1
|
Ruiz-Martínez FJ, Muñoz-Caracuel M, Muñoz V, Treviño AG, Gómez CM. Event-Related Spectral Perturbations differences analyzed in standard-deviant tone sequences presented in passive and active conditions. Neuroscience 2025; 571:19-30. [PMID: 39993666 DOI: 10.1016/j.neuroscience.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
The predictive coding theory, although a well-supported framework for understanding brain processing, remains elusive regarding how different brain rhythms contribute to error prediction and modify the a priori probabilities of predictive events. This study addresses this issue by analyzing Event-Related Spectral Perturbations (ERSP) generated during an auditory oddball paradigm presented in both a passive and active condition. The design involved sequences of four tones, where the last tone was either predictable (standard, S), completing the scale, or less predictable (deviant, D) when the first tone was occasionally repeated. In the passive condition, participants were instructed to ignore the sounds, whereas, in the active condition, they were asked to press the up or down arrow on a keyboard depending on whether the last tone of the sequence presented a higher or lower frequency than the previous one. This experimental design aimed to bias cognitive processing towards predictable (S) or unpredictable scenarios (D) in two different conditions: passive and attentional. EEG data from 13 channels were analyzed with Morlet wavelets, revealing event-related synchronization (ERS) and desynchronization (ERD) induced by the stimuli. Early theta activity was key in computing prediction errors and updating next-trial expectations. In the active condition, theta responses were higher in D than in S trials, indicating enhanced prediction error processing with attention. Early beta activity also increased during D, likely reflecting motor adjustments. These findings emphasize the critical role of early theta rhythms and the amplifying effect of attention on prediction error processing.
Collapse
Affiliation(s)
| | - Manuel Muñoz-Caracuel
- Department of Experimental Psychology, University of Seville, Seville, Spain; Mental Health Unit, Virgen del Rocio Hospital, Seville, Spain
| | - Vanesa Muñoz
- Department of Experimental Psychology, University of Seville, Seville, Spain
| | | | - Carlos M Gómez
- Department of Experimental Psychology, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Ehrhardt NM, Niehoff C, Oßwald AC, Antonenko D, Lucchese G, Fleischmann R. Comparison of dry and wet electroencephalography for the assessment of cognitive evoked potentials and sensor-level connectivity. Front Neurosci 2024; 18:1441799. [PMID: 39568665 PMCID: PMC11576458 DOI: 10.3389/fnins.2024.1441799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Background Multipin dry electrodes (dry EEG) provide faster and more convenient application than wet EEG, enabling extensive data collection. This study aims to compare task-related time-frequency representations and resting-state connectivity between wet and dry EEG methods to establish a foundation for using dry EEG in investigations of brain activity in neuropsychiatric disorders. Methods In this counterbalanced cross-over study, we acquired wet and dry EEG in 33 healthy participants [n = 22 females, mean age (SD) = 24.3 (± 3.4) years] during resting-state and an auditory oddball paradigm. We computed mismatch negativity (MMN), theta power in task EEG, and connectivity measures from resting-state EEG using phase lag index (PLI) and minimum spanning tree (MST). Agreement between wet and dry EEG was assessed using Bland-Altman bias. Results MMN was detectable with both systems in time and frequency domains, but dry EEG underestimated MMN mean amplitude, peak latency, and theta power compared to wet EEG. Resting-state connectivity was reliably estimated with dry EEG using MST diameter in all except the very low frequencies (0.5-4 Hz). PLI showed larger differences between wet and dry EEG in all frequencies except theta. Conclusion Dry EEG reliably detected MMN and resting-state connectivity despite a lower signal-to-noise ratio. This study provides the methodological basis for using dry EEG in studies investigating the neural processes underlying psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Clara Niehoff
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Anna-Christina Oßwald
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse, Zurich, Switzerland
| | - Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| |
Collapse
|
3
|
Chen F, Fahimi Hnazaee M, Vanneste S, Yasoda-Mohan A. Effective Connectivity Network of Aberrant Prediction Error Processing in Auditory Phantom Perception. Brain Connect 2024; 14:430-444. [PMID: 39135479 DOI: 10.1089/brain.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Introduction: Prediction error (PE) is key to perception in the predictive coding framework. However, previous studies indicated the varied neural activities evoked by PE in tinnitus patients. Here, we aimed to reconcile the conflict by (1) a more nuanced view of PE, which could be driven by changing stimulus (stimulus-driven PE [sPE]) and violation of current context (context-driven PE [cPE]) and (2) investigating the aberrant connectivity networks that are engaged in the processing of the two types of PEs in tinnitus patients. Methods: Ten tinnitus patients with normal hearing and healthy controls were recruited, and a local-global auditory oddball paradigm was applied to measure the electroencephalographic difference between the two groups during sPE and cPE conditions. Results: Overall, the sPE condition engaged bottom-up and top-down connections, whereas the cPE condition engaged mostly top-down connections. The tinnitus group showed decreased sensitivity to the sPE and increased sensitivity to the cPE condition. Particularly, the auditory cortex and posterior cingulate cortex were the hubs for processing cPE in the control and tinnitus groups, respectively, showing the orientation to an internal state in tinnitus. Furthermore, tinnitus patients showed stronger connectivity to the parahippocampus and pregenual anterior cingulate cortex for the establishment of the prediction during the cPE condition. Conclusion: These results begin to dissect the role of changes in stimulus characteristics versus changes in the context of processing the same stimulus in mechanisms of tinnitus generation. Impact Statement This study delves into the number dynamics of prediction error (PE) in tinnitus, proposing a dual framework distinguishing between stimulus-driven PE (sPE) and context-driven PE (cPE). Electroencephalographic data from tinnitus patients and controls revealed distinct connectivity patterns during sPE and cPE conditions. Tinnitus patients exhibited reduced sensitivity to sPE and increased sensitivity to cPE. The auditory cortex and posterior cingulate cortex emerged as pivotal regions for cPE processing in controls and tinnitus patients, indicative of an internal state orientation in tinnitus. Enhanced connectivity to the parahippocampus and pregenual anterior cingulate cortex underscores the role of context in tinnitus pathophysiology.
Collapse
Affiliation(s)
- Feifan Chen
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Mansoureh Fahimi Hnazaee
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
4
|
Brilliant, Yaar-Soffer Y, Herrmann CS, Henkin Y, Kral A. Theta and alpha oscillatory signatures of auditory sensory and cognitive loads during complex listening. Neuroimage 2024; 289:120546. [PMID: 38387743 DOI: 10.1016/j.neuroimage.2024.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The neuronal signatures of sensory and cognitive load provide access to brain activities related to complex listening situations. Sensory and cognitive loads are typically reflected in measures like response time (RT) and event-related potentials (ERPs) components. It's, however, strenuous to distinguish the underlying brain processes solely from these measures. In this study, along with RT- and ERP-analysis, we performed time-frequency analysis and source localization of oscillatory activity in participants performing two different auditory tasks with varying degrees of complexity and related them to sensory and cognitive load. We studied neuronal oscillatory activity in both periods before the behavioral response (pre-response) and after it (post-response). Robust oscillatory activities were found in both periods and were differentially affected by sensory and cognitive load. Oscillatory activity under sensory load was characterized by decrease in pre-response (early) theta activity and increased alpha activity. Oscillatory activity under cognitive load was characterized by increased theta activity, mainly in post-response (late) time. Furthermore, source localization revealed specific brain regions responsible for processing these loads, such as temporal and frontal lobe, cingulate cortex and precuneus. The results provide evidence that in complex listening situations, the brain processes sensory and cognitive loads differently. These neural processes have specific oscillatory signatures and are long lasting, extending beyond the behavioral response.
Collapse
Affiliation(s)
- Brilliant
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany.
| | - Y Yaar-Soffer
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - C S Herrmann
- Experimental Psychology Division, University of Oldenburg, 26111 Oldenburg, Germany
| | - Y Henkin
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - A Kral
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Campos A, Tuomainen J, Tuomainen O. Mismatch Responses to Speech Contrasts in Preschoolers with and without Developmental Language Disorder. Brain Sci 2023; 14:42. [PMID: 38248257 PMCID: PMC10813673 DOI: 10.3390/brainsci14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This study compared cortical responses to speech in preschoolers with typical language development (TLD) and with Developmental Language Disorder (DLD). We investigated whether top-down language effects modulate speech perception in young children in an adult-like manner. We compared cortical mismatch responses (MMRs) during the passive perception of speech contrasts in three groups of participants: preschoolers with TLD (n = 11), preschoolers with DLD (n = 16), and adults (n = 20). We also measured children's phonological skills and investigated whether they are associated with the cortical discrimination of phonemic changes involving different linguistic complexities. The results indicated top-down language effects in adults, with enhanced cortical discrimination of lexical stimuli but not of non-words. In preschoolers, the TLD and DLD groups did not differ in the MMR measures, and no top-down effects were detected. Moreover, we found no association between MMRs and phonological skills, even though the DLD group's phonological skills were significantly lower. Our findings suggest that top-down language modulations in speech discrimination may not be present during early childhood, and that children with DLD may not exhibit cortical speech perception deficits. The lack of association between phonological and MMR measures indicates that further research is needed to understand the link between language skills and cortical activity in preschoolers.
Collapse
Affiliation(s)
- Ana Campos
- UCL Ear Institute, University College London, London WC1E 6BT, UK
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK;
- Carrera de Fonoaudiología, Universidad San Sebastián, Lota 2465, Santiago 7510602, Chile
| | - Jyrki Tuomainen
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK;
| | - Outi Tuomainen
- Department of Linguistics, University of Potsdam, 14469 Potsdam, Germany;
| |
Collapse
|
6
|
Xia C, Li J, Yan R, Su W, Liu Y. Contribution of inter-trial phase coherence at theta, alpha, and beta frequencies in auditory change detection. Front Neurosci 2023; 17:1224479. [PMID: 38027496 PMCID: PMC10665517 DOI: 10.3389/fnins.2023.1224479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Auditory change detection is a pre-attentive cortical auditory processing ability. Many neurological and psychological disorders can lead to defects in this process. Some studies have shown that phase synchronization may be related to auditory discrimination. However, the specific contributions of phase synchronization at different frequencies remain unclear. Methods We analyzed the electroencephalogram (EEG) data of 29 healthy adults using an oddball paradigm consisting of a standard stimulus and five deviant stimuli with varying frequency modulation patterns, including midpoint frequency transitions and linear frequency modulation. We then compared the peak amplitude and latency of inter-trial phase coherence (ITC) at the theta(θ), alpha(α), and beta(β) frequencies, as well as the N1 component, and their relationships with stimulus changes. At the same time, the characteristics of inter-trial phase coherence in response to the pure tone stimulation and chirp sound with a fine time-frequency structure were also assessed. Result When the stimulus frequency did not change relative to the standard stimulus, the peak latency of phase coherence at β and α frequencies was consistent with that of the N1 component. The inter-trial phase coherence at β frequency (β-ITC)served as a faster indicator for detecting frequency transition when the stimulus frequency was changed relative to the standard stimulus. β-ITC demonstrates temporal stability when detecting pure sinusoidal tones and their frequency changes, and is less susceptible to interference from other neural activities. The phase coherence at θ frequency could integrate the frequency and temporal characteristics of deviant into a single representation, which can be compared with the memory trace formed by the standard stimulus, thus effectively identifying auditory changes. Pure sinusoidal tone stimulation could induce higher inter-trial phase coherence in a smaller time window, but chirp sounds with a fine time-frequency structure required longer latencies to achieve phase coherence. Conclusion Phase coherence at theta, alpha, and beta frequencies are all involved in auditory change detection, but play different roles in this automatic process. Complex time-frequency modulated stimuli require longer processing time for effective change detection.
Collapse
Affiliation(s)
- Caifeng Xia
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Jinhong Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Rong Yan
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Wenwen Su
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang H, Xie J, Tao Q, Xiao Y, Cui G, Fang W, Zhu X, Xu G, Li M, Han C. The effect of motion frequency and sound source frequency on steady-state auditory motion evoked potential. Hear Res 2023; 439:108897. [PMID: 37871451 DOI: 10.1016/j.heares.2023.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The ability of humans to perceive motion sound sources is important for accurate response to the living environment. Periodic motion sound sources can elicit steady-state motion auditory evoked potential (SSMAEP). The purpose of this study was to investigate the effects of different motion frequencies and different frequencies of sound source on SSMAEP. The stimulation paradigms for simulating periodic motion of sound sources were designed utilizing head-related transfer function (HRTF) techniques in this study. The motion frequencies of the paradigm are set respectively to 1-10 Hz, 15 Hz, 20 Hz, 30 Hz, 40 Hz, 60 Hz, and 80 Hz. In addition, the frequencies of sound source of the paradigms were set to 500 Hz, 1000 Hz, 2000 Hz, 3000 Hz, and 4000 Hz at motion frequencies of 6 Hz and 40 Hz. Fourteen subjects with normal hearing were recruited for the study. SSMAEP was elicited by 500 Hz pure tone at motion frequencies of 1-10 Hz, 15 Hz, 20 Hz, 30 Hz, 40 Hz, 60 Hz, and 80 Hz. SSMAEP was strongest at motion frequencies of 6 Hz. Moreover, at 6 Hz motion frequency, the SSMAEP amplitude was largest at the tone frequency of 500 Hz and smallest at 4000 Hz. Whilst SSMAEP elicited by 4000 Hz pure tone was significantly the strongest at motion frequency of 40 Hz. SSMAEP can be elicited by periodic motion sound sources at motion frequencies up to 80 Hz. SSMAEP also has a strong response at lower frequency. Low-frequency pure tones are beneficial to enhance SSMAEP at low-frequency sound source motion, whilst high-frequency pure tones help to enhance SSMAEP at high-frequency sound source motion. The study provides new insight into the brain's perception of rhythmic auditory motion.
Collapse
Affiliation(s)
- Huanqing Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China; School of Mechanical Engineering, Xinjiang University, Urumqi, China; National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Qing Tao
- School of Mechanical Engineering, Xinjiang University, Urumqi, China.
| | - Yi Xiao
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Guiling Cui
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Wenhu Fang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Zhu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Min Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chengcheng Han
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Sauer A, Grent-'t-Jong T, Zeev-Wolf M, Singer W, Goldstein A, Uhlhaas PJ. Spectral and phase-coherence correlates of impaired auditory mismatch negativity (MMN) in schizophrenia: A MEG study. Schizophr Res 2023; 261:60-71. [PMID: 37708723 DOI: 10.1016/j.schres.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.
Collapse
Affiliation(s)
- Andreas Sauer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany
| | - Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Maor Zeev-Wolf
- Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wolf Singer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
9
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
10
|
Henderson J, Mari T, Hopkinson A, Hewitt D, Newton-Fenner A, Giesbrecht T, Marshall A, Stancak A, Fallon N. Neural correlates of perceptual texture change during active touch. Front Neurosci 2023; 17:1197113. [PMID: 37332863 PMCID: PMC10272454 DOI: 10.3389/fnins.2023.1197113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Texture changes occur frequently during real-world haptic explorations, but the neural processes that encode perceptual texture change remain relatively unknown. The present study examines cortical oscillatory changes during transitions between different surface textures during active touch. Methods Participants explored two differing textures whilst oscillatory brain activity and finger position data were recorded using 129-channel electroencephalography and a purpose-built touch sensor. These data streams were fused to calculate epochs relative to the time when the moving finger crossed the textural boundary on a 3D-printed sample. Changes in oscillatory band power in alpha (8-12 Hz), beta (16-24 Hz) and theta (4-7 Hz) frequency bands were investigated. Results Alpha-band power reduced over bilateral sensorimotor areas during the transition period relative to ongoing texture processing, indicating that alpha-band activity is modulated by perceptual texture change during complex ongoing tactile exploration. Further, reduced beta-band power was observed in central sensorimotor areas when participants transitioned from rough to smooth relative to transitioning from smooth to rough textures, supporting previous research that beta-band activity is mediated by high-frequency vibrotactile cues. Discussion The present findings suggest that perceptual texture change is encoded in the brain in alpha-band oscillatory activity whilst completing continuous naturalistic movements across textures.
Collapse
Affiliation(s)
- Jessica Henderson
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
| | - Tyler Mari
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hopkinson
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
- Hopkinson Research, Wirral, United Kingdom
| | - Danielle Hewitt
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
| | - Alice Newton-Fenner
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
- Institute of Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Timo Giesbrecht
- Unilever, Research and Development, Port Sunlight, United Kingdom
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Andrej Stancak
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
- Institute of Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Fallon
- School of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Colenbier N, Sareen E, Del-Aguila Puntas T, Griffa A, Pellegrino G, Mantini D, Marinazzo D, Arcara G, Amico E. Task matters: Individual MEG signatures from naturalistic and neurophysiological brain states. Neuroimage 2023; 271:120021. [PMID: 36918139 DOI: 10.1016/j.neuroimage.2023.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.
Collapse
Affiliation(s)
| | - Ekansh Sareen
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tamara Del-Aguila Puntas
- Laboratorio de Psicobiologia, Departmento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Spain
| | - Alessandra Griffa
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland.
| |
Collapse
|
12
|
Evidence for predictions established by phantom sound. Neuroimage 2022; 264:119766. [PMID: 36435344 DOI: 10.1016/j.neuroimage.2022.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Predictions, the bridge between the internal and external worlds, are established by prior experience and updated by sensory stimuli. Responses to omitted but unexpected stimuli, known as omission responses, can break the one-to-one mapping of stimulus-response and can expose predictions established by the preceding stimulus built up. While research into exogenous predictions (driven by external stimuli) is often reported, that into endogenous predictions (driven by internal percepts) is rarely available in the literature. Here, we report evidence for endogenous predictions established by the Zwicker tone illusion, a phantom pure-tone-like auditory percept following notch noises. We found that MMN, P300, and theta oscillations could be recorded using an omission paradigm in subjects who can perceive Zwicker tone illusions, but could not in those who cannot. The MMN and P300 responses relied on attention, but theta oscillations did not. In-depth analysis shows that an increase in single-trial theta power, including total and induced theta, with the endogenous prediction, is lateralized to the left frontal brain areas. Our study depicts that the brain automatically analyzes internal perception, progressively establishes predictions and yields prediction errors in the left frontal region when a violation occurs.
Collapse
|
13
|
Debnath R, Wetzel N. Processing of task-irrelevant sounds during typical everyday activities in children. Dev Psychobiol 2022; 64:e22331. [PMID: 36282761 DOI: 10.1002/dev.22331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
Our ability to focus on a task and ignore task-irrelevant stimuli is critical for efficient cognitive functioning. Attention control is especially required in the auditory modality as sound has privileged access to perception and consciousness. Despite this important function, little is known about auditory attention during typical everyday activities in childhood. We investigated the impact of task-irrelevant sounds on attention during three everyday activities - playing a game, reading a book, watching a movie. During these activities, environmental novel sounds were presented within a sequence of standard sounds to 7-8-year-old children and adults. We measured ERPs reflecting early sound processing and attentional orienting and theta power evoked by standard and novel sounds during these activities. Playing a game versus reading or watching reduced early encoding of sounds in children and affected ongoing information processing and attention allocation in both groups. In adults, theta power was reduced during playing at mid-central brain areas. Results show a pattern of immature neuronal mechanisms underlying perception and attention of task-irrelevant sounds in 7-8-year-old children. While the type of activity affected the processing of irrelevant sounds in both groups, early stimulus encoding processes were more sensitive to the type of activities in children.
Collapse
Affiliation(s)
- Ranjan Debnath
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Nicole Wetzel
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,University of Applied Sciences Magdeburg-Stendal, Magdeburg, Germany
| |
Collapse
|
14
|
Neural responses to sensory novelty with and without conscious access. Neuroimage 2022; 262:119516. [PMID: 35931308 DOI: 10.1016/j.neuroimage.2022.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Detection of novel stimuli that violate statistical regularities in the sensory scene is of paramount importance for the survival of biological organisms. Event-related potentials, phasic increases in pupil size, and evoked changes in oscillatory power have been proposed as markers of sensory novelty detection. However, how conscious access to novelty modulates these different brain responses is not well understood. Here, we studied the neural responses to sensory novelty in the auditory modality with and without conscious access. We identified individual thresholds for conscious auditory discrimination and presented to our participants sequences of tones, where the last stimulus could be another standard, a subthreshold target or a suprathreshold target. Participants were instructed to report whether the last tone of each sequence was the same or different from those preceding it. Results indicate that attentional orientation to behaviorally relevant stimuli and overt decision-making mechanisms, indexed by the P3 event-related response and reaction times, best predict whether a novel stimulus will be consciously accessed. Theta power and pupil size do not predict conscious access to novelty, but instead reflect information maintenance and unexpected sensory uncertainty. These results highlight the interplay between bottom-up and top-down mechanisms and how the brain weights neural responses to novelty and uncertainty during perception and goal-directed behavior.
Collapse
|
15
|
Ng B, Reh RK, Mostafavi S. A practical guide to applying machine learning to infant EEG data. Dev Cogn Neurosci 2022; 54:101096. [PMID: 35334336 PMCID: PMC8943418 DOI: 10.1016/j.dcn.2022.101096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience community, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to infant data is particularly challenging due to the low number of trials, low signal-to-noise ratio, high inter-subject variability, and high inter-trial variability. Here, we provide a step-by-step tutorial on how to apply ML to classify cognitive states in infants. We describe the type of brain attributes that are widely used for EEG classification and also introduce a Riemannian geometry based approach for deriving connectivity estimates that account for inter-trial and inter-subject variability. We present pipelines for learning classifiers using trials from a single infant and from multiple infants, and demonstrate the application of these pipelines on a standard infant EEG dataset of forty 12-month-old infants collected under an auditory oddball paradigm. While we classify perceptual states induced by frequent versus rare stimuli, the presented pipelines can be easily adapted for other experimental designs and stimuli using the associated code that we have made publicly available.
Collapse
|
16
|
Broadband Dynamics Rather than Frequency-Specific Rhythms Underlie Prediction Error in the Primate Auditory Cortex. J Neurosci 2021; 41:9374-9391. [PMID: 34645605 DOI: 10.1523/jneurosci.0367-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.
Collapse
|
17
|
Lo M, Lin YX, Li YJ. Cognitive Workload in an Auditory Digit Span Task When Memory Span Is in the Neighborhood of Seven Items. J PSYCHOPHYSIOL 2021. [DOI: 10.1027/0269-8803/a000282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Task performance of digit span has been widely used in the research on human short-term memory. The present study was conducted to show that the dynamic change of underlying mental effort can be further estimated by measuring the strength of theta oscillations at a forehead site on the scalp. Fourteen healthy adults ( Mage = 26.1 years) performed a passive listening (PL) task and an auditory digit span (DS) task, and electroencephalography (EEG) data were recorded simultaneously during the two tasks. Considering that the digit span paradigm has often been conducted in a non-laboratory location, the EEG data were collected with a wireless single-channel headset system. The headset system was validated in this study by replicating the EEG (an enhancement of frontal theta power) as well as event-related potential (N200 and P300) responses to the deviant tone stimuli in the PL task. The outcomes of the DS task showed that the memory span of the participants was at least eight items. Moreover, frontal theta power in response to a list of six to eight digits increased significantly. This pattern of results supports a hypothesis that additional mental effort is required for short-term retention of verbal items when the number of stimulus items exceeds the newly proposed limit of short-term memory capacity. Some strengths and limitations of the current EEG headset system are also discussed.
Collapse
Affiliation(s)
- Ming Lo
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| | - Yi-Xiu Lin
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| | - Yi-Jui Li
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| |
Collapse
|
18
|
Ho HT, Burr DC, Alais D, Morrone MC. Propagation and update of auditory perceptual priors through alpha and theta rhythms. Eur J Neurosci 2021; 55:3083-3099. [PMID: 33559266 PMCID: PMC9543013 DOI: 10.1111/ejn.15141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
To maintain a continuous and coherent percept over time, the brain makes use of past sensory information to anticipate forthcoming stimuli. We recently showed that auditory experience of the immediate past is propagated through ear-specific reverberations, manifested as rhythmic fluctuations of decision bias at alpha frequencies. Here, we apply the same time-resolved behavioural method to investigate how perceptual performance changes over time under conditions of stimulus expectation and to examine the effect of unexpected events on behaviour. As in our previous study, participants were required to discriminate the ear-of-origin of a brief monaural pure tone embedded in uncorrelated dichotic white noise. We manipulated stimulus expectation by increasing the target probability in one ear to 80%. Consistent with our earlier findings, performance did not remain constant across trials, but varied rhythmically with delay from noise onset. Specifically, decision bias showed a similar oscillation at ~9 Hz, which depended on ear congruency between successive targets. This suggests rhythmic communication of auditory perceptual history occurs early and is not readily influenced by top-down expectations. In addition, we report a novel observation specific to infrequent, unexpected stimuli that gave rise to oscillations in accuracy at ~7.6 Hz one trial after the target occurred in the non-anticipated ear. This new behavioural oscillation may reflect a mechanism for updating the sensory representation once a prediction error has been detected.
Collapse
Affiliation(s)
- Hao Tam Ho
- School of Psychology, University of Sydney, Camperdown, NSW, Australia.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
| | - David C Burr
- School of Psychology, University of Sydney, Camperdown, NSW, Australia.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy.,Institute of Neuroscience, Pisa, Italy
| | - David Alais
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Pan Y, Novembre G, Song B, Zhu Y, Hu Y. Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Soc Cogn Affect Neurosci 2021; 16:210-221. [PMID: 32591830 PMCID: PMC7812617 DOI: 10.1093/scan/nsaa080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Social interactive learning denotes the ability to acquire new information from a conspecific-a prerequisite for cultural evolution and survival. As inspired by recent neurophysiological research, here we tested whether social interactive learning can be augmented by exogenously synchronizing oscillatory brain activity across an instructor and a learner engaged in a naturalistic song-learning task. We used a dual brain stimulation protocol entailing the trans-cranial delivery of synchronized electric currents in two individuals simultaneously. When we stimulated inferior frontal brain regions, with 6 Hz alternating currents being in-phase between the instructor and the learner, the dyad exhibited spontaneous and synchronized body movement. Remarkably, this stimulation also led to enhanced learning performance. These effects were both phase- and frequency-specific: 6 Hz anti-phase stimulation or 10 Hz in-phase stimulation, did not yield comparable results. Furthermore, a mediation analysis disclosed that interpersonal movement synchrony acted as a partial mediator of the effect of dual brain stimulation on learning performance, i.e. possibly facilitating the effect of dual brain stimulation on learning. Our results provide a causal demonstration that inter-brain synchronization is a sufficient condition to improve real-time information transfer between pairs of individuals.
Collapse
Affiliation(s)
- Yafeng Pan
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Department of Neuroscience, Physiology and Parmacology, University College London, WC1E 6BT London, UK
| | - Bei Song
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Department of Musicology, Harbin Conservatory of Music, 150070 Heilongjiang, China
| | - Yi Zhu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| | - Yi Hu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| |
Collapse
|
20
|
Shestopalova LB, Petropavlovskaia EA, Semenova VV, Nikitin NI. Brain oscillations evoked by sound motion. Brain Res 2020; 1752:147232. [PMID: 33385379 DOI: 10.1016/j.brainres.2020.147232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022]
Abstract
The present study investigates the event-related oscillations underlying the motion-onset response (MOR) evoked by sounds moving at different velocities. EEG was recorded for stationary sounds and for three patterns of sound motion produced by changes in interaural time differences. We explored the effect of motion velocity on the MOR potential, and also on the event-related spectral perturbation (ERSP) and inter-trial phase coherence (ITC) calculated from the time-frequency decomposition of EEG signals. The phase coherence of slow oscillations increased with an increase in motion velocity similarly to the magnitude of cN1 and cP2 components of the MOR response. The delta-to-alpha inter-trial spectral power remained at the same level up to, but not including, the highest velocity, suggesting that gradual spatial changes within the sound did not induce non-coherent activity. Conversely, the abrupt sound displacement induced theta-alpha oscillations which had low phase consistency. The findings suggest that the MOR potential could be mainly generated by the phase resetting of slow oscillations, and the degree of phase coherence may be considered as a neurophysiological indicator of sound motion processing.
Collapse
Affiliation(s)
- Lidia B Shestopalova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia.
| | | | - Varvara V Semenova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia.
| | - Nikolay I Nikitin
- Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia.
| |
Collapse
|
21
|
Kaya EM, Huang N, Elhilali M. Pitch, Timbre and Intensity Interdependently Modulate Neural Responses to Salient Sounds. Neuroscience 2020; 440:1-14. [PMID: 32445938 DOI: 10.1016/j.neuroscience.2020.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023]
Abstract
As we listen to everyday sounds, auditory perception is heavily shaped by interactions between acoustic attributes such as pitch, timbre and intensity; though it is not clear how such interactions affect judgments of acoustic salience in dynamic soundscapes. Salience perception is believed to rely on an internal brain model that tracks the evolution of acoustic characteristics of a scene and flags events that do not fit this model as salient. The current study explores how the interdependency between attributes of dynamic scenes affects the neural representation of this internal model and shapes encoding of salient events. Specifically, the study examines how deviations along combinations of acoustic attributes interact to modulate brain responses, and subsequently guide perception of certain sound events as salient given their context. Human volunteers have their attention focused on a visual task and ignore acoustic melodies playing in the background while their brain activity using electroencephalography is recorded. Ambient sounds consist of musical melodies with probabilistically-varying acoustic attributes. Salient notes embedded in these scenes deviate from the melody's statistical distribution along pitch, timbre and/or intensity. Recordings of brain responses to salient notes reveal that neural power in response to the melodic rhythm as well as cross-trial phase alignment in the theta band are modulated by degree of salience of the notes, estimated across all acoustic attributes given their probabilistic context. These neural nonlinear effects across attributes strongly parallel behavioral nonlinear interactions observed in perceptual judgments of auditory salience using similar dynamic melodies; suggesting a neural underpinning of nonlinear interactions that underlie salience perception.
Collapse
Affiliation(s)
- Emine Merve Kaya
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Huang
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Mounya Elhilali
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
23
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Valeriani M. Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part II. Neurol Sci 2020; 41:3503-3515. [PMID: 32683566 DOI: 10.1007/s10072-020-04527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
This review focuses on new and/or less standardized event-related potentials methods, in order to improve their knowledge for future clinical applications. The olfactory event-related potentials (OERPs) assess the olfactory functions in time domain, with potential utility in anosmia and degenerative diseases. The transcranial magnetic stimulation-electroencephalography (TMS-EEG) could support the investigation of the intracerebral connections with very high temporal discrimination. Its application in the diagnosis of disorders of consciousness has achieved recent confirmation. Magnetoencephalography (MEG) and event-related fields (ERF) could improve spatial accuracy of scalp signals, with potential large application in pre-surgical study of epileptic patients. Although these techniques have methodological limits, such as high inter- and intraindividual variability and high costs, their diffusion among researchers and clinicians is hopeful, pending their standardization.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tommaso Bocci
- Dipartimento di Scienze della Salute, University of Milano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Neuroscience Department, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation LAb (SI-BIN Lab), University of Siena, Siena, Italy
| | - Massimiliano Valeriani
- Neurology Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
24
|
Jones EJH, Goodwin A, Orekhova E, Charman T, Dawson G, Webb SJ, Johnson MH. Infant EEG theta modulation predicts childhood intelligence. Sci Rep 2020; 10:11232. [PMID: 32641754 PMCID: PMC7343785 DOI: 10.1038/s41598-020-67687-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/04/2020] [Indexed: 11/08/2022] Open
Abstract
Intellectual functioning is a critical determinant of economic and personal productivity. Identifying early neural predictors of cognitive function in infancy will allow us to map the neurodevelopmental pathways that underpin individual differences in intellect. Here, in three different cohorts we investigate the association between a putative neurophysiological indicator of information encoding (change in frontal theta during a novel video) in infancy and later general cognitive outcome. In a discovery cohort of 12-month-old typically developing infants, we recorded EEG during presentation of dynamic movies of people and objects. Frontal theta power (3-6 Hz) significantly increased during the course of viewing each video. Critically, increase in frontal theta during viewing of a video was associated with a differential response to repetition of that specific video, confirming relation to learning. Further, individual differences in the magnitude of change in frontal theta power were related to concurrent nonverbal cognitive level. We then sought to extend this association in two independent samples enriched for variation in cognitive outcome due to the inclusion of infants at familial risk for autism. We observed similar patterns of theta EEG change at 12 months, and found a predictive relation to verbal and nonverbal cognitive skills measured at 2, 3 and 7 years of age. For the subset of high-risk infants later diagnosed with autism, infant theta EEG explained over 80% of the variance in nonverbal skills at age 3 years. We suggest that EEG theta change in infancy is an excellent candidate predictive biomarker that could yield substantial insight into the mechanisms that underlie individual differences in childhood intelligence, particularly in high risk populations.
Collapse
Affiliation(s)
- E J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| | - A Goodwin
- Institute of Psychiatry, King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - E Orekhova
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academ, The University of Gothenburg, Kungsgatan 12, SE 411 19, Gothenburg, Sweden
- MEG Centre, Moscow State University of Psychology and Education, 123290, Moscow, Russia
| | - T Charman
- Institute of Psychiatry, King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - G Dawson
- Duke Centre for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, 4584 White Zone, Duke South, Durham, 27705, NC, USA
| | - S J Webb
- Center On Human Development and Disability, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195, USA
- Department of Psychiatry & Behavioral Science, University of Washington, 2815 Eastlake Ave E, Seattle, WA, 98102, USA
- Center On Child Behavior and Development, Seattle Children's Research Institute, 2001 Eighth Ave, Suite 400, Seattle, WA, 98121, USA
| | - M H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
25
|
Braithwaite EK, Jones EJH, Johnson MH, Holmboe K. Dynamic modulation of frontal theta power predicts cognitive ability in infancy. Dev Cogn Neurosci 2020; 45:100818. [PMID: 32741754 PMCID: PMC7393453 DOI: 10.1016/j.dcn.2020.100818] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive ability is a key factor that contributes to individual differences in life trajectories. Identifying early neural indicators of later cognitive ability may enable us to better elucidate the mechanisms that shape individual differences, eventually aiding identification of infants with an elevated likelihood of less optimal outcomes. A previous study associated a measure of neural activity (theta EEG) recorded at 12-months with non-verbal cognitive ability at ages two, three and seven in individuals with older siblings with autism (Jones et al., 2020). In a pre-registered study (https://osf.io/v5xrw/), we replicate and extend this finding in a younger, low-risk infant sample. EEG was recorded during presentation of a non-social video to a cohort of 6-month-old infants and behavioural data was collected at 6- and 9-months-old. Initial analyses replicated the finding that frontal theta power increases over the course of video viewing, extending this to 6-month-olds. Further, individual differences in the magnitude of this change significantly predicted non-verbal cognitive ability measured at 9-months, but not early executive function. Theta change at 6-months-old may therefore be an early indicator of later cognitive ability. This could have important implications for identification of, and interventions for, children at risk of poor cognitive outcomes.
Collapse
Affiliation(s)
- Eleanor K Braithwaite
- Centre for Brain and Cognitive Development, Birkbeck, University of London, United Kingdom
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, United Kingdom
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - Karla Holmboe
- Department of Experimental Psychology, University of Oxford, United Kingdom.
| |
Collapse
|
26
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
27
|
Spatiotemporal dynamics of auditory information processing in the insular cortex: an intracranial EEG study using an oddball paradigm. Brain Struct Funct 2020; 225:1537-1559. [DOI: 10.1007/s00429-020-02072-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
|
28
|
Neural correlates of auditory sensory memory dynamics in the aging brain. Neurobiol Aging 2020; 88:128-136. [PMID: 32035848 DOI: 10.1016/j.neurobiolaging.2019.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/21/2022]
Abstract
The auditory system allows us to monitor background environmental sound patterns and recognize deviations that may indicate opportunities or threats. The mismatch negativity and P3a potentials have generators in the auditory and inferior frontal cortex and index expected sound patterns (standards) and any aberrations (deviants). The mismatch negativity and P3a waveforms show increased positivity for consecutive standards and deviants preceded by more standards. We hypothesized attenuated repetition effects in older participants, potentially because of differences in prefrontal functions. Young (23 ± 5 years) and older (75 ± 5 years) adults were tested in 2 oddball paradigms with pitch or location deviants. Significant repetition effects were observed in the young standard and deviant waveforms at multiple time windows. Except the earliest time window (30-100 ms), repetition effects were absent in the older group. Repetition effects were significant at frontal but not temporal lobe sites and did not differ among pitch and location deviants. However, P3a repetition was evident in both ages. Findings suggest age differences in the dynamic updating of sensory memory for background sound patterns.
Collapse
|
29
|
Qu X, Liukasemsarn S, Tu J, Higgins A, Hickey TJ, Hall MH. Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Front Psychiatry 2020; 11:541659. [PMID: 33061914 PMCID: PMC7530247 DOI: 10.3389/fpsyt.2020.541659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The mismatch negativity (MMN) is considered as a promising biomarker that can inform future therapeutic studies. However, there is a large variability among patients with first episode psychosis (FEP). Also, most studies report a single electrode site and on comparing case-control group differences. Few have taken advantage of the full wealth of multi-channel EEG signals to examine observable patterns. None, to our knowledge, have used machine learning (ML) approaches to investigate neurophysiological derived subgroups with distinct cognitive and functional outcome characteristics. In this study, we applied ML to empirically stratify individuals into homogeneous subgroups based on multi-channel MMN data. We then characterized the functional, cognitive, and clinical profiles of these neurobiologically derived subgroups. We also explored the underlying low frequency range responses (delta, theta, alpha) during MMN. METHODS Clinical, neurocognitive, functioning data of 33 healthy controls and 20 FEP patients were collected. 90% of the patients had 6-month follow-up data. Neurocognition, social cognition, and functioning measures were assessed using the NCCB Cognitive Battery, the Awareness of Social Inference Test, UCSD Performance-Based Skills Assessment, and Multnomah Community Ability Scale. Symptom severity was collected using the PANSS. MMN amplitude and single-trial derived low frequency activity across 24 frontocentral channels were used as main variables in the ML k-means clustering analyses. RESULTS We found a consistent pattern of two distinctive subgroups. We labeled them as "better functioning" and "poorer functioning" clusters, respectively. Each subgroup can be mapped onto either better or poorer clinical, cognitive, and functioning profiles. Also, we identified two subgroups of patients: one showed improved MMN and one showed worsening of MMN over time. Patients with improved MMN had better follow-up clinical, cognitive, and functioning profile than those with worsening MMN. Among the low frequency bands, delta frequency appeared to be the most relevant to the observed MMN responses in all individuals. However, higher delta responses were not necessarily associated with a better functioning profile, suggesting that delta frequency alone may not be useful in clinical characterization. CONCLUSIONS The ML approach could be a robust tool to explore heterogeneity and facilitate the identification of neurobiological homogeneous subgroups in FEP.
Collapse
Affiliation(s)
- Xiaodong Qu
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Saran Liukasemsarn
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| | - Jingxuan Tu
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Amy Higgins
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| | - Timothy J Hickey
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
30
|
Shen G, Meltzoff AN, Marshall PJ. Body representations as indexed by oscillatory EEG activities in the context of tactile novelty processing. Neuropsychologia 2019; 132:107144. [PMID: 31319120 DOI: 10.1016/j.neuropsychologia.2019.107144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/07/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Neural oscillatory activities in different frequency bands are known to reflect different cognitive functions. The current study investigates neural oscillations involved in tactile novelty processing, in particular how physically different digits of the hand may be categorized as being more or less similar to one another. Time-frequency analyses were conducted on EEG responses recorded from a somatosensory mismatch protocol involving stimulation of the 1st, 3rd, and 5th digits. The pattern of tactile stimulation leveraged a functional category boundary between the 1st digit (thumb) and the other fingers. This functional category has been hypothesized to derive, in part, from the way that the hand is used to grasp and haptically explore objects. EEG responses to standard stimuli (the 3rd digit, probability of 80%) and two deviant stimuli (1st digit as across-boundary deviant and 5th digit as within-boundary deviant, probability of 10% each) were examined. Analyses of EEG responses examined changes in power as well as phase information. Deviant tactile stimuli evoked significantly greater theta event-related synchronization and greater phase-locking values compared to the corresponding control stimuli. The increase in theta power evoked by the contrast of the 3rd digit and the 1st digit was significantly larger than for the contrast between the 3rd and 5th digits. Desynchronization in the alpha and beta bands was greater for deviant than control stimuli, which may reflect increased local cortical excitation to novel stimuli, modulated by top-down feedback processes as part of a hierarchical novelty detection mechanism. The results are discussed in the context of the growing literature on neural processes involved in the generation and maintenance of body representations.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
31
|
Lindborg A, Baart M, Stekelenburg JJ, Vroomen J, Andersen TS. Speech-specific audiovisual integration modulates induced theta-band oscillations. PLoS One 2019; 14:e0219744. [PMID: 31310616 PMCID: PMC6634411 DOI: 10.1371/journal.pone.0219744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
Speech perception is influenced by vision through a process of audiovisual integration. This is demonstrated by the McGurk illusion where visual speech (for example /ga/) dubbed with incongruent auditory speech (such as /ba/) leads to a modified auditory percept (/da/). Recent studies have indicated that perception of the incongruent speech stimuli used in McGurk paradigms involves mechanisms of both general and audiovisual speech specific mismatch processing and that general mismatch processing modulates induced theta-band (4–8 Hz) oscillations. Here, we investigated whether the theta modulation merely reflects mismatch processing or, alternatively, audiovisual integration of speech. We used electroencephalographic recordings from two previously published studies using audiovisual sine-wave speech (SWS), a spectrally degraded speech signal sounding nonsensical to naïve perceivers but perceived as speech by informed subjects. Earlier studies have shown that informed, but not naïve subjects integrate SWS phonetically with visual speech. In an N1/P2 event-related potential paradigm, we found a significant difference in theta-band activity between informed and naïve perceivers of audiovisual speech, suggesting that audiovisual integration modulates induced theta-band oscillations. In a McGurk mismatch negativity paradigm (MMN) where infrequent McGurk stimuli were embedded in a sequence of frequent audio-visually congruent stimuli we found no difference between congruent and McGurk stimuli. The infrequent stimuli in this paradigm are violating both the general prediction of stimulus content, and that of audiovisual congruence. Hence, we found no support for the hypothesis that audiovisual mismatch modulates induced theta-band oscillations. We also did not find any effects of audiovisual integration in the MMN paradigm, possibly due to the experimental design.
Collapse
Affiliation(s)
- Alma Lindborg
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Lyngby, Denmark
| | - Martijn Baart
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.,BCBL. Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Jeroen J Stekelenburg
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Tobias S Andersen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
32
|
Mamashli F, Hämäläinen M, Ahveninen J, Kenet T, Khan S. Permutation Statistics for Connectivity Analysis between Regions of Interest in EEG and MEG Data. Sci Rep 2019; 9:7942. [PMID: 31138854 PMCID: PMC6538606 DOI: 10.1038/s41598-019-44403-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
Connectivity estimates based on electroencephalography (EEG) and magnetoencephalography (MEG) are unique in their ability to provide neurophysiologically meaningful spectral and temporal information non-invasively. This multi-dimensional aspect of the MEG/EEG based connectivity increases the challenges of the analysis and interpretation of the data. Many MEG/EEG studies address this complexity by using a hypothesis-driven approach, which focuses on particular regions of interest (ROI). However, if an effect is distributed unevenly over a large ROI and variable across subjects, it may not be detectable using conventional methods. Here, we propose a novel approach, which enhances the statistical power for weak and spatially discontinuous effects. This results in the ability to identify statistically significant connectivity patterns with spectral, temporal, and spatial specificity while correcting for multiple comparisons using nonparametric permutation methods. We call this new approach the Permutation Statistics for Connectivity Analysis between ROI (PeSCAR). We demonstrate the processing steps with simulated and real human data. The open-source Matlab code implementing PeSCAR are provided online.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Boston, MA, USA.
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA.
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Boston, MA, USA
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Boston, MA, USA
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Boston, MA, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Boston, MA, USA.
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
33
|
Tseng YL, Liu HH, Liou M, Tsai AC, Chien VSC, Shyu ST, Yang ZS. Lingering Sound: Event-Related Phase-Amplitude Coupling and Phase-Locking in Fronto-Temporo-Parietal Functional Networks During Memory Retrieval of Music Melodies. Front Hum Neurosci 2019; 13:150. [PMID: 31178706 PMCID: PMC6538802 DOI: 10.3389/fnhum.2019.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Brain oscillations and connectivity have emerged as promising measures of evaluating memory processes, including encoding, maintenance, and retrieval, as well as the related executive function. Although many studies have addressed the neural mechanisms underlying working memory, most of these studies have focused on the visual modality. Neurodynamics and functional connectivity related to auditory working memory are yet to be established. In this study, we explored the dynamic of high density (128-channel) electroencephalography (EEG) in a musical delayed match-to-sample task (DMST), in which 36 participants were recruited and were instructed to recognize and distinguish the target melodies from similar distractors. Event-related spectral perturbations (ERSPs), event-related phase-amplitude couplings (ERPACs), and phase-locking values (PLVs) were used to determine the corresponding brain oscillations and connectivity. First, we observed that low-frequency oscillations in the frontal, temporal, and parietal regions were increased during the processing of both target and distracting melodies. Second, the cross-frequency coupling between low-frequency phases and high-frequency amplitudes was elevated in the frontal and parietal regions when the participants were distinguishing between the target from distractor, suggesting that the phase-amplitude coupling could be an indicator of neural mechanisms underlying memory retrieval. Finally, phase-locking, an index evaluating brain functional connectivity, revealed that there was fronto-temporal phase-locking in the theta band and fronto-parietal phase-locking in the alpha band during the recognition of the two stimuli. These findings suggest the existence of functional connectivity and the phase-amplitude coupling in the neocortex during musical memory retrieval, and provide a highly resolved timeline to evaluate brain dynamics. Furthermore, the inter-regional phase-locking and phase-amplitude coupling among the frontal, temporal and parietal regions occurred at the very beginning of musical memory retrieval, which might reflect the precise timing when cognitive resources were involved in the retrieval of targets and the rejection of similar distractors. To the best of our knowledge, this is the first EEG study employing a naturalistic task to study auditory memory processes and functional connectivity during memory retrieval, results of which can shed light on the use of natural stimuli in studies that are closer to the real-life applications of cognitive evaluations, mental treatments, and brain-computer interface.
Collapse
Affiliation(s)
- Yi-Li Tseng
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hong-Hsiang Liu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Michelle Liou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Arthur C Tsai
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Vincent S C Chien
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Shuoh-Tyng Shyu
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Zhi-Shun Yang
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
34
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
35
|
Xiong YB, Bo QJ, Wang CM, Tian Q, Liu Y, Wang CY. Differential of Frequency and Duration Mismatch Negativity and Theta Power Deficits in First-Episode and Chronic Schizophrenia. Front Behav Neurosci 2019; 13:37. [PMID: 30894804 PMCID: PMC6414796 DOI: 10.3389/fnbeh.2019.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Due to its impairment in patients with schizophrenia, mismatch negativity (MMN) generation has been identified as a potential biomarker for identifying primary impairments in auditory sensory processing. This study aimed to investigate the dysfunctional differences in different MMN deviants and evoked theta power in patients with first-episode schizophrenia (FES) and chronic schizophrenia (CS). Methods: We measured frequency and duration MMN from 40 FES, 40 CS, and 40 healthy controls (HC). Evoked theta power was analyzed by event-related spectral perturbation (ERSP) approaches. Results: Deficits in duration MMN were observed in both FES (p = 0.048, Bonferroni-adjusted) and CS (p < 0.001, Bonferroni-adjusted). However, deficits in frequency MMN were restricted to the CS (p < 0.001, Bonferroni-adjusted). Evoked theta power deficits were observed in both patient groups when compared with the HC (p FES = 0.001, p CS < 0.001, Bonferroni-adjusted), yet no significant differences were found between FES and CS. Frequency MMN was correlated with the MATRICS consensus cognitive battery (MCCB) combined score (r = -0.327, p < 0.05) and MCCB verbal learning (r = -0.328, p < 0.05) in FES. Evoked theta power was correlated with MCCB working memory in both FES (r = 0.347, p < 0.05) and CS (r = 0.408, p < 0.01). Conclusion: These findings suggest that duration MMN and evoked theta power deficits may be more sensitive for detection of schizophrenia during its early stages. Moreover, frequency MMN and theta power could potentially linked to poor cognitive functioning in schizophrenic patients. The findings mentioned above indicated that the neural mechanisms of the three indexes may vary between people.
Collapse
Affiliation(s)
- Yan-Bing Xiong
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qi-Jing Bo
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Chang-Ming Wang
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qing Tian
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Yi Liu
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Chuan-Yue Wang
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| |
Collapse
|
36
|
Wei D, Gillon-Dowens M. Written-Word Concreteness Effects in Non-attend Conditions: Evidence From Mismatch Responses and Cortical Oscillations. Front Psychol 2018; 9:2455. [PMID: 30618915 PMCID: PMC6300700 DOI: 10.3389/fpsyg.2018.02455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/20/2018] [Indexed: 01/21/2023] Open
Abstract
It has been widely reported that concrete words have processing advantages over abstract words in terms of speed and efficiency of processing, a phenomenon known as the concreteness effect. However, little is still known about the early time-course of processing concrete and abstract words and whether this concreteness effect can still persist in conditions where attention is not focused on the words presented (automatic processing). This study aimed to shed light on these issues by examining the electrophysiological brain responses to concrete and abstract words. While participants were engaged in a non-linguistic color tracking task presented in the center of the monitor screen, matched Chinese concrete and abstract single-character words appeared within a passive oddball paradigm, out of the focus of attention. In calculating visual Mismatch Negativity (vMMN), Event-related potentials (ERPs) to words of the same semantic category were compared when these words were presented as deviants and standards. Before 320 ms, both abstract and concrete words yielded vMMN with left-lateralized distribution, suggesting similar verbal processing at an initial processing stage. After 320 ms, only concrete words additionally elicited vMMN with a central distribution. Time frequency (TF) analysis of the results also revealed larger theta power increase (200-300 ms) and theta power phase locking (200-450 ms) for concrete than for abstract words. Interestingly, there was more alpha power decrease for abstract than for concrete words from 300 to 450 ms. This may reflect the greater difficulty in processing abstract meaning. Taken together, our ERP and TF results point to the existence of different neural mechanisms underlying non-attentive processing of abstract and concrete words.
Collapse
Affiliation(s)
- Dawei Wei
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, China
- Cognitive Neuroscience of Language Laboratory, University of Nottingham Ningbo China, Ningbo, China
| | - Margaret Gillon-Dowens
- Cognitive Neuroscience of Language Laboratory, University of Nottingham Ningbo China, Ningbo, China
| |
Collapse
|
37
|
Koerner TK, Zhang Y. Differential effects of hearing impairment and age on electrophysiological and behavioral measures of speech in noise. Hear Res 2018; 370:130-142. [DOI: 10.1016/j.heares.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
38
|
Gifford AM, Sperling MR, Sharan A, Gorniak RJ, Williams RB, Davis K, Kahana MJ, Cohen YE. Neuronal phase consistency tracks dynamic changes in acoustic spectral regularity. Eur J Neurosci 2018; 49:1268-1287. [PMID: 30402926 DOI: 10.1111/ejn.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
The brain parses the auditory environment into distinct sounds by identifying those acoustic features in the environment that have common relationships (e.g., spectral regularities) with one another and then grouping together the neuronal representations of these features. Although there is a large literature that tests how the brain tracks spectral regularities that are predictable, it is not known how the auditory system tracks spectral regularities that are not predictable and that change dynamically over time. Furthermore, the contribution of brain regions downstream of the auditory cortex to the coding of spectral regularity is unknown. Here, we addressed these two issues by recording electrocorticographic activity, while human patients listened to tone-burst sequences with dynamically varying spectral regularities, and identified potential neuronal mechanisms of the analysis of spectral regularities throughout the brain. We found that the degree of oscillatory stimulus phase consistency (PC) in multiple neuronal-frequency bands tracked spectral regularity. In particular, PC in the delta-frequency band seemed to be the best indicator of spectral regularity. We also found that these regularity representations existed in multiple regions throughout cortex. This widespread reliable modulation in PC - both in neuronal-frequency space and in cortical space - suggests that phase-based modulations may be a general mechanism for tracking regularity in the auditory system specifically and other sensory systems more generally. Our findings also support a general role for the delta-frequency band in processing the regularity of auditory stimuli.
Collapse
Affiliation(s)
- Adam M Gifford
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ashwini Sharan
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard J Gorniak
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ryan B Williams
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Kahana
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yale E Cohen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Departments of Otorhinolaryngology, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Ou J, Law SP. Induced gamma oscillations index individual differences in speech sound perception and production. Neuropsychologia 2018; 121:28-36. [PMID: 30391567 DOI: 10.1016/j.neuropsychologia.2018.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
Auditory neuroscience has provided strong evidence that neural oscillations synchronize to the rhythm of speech stimuli, and oscillations at different frequencies have been linked to processing of different language structures. The present study aims to examine how these ubiquitous neurophysiological attributes may inform us about the brain processes that underpin individual differences in speech perception and production, which in turn elucidate the specific functions of neural oscillations in the domain of speech processing. To this end, we recorded electrophysiological responses to a lexical tone contrast in a passive auditory oddball paradigm from two groups of healthy tone-language speakers who were equal in perceptual discriminability but differed in response latency and production distinctiveness of the tone contrast. Time-frequency analysis was applied to the EEG data, and decomposed into theta (4-7 Hz), beta (12-30 Hz), and gamma (30-50 Hz) frequency bands. Results show that listeners with longer discrimination RT and less distinctive production showed significantly higher induced (non-phase-locked) gamma during tone processing. Moreover, among speakers with less distinctive production, individual differences in induced gamma were significantly correlated with discrimination latency and production distinction. Based on the present findings, we propose that differences in gamma oscillations reflect differential sensory/perceptual computations during acoustic encoding, impacting the quality of perceptual representations, which further mediates individual differences in speech perception and production.
Collapse
Affiliation(s)
- Jinghua Ou
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Sam-Po Law
- Division of Speech and Hearing Science the University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
40
|
Recasens M, Gross J, Uhlhaas PJ. Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study. Sci Rep 2018; 8:14007. [PMID: 30228366 PMCID: PMC6143554 DOI: 10.1038/s41598-018-32385-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4-8/8-13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing.
Collapse
Affiliation(s)
- Marc Recasens
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
- Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom.
| |
Collapse
|
41
|
Rosburg T, Weigl M, Thiel R, Mager R. The event-related potential component P3a is diminished by identical deviance repetition, but not by non-identical repetitions. Exp Brain Res 2018; 236:1519-1530. [DOI: 10.1007/s00221-018-5237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
|
42
|
Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, Petkova E, Silipo G, Javitt DC. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms. Schizophr Res 2018; 191:70-79. [PMID: 28318835 DOI: 10.1016/j.schres.2017.02.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deficits in N-methyl-d-aspartate-type (NMDAR) function contribute to symptoms and cognitive dysfunction in schizophrenia. The efficacy of NMDAR agonists in the treatment of persistent symptoms of schizophrenia has been variable, potentially reflecting limitations in functional target engagement. We recently demonstrated significant improvement in auditory mismatch negativity (MMN) with once-weekly treatment with d-serine, a naturally occurring NMDAR glycine-site agonist. This study investigates effects of continuous (daily) NMDAR agonists in schizophrenia/schizoaffective disorder. METHODS Primary analysis was on MMN after double-blind crossover (60mg/kg/d, n=16, 6weeks) treatment with d-serine/placebo. Secondary measures included clinical symptoms, neurocognition, and the effects of open-label (30-120mg/kg/d, n=21) d-serine and bitopertin/placebo (10mg, n=29), a glycine transport inhibitor. RESULTS Double-blind d-serine treatment led to significant improvement in MMN frequency (p=0.001, d=2.3) generation and clinical symptoms (p=0.023, d=0.80). MMN frequency correlated significantly with change in symptoms (r=-0.63, p=0.002) following co-variation for treatment type. d-Serine treatment led to a significant, large effect size increase vs. placebo in evoked α-power in response to standards (p=0.036, d=0.81), appearing to normalize evoked α power relative to previous findings with controls. While similar results were seen with open-label d-serine, no significant effects of bitopertin were observed for symptoms or MMN. CONCLUSIONS These findings represent the first randomized double-blind placebo-controlled study with 60mg/kg d-serine in schizophrenia, and are consistent with meta-analyses showing significant effects of d-serine in schizophrenia. Results overall support suggest that MMN may have negative, as well as positive, predictive value in predicting efficacy of novel compounds. CLINICAL TRIALS REGISTRATION Clinicaltrials.gov: NCT00322023/NCT00817336 (d-serine); NCT01116830 (bitopertin).
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States.
| | - Michael L Epstein
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Graduate Center, City University of New York, 365 5th Ave, New York, NY, United States
| | - Migyung Lee
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Nayla Lehrfeld
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Karen A Nolan
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY, United States
| | - Constance Shope
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Eva Petkova
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY, United States
| | - Gail Silipo
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| |
Collapse
|
43
|
Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 2018; 191:51-60. [PMID: 28666633 DOI: 10.1016/j.schres.2017.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) is among the best established biomarkers of cortical dysfunction in schizophrenia. MMN generators are localized primarily to primary and secondary auditory regions, and are known to reflect activity mediated by cortical N-methyl-d-aspartate-type glutamate receptors (NMDAR). Nevertheless, mechanisms underlying MMN generation at the local circuit level remain incompletely understood. This review synthesizes recent advances in circuit-level conceptualization of MMN based upon neuro-oscillatory findings. In the neuro-oscillatory (aka event-related spectral perturbation, ERSP) approach, responses to sensory stimuli are decomposed into underlying frequency bands prior to analysis. MMN reflects activity primarily in theta (4-7Hz) frequency band, which is thought to depend primarily upon interplay between cortical pyramidal neurons and somatostatin (SST)-type local circuit GABAergic interneurons. Schizophrenia-related deficits in theta generation are also observed not only in MMN, but also in other auditory and visual contexts. At the local circuit level, SST interneurons are known to maintain tonic inhibition over cortical pyramidal interneurons. SST interneurons, in turn, are inhibited by a class of interneurons expressing vasoactive intestinal polypeptide (VIP). In rodents, SST interneurons have been shown to respond differentially to deviant vs. standard stimuli, and inhibition of SST interneurons has been found to selectively inhibit deviance-related activity in rodent visual cortex. Here we propose that deficits in theta frequency generation, as exemplified by MMN, may contribute significantly to cortical dysfunction in schizophrenia, and may be tied to impaired interplay between cortical pyramidal neurons and local circuit SST-type GABAergic interneurons.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | - Migyung Lee
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Joshua T Kantrowitz
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Antigona Martinez
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| |
Collapse
|
44
|
Bangel KA, van Buschbach S, Smit DJA, Mazaheri A, Olff M. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study. Sci Rep 2017; 7:16596. [PMID: 29185490 PMCID: PMC5707412 DOI: 10.1038/s41598-017-16669-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a simple auditory sensory change was altered in patients with PTSD relative to trauma-exposed matched controls who did not develop the disorder. Thirteen male PTSD patients and trauma-exposed controls matched for age and educational level were presented with regular auditory pure tones (1000 Hz, 200 ms duration), with 11% of the tones deviating in both duration (50 ms) and frequency (1200 Hz) while watching a silent movie. Relative to the controls, patients who had developed PTSD showed enhanced mismatch negativity (MMN), increased theta power (5-7 Hz), and stronger suppression of upper alpha activity (13-15 Hz) after deviant vs. standard tones. Behaviourally, the alpha suppression in PTSD correlated with decreased spatial working memory performance suggesting it might reflect enhanced stimulus-feature representations in auditory memory. These results taken together suggest that PTSD patients and trauma-exposed controls can be distinguished by enhanced involuntary attention to changes in sensory patterns.
Collapse
Affiliation(s)
- Katrin A Bangel
- Department of Psychiatry, Academic Medical Centre, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands.
| | - Susanne van Buschbach
- Department of Psychiatry, Academic Medical Centre, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
| | - Dirk J A Smit
- Department of Psychiatry, Academic Medical Centre, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
| | - Ali Mazaheri
- Center for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Miranda Olff
- Department of Psychiatry, Academic Medical Centre, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
- Arq Psychotrauma Expert Group, 1112 XE Diemen, The Netherlands
| |
Collapse
|
45
|
Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 2017; 22:1585-1593. [PMID: 28167837 PMCID: PMC5547016 DOI: 10.1038/mp.2017.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.
Collapse
|
46
|
Yan T, Feng Y, Liu T, Wang L, Mu N, Dong X, Liu Z, Qin T, Tang X, Zhao L. Theta Oscillations Related to Orientation Recognition in Unattended Condition: A vMMN Study. Front Behav Neurosci 2017; 11:166. [PMID: 28936165 PMCID: PMC5595151 DOI: 10.3389/fnbeh.2017.00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Orientation is one of the important elements of objects that can influence visual processing. In this study, we examined whether changes in orientation could be detected automatically under unattended condition. Visual mismatch negativity (vMMN) was used to analyze this processing. In addition, we investigated the underlying neural oscillatory activity. Non-phase-locked spectral power was used to explore the specific frequency related to unexpected changes in orientation. The experiment consisted of standard (0° arrows) and deviant (90°/270° arrows) stimuli. Compared with standard stimuli, deviant stimuli elicited a larger N170 component (negative wave approximately 170 ms after the stimuli started) and a smaller P2 component (positive wave approximately 200 ms after the stimuli started). Furthermore, vMMN was obtained by subtracting the event-related potential (ERP) waveforms in response to standard stimuli from those elicited in response to deviant stimuli. According to the time–frequency analysis, deviant stimuli elicited enhanced band power compared with standard stimuli in the delta and theta bands. Compared with previous studies, we concluded that theta activity plays an important role in the generation of the vMMN induced by changes in orientation.
Collapse
Affiliation(s)
- Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Yuan Feng
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Luyao Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of TechnologyBeijing, China
| | - Nan Mu
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Xiaonan Dong
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Zichuan Liu
- Saddle River Day SchoolSaddle River, NJ, United States
| | | | - Xiaoying Tang
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Lun Zhao
- School of Education, Beijing Normal University ZhuhaiZhuhai, China.,School of Psychological Research, Beijing Yiran Sunny Technology Co., Ltd.Beijing, China
| |
Collapse
|
47
|
Wang X, Wang S, Fan Y, Huang D, Zhang Y. Speech-specific categorical perception deficit in autism: An Event-Related Potential study of lexical tone processing in Mandarin-speaking children. Sci Rep 2017; 7:43254. [PMID: 28225070 PMCID: PMC5320551 DOI: 10.1038/srep43254] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies reveal that tonal language speakers with autism have enhanced neural sensitivity to pitch changes in nonspeech stimuli but not to lexical tone contrasts in their native language. The present ERP study investigated whether the distinct pitch processing pattern for speech and nonspeech stimuli in autism was due to a speech-specific deficit in categorical perception of lexical tones. A passive oddball paradigm was adopted to examine two groups (16 in the autism group and 15 in the control group) of Chinese children’s Mismatch Responses (MMRs) to equivalent pitch deviations representing within-category and between-category differences in speech and nonspeech contexts. To further examine group-level differences in the MMRs to categorical perception of speech/nonspeech stimuli or lack thereof, neural oscillatory activities at the single trial level were further calculated with the inter-trial phase coherence (ITPC) measure for the theta and beta frequency bands. The MMR and ITPC data from the children with autism showed evidence for lack of categorical perception in the lexical tone condition. In view of the important role of lexical tones in acquiring a tonal language, the results point to the necessity of early intervention for the individuals with autism who show such a speech-specific categorical perception deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Suiping Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Center for Studies of Psychological Application, South China Normal University, 510631, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuebo Fan
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Dan Huang
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Science, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
48
|
Richard N, Laursen B, Grupe M, Drewes AM, Graversen C, Sørensen HBD, Bastlund JF. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats. J Neural Eng 2017; 14:026012. [PMID: 28177924 DOI: 10.1088/1741-2552/aa536e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. APPROACH An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. MAIN RESULTS While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. SIGNIFICANCE The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.
Collapse
Affiliation(s)
- Nelly Richard
- Department of Electrical Engineering, Technical University of Denmark, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Tugin S, Hernandez-Pavon JC, Ilmoniemi RJ, Nikulin VV. Visual deviant stimuli produce mismatch responses in the amplitude dynamics of neuronal oscillations. Neuroimage 2016; 142:645-655. [PMID: 27431760 DOI: 10.1016/j.neuroimage.2016.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Auditory and visual deviant stimuli evoke mismatch negativity (MMN) responses, which can be recorded with electroencephalography (EEG) and magnetoencephalography (MEG). However, little is known about the role of neuronal oscillations in encoding of rare stimuli. We aimed at verifying the existence of a mechanism for the detection of deviant visual stimuli on the basis of oscillatory responses, so-called visual mismatch oscillatory response (vMOR). METHODS Peripheral visual stimuli in an oddball paradigm, standard vs. deviant (7:1), were presented to twenty healthy subjects. The oscillatory responses to an infrequent change in the direction of moving peripheral stimuli were recorded with a 60-channel EEG system. In order to enhance the detection of oscillatory responses, we used the common spatial pattern (CSP) algorithm, designed for the optimal extraction of changes in the amplitude of oscillations. RESULTS Both standard and deviant visual stimuli produced Event-Related Desynchronization (ERD) and Synchronization (ERS) primarily in the occipito-parietal cortical areas. ERD and ERS had overlapping time-courses and peaked at about 500-730 ms. These oscillatory responses, however, were significantly stronger for the deviant than for the standard stimuli. A difference between the oscillatory responses to deviant and standard stimuli thus reflects the presence of vMOR. CONCLUSIONS The present study shows that the detection of visual deviant stimuli can be reflected in both synchronization and desynchronization of neuronal oscillations. This broadens our knowledge about the brain mechanisms encoding deviant sensory stimuli.
Collapse
Affiliation(s)
- Sergei Tugin
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Julio C Hernandez-Pavon
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vadim V Nikulin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Russian Federation; Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité, University Medicine, Berlin, Germany
| |
Collapse
|
50
|
Teng X, Tian X, Poeppel D. Testing multi-scale processing in the auditory system. Sci Rep 2016; 6:34390. [PMID: 27713546 PMCID: PMC5054370 DOI: 10.1038/srep34390] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Natural sounds contain information on multiple timescales, so the auditory system must analyze and integrate acoustic information on those different scales to extract behaviorally relevant information. However, this multi-scale process in the auditory system is not widely investigated in the literature, and existing models of temporal integration are mainly built upon detection or recognition tasks on a single timescale. Here we use a paradigm requiring processing on relatively 'local' and 'global' scales and provide evidence suggesting that the auditory system extracts fine-detail acoustic information using short temporal windows and uses long temporal windows to abstract global acoustic patterns. Behavioral task performance that requires processing fine-detail information does not improve with longer stimulus length, contrary to predictions of previous temporal integration models such as the multiple-looks and the spectro-temporal excitation pattern model. Moreover, the perceptual construction of putatively 'unitary' auditory events requires more than hundreds of milliseconds. These findings support the hypothesis of a dual-scale processing likely implemented in the auditory cortex.
Collapse
Affiliation(s)
- Xiangbin Teng
- Department of Psychology, New York University, New York, NY, USA
| | - Xing Tian
- New York University Shanghai, Shanghai, 200122 China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200122 China
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA
- Department of Neuroscience, Max-Planck Institute, Frankfurt, Germany
| |
Collapse
|