1
|
Percelay S, Lahogue C, Billard JM, Freret T, Boulouard M, Bouet V. The 3-hit animal models of schizophrenia: Improving strategy to decipher and treat the disease? Neurosci Biobehav Rev 2024; 157:105526. [PMID: 38176632 DOI: 10.1016/j.neubiorev.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| |
Collapse
|
2
|
Górny M, Bilska-Wilkosz A, Iciek M, Rogóż Z, Lorenc-Koci E. Treatment with aripiprazole and N-acetylcysteine affects anaerobic cysteine metabolism in the hippocampus and reverses schizophrenia-like behavior in the neurodevelopmental rat model of schizophrenia. FEBS J 2023; 290:5773-5793. [PMID: 37646112 DOI: 10.1111/febs.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Preclinical and clinical studies have shown that the antipsychotic drug aripiprazole and the antioxidant N-acetylcysteine have unique biological properties. The aim of the study was to investigate, in a rat model of schizophrenia, the effects of chronic administration of these drugs on schizophrenia-like behaviors and anaerobic cysteine metabolism in the hippocampus (HIP). The schizophrenia-type changes were induced in Sprague-Dawley rats by repeated administration of the glutathione synthesis inhibitor l-butionine-(S,R)-sulfoximine in combination with the dopamine reuptake inhibitor GBR 12909 in the early postnatal period. Adult model rats were chronically treated with aripiprazole (0.3 mg·kg-1 , i.p.) or N-acetylcysteine (30 mg·kg-1 , orally), and their effects on schizophrenia-like behaviors were assessed using the social interaction test and novel object recognition test. In the HIP, the level of anaerobic cysteine metabolites, H2 S, and bound sulfane sulfur were determined by a fluorescence method, while the expression of H2 S-synthetizing enzymes: cystathionine β-synthase (CBS) and mercaptopyruvate sulfurtransferase (MST) by western blot. Long-term treatment with aripiprazole or N-acetylcysteine reversed social and cognitive deficits and reduced the exploratory behaviors. In the HIP of 16-day-old model pups, H2 S levels and MST protein expression were significantly decreased. In adult model rats, H2 S levels remained unchanged, bound sulfane sulfur significantly increased, and the expression of CBS and MST slightly decreased. The studied drugs significantly reduced the level of bound sulfane sulfur and the expression of tested enzymes. The reduction in bound sulfane sulfur level coincided with the attenuation of exploratory behavior, suggesting that modulation of anaerobic cysteine metabolism in the HIP may have therapeutic potential in schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|
3
|
Vaquero-Rodríguez A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched environment as a nonpharmacological neuroprotective strategy. Exp Biol Med (Maywood) 2023; 248:553-560. [PMID: 37309729 PMCID: PMC10350798 DOI: 10.1177/15353702231171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
4
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Giongo FK, Gallas-Lopes M, Benvenutti R, Sachett A, Bastos LM, Rosa AR, Herrmann AP. Effects of Taurine in Mice and Zebrafish Behavioral Assays With Translational Relevance to Schizophrenia. Int J Neuropsychopharmacol 2022; 26:125-136. [PMID: 36239455 PMCID: PMC9926054 DOI: 10.1093/ijnp/pyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Altered redox state and developmental abnormalities in glutamatergic and GABAergic transmission during development are linked to the behavioral changes associated with schizophrenia. As an amino acid that exerts antioxidant and inhibitory actions in the brain, taurine is a potential candidate to modulate biological targets relevant to this disorder. Here, we investigated in mice and zebrafish assays whether taurine prevents the behavioral changes induced by acute administration of MK-801 (dizocilpine), a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist. METHODS C57BL/6 mice were i.p. administered with saline or taurine (50, 100, and 200 mg/kg) followed by MK-801 (0.15 mg/kg). Locomotor activity, social interaction, and prepulse inhibition of the acoustic startle reflex were then assessed in different sets of animals. Zebrafish were exposed to tank water or taurine (42, 150, and 400 mg/L) followed by MK-801 (5 µM); social preference and locomotor activity were evaluated in the same test. RESULTS MK-801 induced hyperlocomotion and disrupted sensorimotor gating in mice; in zebrafish, it reduced sociability and increased locomotion. Taurine was mostly devoid of effects and did not counteract NMDA antagonism in mice or zebrafish. DISCUSSION Contradicting previous clinical and preclinical data, taurine did not show antipsychotic-like effects in the present study. However, it still warrants consideration as a preventive intervention in animal models relevant to the prodromal phase of schizophrenia; further studies are thus necessary to evaluate whether and how taurine might benefit patients.
Collapse
Affiliation(s)
- Franciele Kich Giongo
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia,Programa de Pós-Graduação em Farmacologia e Terapêutica
| | - Matheus Gallas-Lopes
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | | | | | - Leonardo Marensi Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | - Adriane Ribeiro Rosa
- Programa de Pós-Graduação em Farmacologia e Terapêutica,Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Herrmann
- Correspondence: Ana Paula Herrmann, PhD, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil ()
| |
Collapse
|
7
|
Increased self-triggered vocalizations in an epidermal growth factor-induced rat model for schizophrenia. Sci Rep 2022; 12:12917. [PMID: 35902695 PMCID: PMC9334381 DOI: 10.1038/s41598-022-17174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Rats elicit two types of ultrasonic vocalizations (USVs), positive (30–80 kHz; high pitch) and negative (10–30 kHz; low pitch) voices. As patients with schizophrenia often exhibit soliloquy-like symptoms, we explored whether an animal model for schizophrenia is similarly characterized by such self-triggered vocalizations. We prepared the animal model by administering an inflammatory cytokine, epidermal growth factor (EGF), to rat neonates, which later develop behavioral and electroencephalographic deficits relevant to schizophrenia. EGF model rats and controls at young (8–10 weeks old) and mature (12–14 weeks old) adult stages were subjected to acclimation, female pairing, and vocalization sessions. In acclimation sessions, low pitch USVs at the mature adult stage were more frequent in EGF model rats than in controls. In the vocalization session, the occurrences of low pitch self-triggered USVs were higher in EGF model rats in both age groups, although this group difference was eliminated by their risperidone treatment. Unlike conventional negative USVs of rats, however, the present low pitch self-triggered USVs had short durations of 10–30 ms. These results suggest the potential that self-triggered vocalization might serve as a translatable pathological trait of schizophrenia to animal models.
Collapse
|
8
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
9
|
Benvenutti R, Gallas-Lopes M, Sachett A, Marcon M, Strogulski NR, Reis CG, Chitolina R, Piato A, Herrmann AP. How do zebrafish (Danio rerio) respond to MK-801 and amphetamine? Relevance for assessing schizophrenia-related endophenotypes in alternative model organisms. J Neurosci Res 2021; 99:2844-2859. [PMID: 34496062 DOI: 10.1002/jnr.24948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 μM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Matheus Gallas-Lopes
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adrieli Sachett
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Matheus Marcon
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nathan Ryzewski Strogulski
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Guilherme Reis
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Chitolina
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Angelo Piato
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Herrmann
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
10
|
Benvenutti R, Marcon M, Gallas-Lopes M, de Mello AJ, Herrmann AP, Piato A. Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci Biobehav Rev 2021; 127:761-778. [PMID: 34087275 DOI: 10.1016/j.neubiorev.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 12/09/2022]
Abstract
Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Julie de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
11
|
Benvenutti R, Gallas-Lopes M, Marcon M, Reschke CR, Herrmann AP, Piato A. Glutamate Nmda Receptor Antagonists With Relevance To Schizophrenia: A Review Of Zebrafish Behavioral Studies. Curr Neuropharmacol 2021; 20:494-509. [PMID: 33588731 PMCID: PMC9608229 DOI: 10.2174/1570159x19666210215121428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Cristina R Reschke
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| |
Collapse
|
12
|
Bouet V, Percelay S, Leroux E, Diarra B, Léger M, Delcroix N, Andrieux A, Dollfus S, Freret T, Boulouard M. A new 3-hit mouse model of schizophrenia built on genetic, early and late factors. Schizophr Res 2021; 228:519-528. [PMID: 33298334 DOI: 10.1016/j.schres.2020.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Whether the etiology of schizophrenia remains unknown, its multifactorial aspect is conversely now well admitted. However, most preclinical models of the disease still rely on a mono-factorial construction and do not allow discover unequivocal treatments, particularly for negative and cognitive symptoms. The main interaction factors that have been implicated in schizophrenia are a genetic predisposition and unfavorable environmental factors. Here we propose a new animal model combining a genetic predisposition (1st hit: partial deletion of MAP-6 (microtubule-associated protein)) with an early postnatal stress (2nd hit: 24 h maternal separation at post-natal day 9), and a late cannabinoid exposure during adolescence (3rd hit: tetrahydrocannabinol THC from post-natal day 32 to 52; 8 mg/kg/day). The 2-hit mice displayed spatial memory deficits, decreased cortical thickness and fractional anisotropy of callosal fibers. The 3-hit mice were more severely affected as attested by supplementary deficits such a decrease in spontaneous activity, sociability-related behavior, working memory performances, an increase in anxiety-like behavior, a decrease in hippocampus volume together with impaired integrity of corpus callosum fibers (less axons, less myelin). Taken together, these results show that the new 3-hit model displays several landmarks mimicking negative and cognitive symptoms of schizophrenia, conferring a high relevance for research of new treatments. Moreover, this 3-hit model possesses a strong construct validity, which fits with gene x environment interactions hypothesis of schizophrenia. The 2-hit model, which associates maternal separation with THC exposure in wild-type mice gives a less severe phenotype, and could be useful for research on other forms of psychiatric diseases.
Collapse
Affiliation(s)
- Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France.
| | - Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Elise Leroux
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France
| | - Boubacar Diarra
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Marianne Léger
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Nicolas Delcroix
- CNRS, UMS 3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sonia Dollfus
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France; CHU de Caen, Service de Psychiatrie Adulte, 14000 Caen, France
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| |
Collapse
|
13
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
14
|
Chang YC, Li WY, Lee LJH, Lee LJ. Interplay of Prenatal and Postnatal Risk Factors in the Behavioral and Histological Features of a "Two-Hit" Non-Genetic Mouse Model of Schizophrenia. Int J Mol Sci 2020; 21:ijms21228518. [PMID: 33198225 PMCID: PMC7697169 DOI: 10.3390/ijms21228518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia is a multifactorial developmental neuropsychiatric disorder. This study examined the interplay of maternal infection and postweaning social isolation, which are prenatal and postnatal risk factors, respectively. Pregnant mice received poly I:C or saline injection on gestation day 9 and the pups were weaned at postnatal day 28. After weaning, male offspring were randomly assigned into group-rearing and isolation-rearing groups. In their adulthood, we performed behavioral tests and characterized the histochemical features of their mesocorticolimbic structures. The sociability and anxiety levels were not affected by either manipulation, but synergistic effects of the two hits on stress-coping behavior was observed. Either of the single manipulations caused defects in sensorimotor gating, novel object recognition and spatial memory tests, but the combination of the two hits did not further exacerbate the disabilities. Prenatal infection increased the number of dopaminergic neurons in midbrain, whereas postweaning isolation decreased the GABAergic neurons in cortex. Single manipulation reduced the dendritic complexity and spine densities of neurons in the medial prefrontal cortex (mPFC) and dentate gyrus. Our results support the current perspective that disturbances in brain development during the prenatal or postnatal period influence the structure and function of the brain and together augment the susceptibility to mental disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Yi-Chun Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (Y.-C.C.); (W.-Y.L.)
| | - Wai-Yu Li
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (Y.-C.C.); (W.-Y.L.)
| | - Lukas Jyuhn-Hsiarn Lee
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (Y.-C.C.); (W.-Y.L.)
- Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Modulation of cognition and neuronal plasticity in gain- and loss-of-function mouse models of the schizophrenia risk gene Tcf4. Transl Psychiatry 2020; 10:343. [PMID: 33037178 PMCID: PMC7547694 DOI: 10.1038/s41398-020-01026-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The transcription factor TCF4 was confirmed in several large genome-wide association studies as one of the most significant schizophrenia (SZ) susceptibility genes. Transgenic mice moderately overexpressing Tcf4 in forebrain (Tcf4tg) display deficits in fear memory and sensorimotor gating. As second hit, we exposed Tcf4tg animals to isolation rearing (IR), chronic social defeat (SD), enriched environment (EE), or handling control (HC) conditions and examined mice with heterozygous deletion of the exon 4 (Tcf4Ex4δ+/-) to unravel gene-dosage effects. We applied multivariate statistics for behavioral profiling and demonstrate that IR and SD cause strong cognitive deficits of Tcf4tg mice, whereas EE masked the genetic vulnerability. We observed enhanced long-term depression in Tcf4tg mice and enhanced long-term potentiation in Tcf4Ex4δ+/- mice indicating specific gene-dosage effects. Tcf4tg mice showed higher density of immature spines during development as assessed by STED nanoscopy and proteomic analyses of synaptosomes revealed concurrently increased levels of proteins involved in synaptic function and metabolic pathways. We conclude that environmental stress and Tcf4 misexpression precipitate cognitive deficits in 2-hit mouse models of relevance for schizophrenia.
Collapse
|
16
|
How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacol Biochem Behav 2020; 195:172940. [PMID: 32413435 DOI: 10.1016/j.pbb.2020.172940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/20/2022]
Abstract
Environmental enrichment and physical exercise have many well-established health benefits. Although these environmental manipulations are known to delay symptom onset and progression in a variety of neurological and psychiatric conditions, the mechanisms underlying these effects remain poorly understood. A notable candidate molecular mechanism is that of microRNA, a family of small noncoding RNAs that are important regulators of gene expression. Research investigating the many diverse roles of microRNAs has greatly expanded over the past decade, with several promising preclinical and clinical studies highlighting the role of dysregulated microRNA expression (in the brain, blood and other peripheral systems) in understanding the aetiology of disease. Altered microRNA levels have also been described following environmental interventions such as exercise and environmental enrichment in non-clinical populations and wild-type animals, as well as in some brain disorders and associated preclinical models. Recent studies exploring the effects of stimulating environments on microRNA levels in the brain have revealed an array of changes that are likely to have important downstream effects on gene expression, and thus may regulate a variety of cellular processes. Here we review literature that explores the differential expression of microRNAs in rodents following environmental enrichment and exercise, in both healthy control animals and preclinical models of relevance to neurological and psychiatric disorders.
Collapse
|
17
|
Cristóbal-Narváez P, Sheinbaum T, Rosa A, de Castro-Catala M, Domínguez-Martínez T, Kwapil TR, Barrantes-Vidal N. Interaction of both positive and negative daily-life experiences with FKBP5 haplotype on psychosis risk. Eur Psychiatry 2020; 63:e11. [PMID: 32093798 PMCID: PMC7315877 DOI: 10.1192/j.eurpsy.2019.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background. There is limited research on the interaction of both positive and negative daily-life environments with stress-related genetic variants on psychotic experiences (PEs) and negative affect (NA) across the extended psychosis phenotype. This study examined whether the FK506 binding protein 51 (FKBP5) variability moderates the association of positive and negative experiences in the moment with PEs and NA in participants with incipient psychosis and their nonclinical counterparts. Methods. A total of 233 nonclinical and 86 incipient psychosis participants were prompted for a 1-week period to assess their day-to-day experiences. Participants were genotyped for four FKBP5 single nucleotide polymorphisms (rs3800373, rs9296158, rs1360780, and rs9470080). Results. Multilevel analyses indicated that, unlike the risk haplotype, the protective FKBP5 haplotype moderated all the associations of positive experiences with diminished PEs and NA in incipient psychosis compared with nonclinical group. Conclusions. Participants with incipient psychosis showed symptomatic improvement when reporting positive appraisals in the interpersonal domain, which suggests that these act as a powerful coping mechanism. The fact that this occurred in daily-life underscores the clinical significance of this finding and pinpoints the importance of identifying protective mechanisms. In addition, results seem to concur with the vantage sensitivity model of gene–environment interaction, which poses that certain genetic variants may enhance the likelihood of benefiting from positive exposures.
Collapse
Affiliation(s)
- Paula Cristóbal-Narváez
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Sheinbaum
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Araceli Rosa
- Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marta de Castro-Catala
- Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Tecelli Domínguez-Martínez
- Centro de Investigación en Salud Mental Global, Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría 'Ramon de la Fuente Muñiz', México
| | - Thomas R Kwapil
- Department of Psychology, University of Illinois at Urbana-Champaign , Champaign, Illinois, USA
| | - Neus Barrantes-Vidal
- Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Psicologia Clínica i de la Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sant Pere Claver-Fundació Sanitària, Barcelona, Spain
| |
Collapse
|
18
|
Vafadari B, Mitra S, Stefaniuk M, Kaczmarek L. Psychosocial Stress Induces Schizophrenia-Like Behavior in Mice With Reduced MMP-9 Activity. Front Behav Neurosci 2019; 13:195. [PMID: 31555105 PMCID: PMC6726971 DOI: 10.3389/fnbeh.2019.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding gene-environment interactions in the pathogenesis of schizophrenia remains a major research challenge. Matrix metalloproteinase-9 (MMP-9) has been previously implicated in the pathophysiology of schizophrenia. In the present study, adolescent Mmp-9 heterozygous mice, with a genetically lower level of MMP-9, were subjected to resident-intruder psychosocial stress for 3 weeks and then examined in behavioral tests that evaluated cognitive deficits and positive- and negative-like symptoms of schizophrenia. Cognitive and positive symptoms in unstressed Mmp-9 heterozygous mice were unaffected by stress exposure, whereas negative symptoms were manifested only after stress exposure. Interestingly, negative symptoms were ameliorated by treatment with the antipsychotic drug clozapine. We describe a novel gene × environment interaction mouse model of schizophrenia. Lower MMP-9 levels in the brain might be a risk factor for schizophrenia that, in combination with environmental factors (e.g., psychosocial stress), may evoke schizophrenia-like symptoms that are sensitive to antipsychotic treatment.
Collapse
Affiliation(s)
- Behnam Vafadari
- BRAINCITY, Nencki Institute, Warsaw, Poland.,Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Helmholtz Zentrum München, Augsburg, Germany
| | | | | | | |
Collapse
|
19
|
Vargas T, Zou DS, Conley RE, Mittal VA. Assessing Developmental Environmental Risk Factor Exposure in Clinical High Risk for Psychosis Individuals: Preliminary Results Using the Individual and Structural Exposure to Stress in Psychosis-Risk States Scale. J Clin Med 2019; 8:jcm8070994. [PMID: 31323940 PMCID: PMC6678455 DOI: 10.3390/jcm8070994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Exposure to cumulative environmental risk factors across development has been linked to a host of adverse health/functional outcomes. This perspective incorporating information regarding exposure at differing developmental periods is lacking in research surrounding individuals at Clinical High Risk (CHR) for developing a psychotic disorder. METHODS CHR individuals (n = 35) and healthy volunteers (n = 28) completed structured clinical interviews as well as our group's newly developed Individual and Structural Exposure to Stress in Psychosis-risk-states (ISESP) interview. Lifetime cumulative scores were calculated, and severity of stress was reported for multiple developmental periods/ages. Group differences were tested, and associations with current symptom domains were examined. RESULTS Significant group differences were not observed for lifetime cumulative events, though CHR trended toward endorsing more events and greater stress severity. For stress severity across development, there were trending group differences for the 11-13 age range, and significant group differences for the 14-18 age range; notably, comparisons for earlier time points did not approach statistical significance. Associations between negative symptoms and cumulative severity of exposure were observed. DISCUSSION Results suggest exploring exposure to cumulative environmental risk factors/stressors and stress severity across developmental periods is generally informative and possibly specifically so for predictive models and diathesis-stress psychosis risk conceptualizations.
Collapse
Affiliation(s)
- Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA.
| | - Denise S Zou
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Rachel E Conley
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Department of Psychiatry, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
20
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
21
|
Büki A, Horvath G, Benedek G, Ducza E, Kekesi G. Impaired GAD1 expression in schizophrenia‐related WISKET rat model with sex‐dependent aggressive behavior and motivational deficit. GENES BRAIN AND BEHAVIOR 2018; 18:e12507. [DOI: 10.1111/gbb.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Affiliation(s)
- A. Büki
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Horvath
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Benedek
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - E. Ducza
- Department of Pharmacodynamics and BiopharmacyFaculty of Pharmacy, University of Szeged Szeged Hungary
| | - G. Kekesi
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| |
Collapse
|
22
|
Bator E, Latusz J, Wędzony K, Maćkowiak M. Adolescent environmental enrichment prevents the emergence of schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol 2018; 28:97-108. [PMID: 29174863 DOI: 10.1016/j.euroneuro.2017.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 01/15/2023]
Abstract
In the present study, we investigated whether exposure to an enriched environment (EE) during adolescence might affect the behavioural dysfunction (sensorimotor gating deficit, memory and social interaction impairments) and neurochemical changes (GAD67 expression, histone methylation) induced by methylazoxymethanol (MAM) in the MAM-E17 rat model of schizophrenia. EE was introduced for 7 days in early adolescence (days 23-29), and behavioural and biochemical studies were performed on adult rats at postnatal day 70. The results showed that exposure to EE prevented the development of adult behavioural deficits induced by prenatal MAM administration. EE also prevented the decrease in GAD67 mRNA and protein levels induced by MAM in the medial prefrontal cortex (mPFC). Moreover, EE inhibited the reductions in the amount of Gad1 bound to H3K4me3 and in the total H3K4me3 protein level induced by prenatal MAM administration in the adult mPFC. However, there was no effect of EE on behaviour or levels of the various neurochemical markers in adult rats prenatally treated with vehicle. Thus, these results indicate that EE exposure during early adolescence may inhibit the development of schizophrenia related symptoms through epigenetic mechanisms that regulate the expression of genes (e.g., Gad1) that are impaired in schizophrenia.
Collapse
Affiliation(s)
- Ewelina Bator
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Krzysztof Wędzony
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland.
| |
Collapse
|
23
|
Affiliation(s)
- Nickole Kanyuch
- Medical Scientist Training Program, The University of Maryland School of Medicine
| | - Stewart Anderson
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine,To whom correspondence should be addressed; Department of Child and Adolsecent Psychiatry and Behavioral Services, ARC 517, 3615 Civic Center Blvd, Philadelphia, PA 19104-5127, US; tel: 215-590-6527; fax: 215-590-6523; e-mail:
| |
Collapse
|
24
|
Using model systems to understand errant plasticity mechanisms in psychiatric disorders. Nat Neurosci 2016; 19:1418-1425. [PMID: 27786180 DOI: 10.1038/nn.4413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
In vivo model systems are a critical tool for gaining insight into the pathology underlying psychiatric disorders. Although modern functional imaging tools allow study of brain correlates of behavior in clinical groups and genome-wide association studies are beginning to uncover the complex genetic architecture of psychiatric disorders, there is less understanding of pathology at intervening levels of organization. Several psychiatric disorders derive from pathological neural plasticity, and studying the mechanisms that underlie these processes, including reinforcement learning and spike-timing-dependent plasticity, requires the use of animals. It will be particularly important to understand how individual differences in plasticity mechanisms at a cellular level confer resilience on some but lead to disease in others.
Collapse
|
25
|
Santos CM, Peres FF, Diana MC, Justi V, Suiama MA, Santana MG, Abílio VC. Peripubertal exposure to environmental enrichment prevents schizophrenia-like behaviors in the SHR strain animal model. Schizophr Res 2016; 176:552-559. [PMID: 27338757 DOI: 10.1016/j.schres.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a highly disabling mental disorder, in which genetics and environmental factors interact culminating in the disease. The treatment of negative symptoms and cognitive deficits with antipsychotics is currently inefficient and is an important field of research. Environmental enrichment (EE) has been suggested to improve some cognitive deficits in animal models of various psychiatric disorders. In this study, we aimed to evaluate a possible beneficial effect of early and long-term exposure to EE on an animal model of schizophrenia, the SHR strain. Young male Wistar rats (control strain) and SHRs (21 post-natal days) were housed for 6weeks in two different conditions: in large cages (10 animals per cage) containing objects of different textures, forms, colors and materials that were changed 3 times/week (EE condition) or in standard cages (5 animals per cage - Control condition). Behavioral evaluations - social interaction (SI), locomotion, prepulse inhibition of startle (PPI) and spontaneous alternation (SA) - were performed 6weeks after the end of EE. SHRs presented deficits in PPI (a sensorimotor impairment), SI (mimicking the negative symptoms) and SA (a working memory deficit), and also hyperlocomotion (modeling the positive symptoms). EE was able to reduce locomotion and increase PPI in both strains, and to prevent the working memory deficit in SHRs. EE also increased the number of neurons in the CA1 and CA3 of the hippocampus. In conclusion, EE can be a potential nonpharmacological strategy to prevent some behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Fernanda Fiel Peres
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mariana Cepollaro Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Veronica Justi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mayra Akimi Suiama
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Marcela Gonçalves Santana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
26
|
Translational Assays for Assessment of Cognition in Rodent Models of Alzheimer’s Disease and Dementia. J Mol Neurosci 2016; 60:371-382. [DOI: 10.1007/s12031-016-0837-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
|
27
|
Michie PT, Malmierca MS, Harms L, Todd J. The neurobiology of MMN and implications for schizophrenia. Biol Psychol 2016; 116:90-7. [DOI: 10.1016/j.biopsycho.2016.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
|
28
|
|