1
|
Horn JA, Delgadillo DR, Mayer EA. Understanding Microbial Mediation of the Brain-Gut Axis. Gastroenterol Clin North Am 2025; 54:367-381. [PMID: 40348493 DOI: 10.1016/j.gtc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bidirectional communications between the gut and the brain play an important role in the regulation of food intake, pain perception, mood, and cognitive function. The involved communication pathways are modulated by signals generated by the gut microbiome. Alterations in these communications have been implicated in several chronic brain and gut disorders, including food addiction, mood disorders, neurodevelopmental and neurodegenerative disorders, and functional and inflammatory bowel disorders. The gut microbiome holds great promise for the development of novel therapies normalizing altered brain-gut interactions.
Collapse
Affiliation(s)
- Jill A Horn
- Department of Population and Public Health Sciences, Keck School of Medicine at USC, 1845 N Soto Street, Los Angeles, CA 90032, USA
| | - Desiree R Delgadillo
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 42-210, MC737818, Los Angeles, CA 90095-73787, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress & Resilience; UCLA Vatche & Tamar Manoukian Division of Digestive Diseases, Goodman Luskin Microbiome Center, UCLA.
| |
Collapse
|
2
|
O'Riordan KJ, Moloney GM, Keane L, Clarke G, Cryan JF. The gut microbiota-immune-brain axis: Therapeutic implications. Cell Rep Med 2025; 6:101982. [PMID: 40054458 PMCID: PMC11970326 DOI: 10.1016/j.xcrm.2025.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
The microbiota-gut-brain axis has major implications for human health including gastrointestinal physiology, brain function, and behavior. The immune system represents a key pathway of communication along this axis with the microbiome implicated in neuroinflammation in health and disease. In this review, we discuss the mechanisms as to how the gut microbiota interacts with the brain, focusing on innate and adaptive immunity that are often disrupted in gut-brain axis disorders. We also consider the implications of these observations and how they can be advanced by interdisciplinary research. Leveraging an increased understanding of how these interactions regulate immunity has the potential to usher in a new era of precision neuropsychiatric clinical interventions for psychiatric, neurodevelopmental, and neurological disorders.
Collapse
Affiliation(s)
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lily Keane
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
4
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
5
|
Wang L, Xi M, Cao W, Qin H, Qin D, Chen S, Zhou S, Hou Y, Chen Y, Xiao X, Zheng Q, Li D, Li Y. Electroacupuncture alleviates functional constipation by upregulating host-derived miR-205-5p to modulate gut microbiota and tryptophan metabolism. Front Microbiol 2025; 16:1517018. [PMID: 39973939 PMCID: PMC11835812 DOI: 10.3389/fmicb.2025.1517018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Electroacupuncture (EA) has shown promise as a treatment for Functional constipation (FC), with growing evidence suggesting it may enhance gut motility. MicroRNAs (miRNAs) serve as key regulatory molecules mediating host-microbiota interactions. However, the specific fecal miRNAs regulating microbiota composition and metabolism in EA-treated constipated mice, along with their key targets, remain unidentified. We examined fecal microbiome composition, metabolism, and colonic miRNA expression in loperamide-induced constipated mice and EA-treated mice to identify differentially expressed miRNAs and assess their relationships with microbial abundance, metabolism, and gut motility. An antibiotic cocktail and adeno-associated virus were employed to interfere with the gut microbiota and target miRNA in vivo, thereby validating the proposed mechanism. Our results indicate that miR-205-5p, significantly upregulated in fecal and colonic tissues of EA-treated constipated mice, promotes intestinal motility in a microbiome-dependent manner. Specifically, EA promoted the growth of Lactobacillus reuteri, enriched in the feces of constipation-recovered mice, through host-derived miR-205-5p regulation. Furthermore, Lactobacillus reuteri and its tryptophan metabolites (indole-3-acetamide, indole-3-acetic acid, and indole-3-carboxaldehyde) alleviated loperamide-induced constipation. These findings underscore the pivotal role of host-derived miR-205-5p in modulating microbial composition and tryptophan metabolites to enhance intestinal motility through EA.
Collapse
Affiliation(s)
- Lu Wang
- Department of Acupuncture, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Menghan Xi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Acupuncture and Moxibustion, Chengdu Pidu District Hospital of TCM/The Third Clinical Medical College of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Wei Cao
- Center of Preventive Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Haiyan Qin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Di Qin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siyuan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yujun Hou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qianhua Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dehua Li
- Department of Acupuncture, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Slykerman RF, Davies N, Vlckova K, O'Riordan KJ, Bassett SA, Dekker J, Schellekens H, Hyland NP, Clarke G, Patterson E. Precision Psychobiotics for Gut-Brain Axis Health: Advancing the Discovery Pipelines to Deliver Mechanistic Pathways and Proven Health Efficacy. Microb Biotechnol 2025; 18:e70079. [PMID: 39815671 PMCID: PMC11735468 DOI: 10.1111/1751-7915.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo. For the therapeutic application of live microbial psychobiotics, consensus on their application as adjunct treatments to conventional neuromodulators, use in unmedicated populations or in at-risk cohorts with sub-clinical symptomatology is warranted. This missing information on both sides of the therapeutic equation when treating central nervous system (CNS) conditions makes psychobiotic research challenging, especially when compared to other pharmaceutical or functional food approaches. Expediting the transition from positive preclinical data to proven benefits in humans includes interpreting the promises and pitfalls of animal behavioural assays, as well as navigating mechanism-informed decision making to select the right microbe(s) for the job. In this review, we consider how these decisions can be supported in light of information accrued from a range of clinical studies across healthy, at-risk and pathological study populations, where specific strains have been evaluated in the context of gastrointestinal physiology, brain function and behaviour. Examples of successful, partial and unsuccessful translation from bench to bedside are considered. We also discuss the developments in in silico analyses that have enhanced our understanding of the gut microbiome and that have moved research towards pinpointing the host-microbe interactions most important for optimal gut-brain axis function. Combining this information with knowledge from functional assays across in vitro and ex vivo domains and incorporating model organisms can prime the discovery pipelines with the most promising and rationally selected psychobiotic candidates.
Collapse
Affiliation(s)
| | - Naomi Davies
- Department of Psychological MedicineUniversity of AucklandAucklandNew Zealand
| | - Klara Vlckova
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| | | | - Shalome A. Bassett
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
- Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - James Dekker
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
| | - Harriët Schellekens
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Niall P. Hyland
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of PhysiologyUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Elaine Patterson
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| |
Collapse
|
7
|
Simbirtseva KY, O'Toole PW. Healthy and Unhealthy Aging and the Human Microbiome. Annu Rev Med 2025; 76:115-127. [PMID: 39531852 DOI: 10.1146/annurev-med-042423-042542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An altered gut microbiome is a feature of many multifactorial diseases, and microbiome effects on host metabolism, immune function, and possibly neurological function are implicated. Increased biological age is accompanied by a change in the gut microbiome. However, age-related health loss does not occur uniformly across all subjects but rather depends on differential loss of gut commensals and gain of pathobionts. In this article, we summarize the known and possible effects of the gut microbiome on the hallmarks of aging and describe the most plausible mechanisms. Understanding and targeting these factors could lead to prolonging health span by rationally maintaining the gut microbiome.
Collapse
Affiliation(s)
- Kseniya Y Simbirtseva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
8
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
9
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Sommer M, Chrisler JC, Yong PJ, Carneiro MM, Koistinen IS, Brown N. Menstruation myths. Nat Hum Behav 2024; 8:2086-2089. [PMID: 39567737 DOI: 10.1038/s41562-024-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Marni Sommer
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Joan C Chrisler
- Department of Psychology, Connecticut College, New London, CT, USA.
| | - Paul J Yong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
- BC Women's Centre for Pelvic Pain and Endometriosis, Vancouver, British Columbia, Canada.
- Women's Health Research Institute, Vancouver, British Columbia, Canada.
| | - Marcia Mendonça Carneiro
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Ina Schuppe Koistinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Natalie Brown
- Department of Sport and Exercise Sciences, Swansea University, Swansea University, Swansea, UK.
| |
Collapse
|
11
|
dos Santos JVL, de Melo ISV, Costa CACB, de Almeida LC, Silva DR, Ferro DC, Paula DTC, Macena MDL, Bueno NB. Association Between Ultra-Processed Food Consumption and Cognitive Performance Among Adolescent Students From Underdeveloped Cities in Brazil: A Cross-Sectional Study. Int J Public Health 2024; 69:1607658. [PMID: 39439747 PMCID: PMC11493626 DOI: 10.3389/ijph.2024.1607658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Objectives The association between ultra-processed foods (UPF) consumption and cognitive performance needs to be better characterized in adolescents, especially in low-income settings, where the cost of human capital is high. This study investigated the association between cognitive performance and UPF in adolescents from the countryside of the Brazilian Northeast. Methods Adolescents (15-18 years old) from three public high schools were included. Food intake was assessed using three 24-hour dietary recalls. The classification of foods as UPF was determined according to the Nova classification. Cognitive performance was evaluated using the Non-Verbal General Intelligence Test. Results 116 adolescents were included, of which 50 (43.1%) showed low cognitive performance. The average energy intake was 1973.5 kcal, with 24.2% coming from UPF. Participants with low cognitive performance consumed 26.5% (95% CI: [22.2; 30.7]%) of daily energy intake from UPF compared to 22.5% ([18.8; 26.2]%) of those with medium-high cognitive performance (P = 0.17), without differences in energy and macronutrient intake. Conclusion Despite similar UPF consumption compared to the Brazilian average, no association was found between UPF consumption and cognitive performance in this low-income adolescent sample.
Collapse
Affiliation(s)
- João Victor Laurindo dos Santos
- Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
- Satuba Campus, Federal Institute of Education, Science and Technology of Alagoas, Satuba, Brazil
| | | | - Clara Andrezza Crisóstomo Bezerra Costa
- Satuba Campus, Federal Institute of Education, Science and Technology of Alagoas, Satuba, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | | | | | - Nassib Bezerra Bueno
- Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Chandel P, Thapa K, Kanojia N, Rani L, Singh TG, Rohilla P. Exploring Therapeutic Potential of Phytoconstituents as a Gut Microbiota Modulator in the Management of Neurological and Psychological Disorders. Neuroscience 2024; 551:69-78. [PMID: 38754721 DOI: 10.1016/j.neuroscience.2024.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The functioning of the brain and its impact on behavior, emotions, and cognition can be affected by both neurological and psychiatric disorders that impose a significant burden on global health. Phytochemicals are helpful in the treatment of several neurological and psychological disorders, including anxiety, depression, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD), because they have symptomatic benefits with few adverse reactions. Changes in gut microbiota have been associated with many neurological and psychiatric conditions. This review focuses on the potential efficacy of phytochemicals such as flavonoids, terpenoids, and polyphenols in regulating gut flora and providing symptomatic relief for a range of neurological and psychological conditions. Evidence-based research has shown the medicinal potentials of these phytochemicals, but additional study is required to determine whether altering gut microbiota might slow the advancement of neurological and psychological problems.
Collapse
Affiliation(s)
- Prarit Chandel
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara University, School of Pharmacy, Himachal Pradesh, India.
| | - Neha Kanojia
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Lata Rani
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | | | | |
Collapse
|
13
|
Coppi F, Bucciarelli V, Solodka K, Selleri V, Zanini G, Pinti M, Nasi M, Salvioli B, Nodari S, Gallina S, Mattioli AV. The Impact of Stress and Social Determinants on Diet in Cardiovascular Prevention in Young Women. Nutrients 2024; 16:1044. [PMID: 38613078 PMCID: PMC11013318 DOI: 10.3390/nu16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The prevention of cardiovascular diseases is a fundamental pillar for reducing morbidity and mortality caused by non-communicable diseases. Social determinants, such as socioeconomic status, education, neighborhood, physical environment, employment, social support networks, and access to health care, play a crucial role in influencing health outcomes and health inequities within populations. Social determinants and stress in women are interconnected factors that can significantly impact women's health and well-being. Pregnancy is a good time to engage young women and introduce them to beneficial behaviors, such as adopting essential life skills, especially diet, and learning stress management techniques. Stress influences diet, and women are more likely to engage in unhealthy eating behaviors such as emotional eating or coping with stress with food. Strong action is needed to improve women's lifestyle starting at a young age considering that this lays the foundation for a lower cardiovascular risk in adults and the elderly. The objective of this review is to examine cardiovascular primary prevention in young healthy women, focusing particularly on unresolved issues and the influence of social determinants, as well as the correlation with stressors and their influence on diet.
Collapse
Affiliation(s)
- Francesca Coppi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Valentina Bucciarelli
- Cardiovascular Sciences Department, Azienda Ospedaliero-Universitaria delle Marche, 60166 Ancona, Italy;
| | - Kateryna Solodka
- Istituto Nazionale per le Ricerche Cardiovascolari, 40126 Bologna, Italy (M.P.); (S.G.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (V.S.); (G.Z.)
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (V.S.); (G.Z.)
| | - Marcello Pinti
- Istituto Nazionale per le Ricerche Cardiovascolari, 40126 Bologna, Italy (M.P.); (S.G.)
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (V.S.); (G.Z.)
| | - Milena Nasi
- Department of Surgical, Medical and Dental Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Beatrice Salvioli
- Department of Quality of Life Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Sabina Gallina
- Istituto Nazionale per le Ricerche Cardiovascolari, 40126 Bologna, Italy (M.P.); (S.G.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| | - Anna Vittoria Mattioli
- Istituto Nazionale per le Ricerche Cardiovascolari, 40126 Bologna, Italy (M.P.); (S.G.)
- Department of Quality of Life Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
14
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
15
|
Gur TL, Hsiao EY. The Microbiome at the Interface of the Exposome and Risk for Psychiatric Disorders. Biol Psychiatry 2024; 95:298-299. [PMID: 38220434 DOI: 10.1016/j.biopsych.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Tamar L Gur
- Department of Psychiatry, The Ohio State University, Columbus, Ohio; Department of Neuroscience, The Ohio State University, Columbus, Ohio; Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|