receptors. These findings demonstrate that presynaptic Gi/o-coupled GPCRs recruit heterogenous effector mechanisms at glutamatergic synapses in the NAc, with a subset requiring SNA25-dependent Gβγ signaling.
Collapse
Affiliation(s)
- Kevin M. Manz
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C. Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|