1
|
Lozano YM, Rillig MC. Do invasive plant species profit from pollution with synthetic organic chemicals? THE NEW PHYTOLOGIST 2024; 244:2137-2140. [PMID: 39340188 PMCID: PMC11579437 DOI: 10.1111/nph.20155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Yudi M. Lozano
- Freie Universität Berlin, Institute of Biology, Plant EcologyD‐14195BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)D‐14195BerlinGermany
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Plant EcologyD‐14195BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)D‐14195BerlinGermany
| |
Collapse
|
2
|
Calonne-Salmon M, Plouznikoff K, Declerck S. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. MYCORRHIZA 2018; 28:761-771. [PMID: 30121903 DOI: 10.1007/s00572-018-0861-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The accumulation of phosphorus (P) in plants increases their biomass and resistance/tolerance to organic pollutants. Both characteristics are mandatory for the utilization of plants in phytoremediation. Arbuscular mycorrhizal (AM) fungi improve plant P nutrition, and thus growth. However, only a few studies have focused on the dynamics of inorganic P (Pi) uptake in AM fungal-colonized plants in the presence of organic pollutants. Indeed, most of the results so far were obtained after harvesting the plants, thus by evaluating P concentration and content at a single time point. Here, we investigated the effects of the AM fungus Rhizophagus irregularis MUCL 41833 on the short-term Pi uptake dynamics of Medicago truncatula plants grown in the presence of benzo[a]pyrene (B[a]P), a polyaromatic hydrocarbon (PAH) frequently found in polluted soils. The study was conducted using a non-destructive circulatory semi-hydroponic cultivation system to investigate the short-term Pi depletion from a nutrient solution and as a corollary, the Pi uptake by the AM fungal-colonized and non-colonized plants. The growth, P concentration, and content of plants were also evaluated at harvest. The presence of B[a]P neither impacted the development of the AM fungus in the roots nor the plant growth and Pi uptake, suggesting a marked tolerance of both organisms to B[a]P pollution. A generally higher Pi uptake coupled with a higher accumulation of P in shoots and roots was noticed in AM fungal-colonized plants as compared to the non-colonized controls, irrespective of the presence or absence of B[a]P. Therefore, fungal-colonized plants showed the best growth. Furthermore, the beneficial effect provided by the presence of the AM fungus in roots was similar in presence or absence of B[a]P, thus opening the door for potential utilization in phytomanagement of PAH-polluted soils.
Collapse
Affiliation(s)
- Maryline Calonne-Salmon
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| | - Katia Plouznikoff
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Tarafdar A, Sinha A, Masto R. Biodegradation of anthracene by a newly isolated bacterial strain,Bacillus thuringiensisAT.ISM.1, isolated from a fly ash deposition site. Lett Appl Microbiol 2017; 65:327-334. [DOI: 10.1111/lam.12785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. Tarafdar
- Department of Environmental Science and Engineering; Indian School of Mines (ISM); Dhanbad Jharkhand India
| | - A. Sinha
- Department of Environmental Science and Engineering; Indian School of Mines (ISM); Dhanbad Jharkhand India
| | - R.E. Masto
- Environmental Management Division; Central Institute of Mining and Fuel Research (Digwadih Campus); Dhanbad Jharkhand India
| |
Collapse
|
4
|
Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. CHEMOSPHERE 2016; 162:105-116. [PMID: 27487095 DOI: 10.1016/j.chemosphere.2016.07.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil.
Collapse
Affiliation(s)
- Monika Rajtor
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| |
Collapse
|
5
|
Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:8-17. [PMID: 27015374 DOI: 10.1016/j.jhazmat.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils.
Collapse
Affiliation(s)
- Irina Ivshina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 13 Golev Street, 614081 Perm, Russia; Perm State University, 15 Bukirev Street, 614990 Perm, Russia
| | - Ludmila Kostina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 13 Golev Street, 614081 Perm, Russia
| | - Anastasiya Krivoruchko
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 13 Golev Street, 614081 Perm, Russia; Perm State University, 15 Bukirev Street, 614990 Perm, Russia.
| | - Maria Kuyukina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 13 Golev Street, 614081 Perm, Russia; Perm State University, 15 Bukirev Street, 614990 Perm, Russia
| | - Tatyana Peshkur
- Strathclyde Eco-Innovation Unit (SEIU), University of Strathclyde, 204 George Street, Glasgow G1 1XQ, United Kingdom
| | - Peter Anderson
- Strathclyde Eco-Innovation Unit (SEIU), University of Strathclyde, 204 George Street, Glasgow G1 1XQ, United Kingdom
| | - Colin Cunningham
- Strathclyde Eco-Innovation Unit (SEIU), University of Strathclyde, 204 George Street, Glasgow G1 1XQ, United Kingdom
| |
Collapse
|
6
|
Ben Said O, Louati H, Soltani A, Preud'homme H, Cravo-Laureau C, Got P, Pringault O, Aissa P, Duran R. Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15319-15331. [PMID: 25618309 DOI: 10.1007/s11356-015-4105-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Sediments from Bizerta lagoon were used in an experimental microcosm setup involving three scenarios for the bioremediation of anthracene-polluted sediments, namely bioaugmentation, biostimulation, and a combination of both bioaugmentation and biostimulation. In order to investigate the effect of the biotreatments on the benthic biosphere, 16S rRNA gene-based T-RFLP bacterial community structure and the abundance and diversity of the meiofauna were determined throughout the experiment period. Addition of fresh anthracene drastically reduced the benthic bacterial and meiofaunal abundances. The treatment combining biostimulation and bioaugmentation was most efficient in eliminating anthracene, resulting in a less toxic sedimentary environment, which restored meiofaunal abundance and diversity. Furthermore, canonical correspondence analysis showed that the biostimulation treatment promoted a bacterial community favorable to the development of nematodes while the treatment combining biostimulation and bioaugmentation resulted in a bacterial community that advantaged the development of the other meiofauna taxa (copepods, oligochaetes, polychaetes, and other) restoring thus the meiofaunal structure. The results highlight the importance to take into account the bacteria/meiofauna interactions during the implementation of bioremediation treatment.
Collapse
Affiliation(s)
- Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia.
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France.
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Amel Soltani
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Hugues Preud'homme
- Laboratoire Chimie Analytique BioInorganique Environnement-UMR CNRS IPREM 5254-Helioparc, Université de Pau et des Pays de l'Adour, Pau, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Patrice Got
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Olivier Pringault
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Patricia Aissa
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
| | - Robert Duran
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
7
|
Sellami B, Khazri A, Louati H, Dellali M, Driss MR, Aïssa P, Mahmoudi E, Hamouda B, Coelho AV, Sheehan D. Effects of anthracene on filtration rates, antioxidant defense system, and redox proteomics in the Mediterranean clam Ruditapes decussatus (Mollusca: Bivalvia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10956-10968. [PMID: 25779113 DOI: 10.1007/s11356-015-4328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
This study aimed at analyzing the impact of a toxic polyaromatic hydrocarbon (PAH), anthracene (ANT), on Ruditapes decussatus collected from a Tunisian coastal lagoon (Bizerte Lagoon). Filtration rates, several antioxidant enzymes--superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione transferase (GST)--as well as indices of protein oxidation status were determined in various tissues of this bivalve. Specimens were exposed to 100 μg/L of ANT for 2 days. ANT levels were evaluated using HPLC and were detected in the gill and digestive gland at different amounts. ANT exposure altered the behavior of bivalves by changing the siphon movement and decreasing filtration rate significantly. The enzymatic results indicated that ANT exposure affected the oxidative stress status of the gills of R. decussatus. In addition, modification of proteins was detected in the gills using redox proteomics after ANT treatment. Three protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly related to muscle contraction function. In contrast, no significant modification of enzymatic and protein responses was detected in the digestive gland after ANT treatment. These data demonstrate that combined behavioral and biochemical analyses are a powerful tool to provide valuable insights into possible mechanisms of toxicity of anthracene in R. decussatus. Additionally, the results highlight the potential of the gill as a valuable candidate for investigating PAH toxicity.
Collapse
Affiliation(s)
- Badreddine Sellami
- Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, 7021, Zarzouna, Tunisia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Louati H, Ben Said O, Soltani A, Cravo-Laureau C, Preud'Homme H, Duran R, Aissa P, Mahmoudi E, Pringault O. Impacts of bioremediation schemes for the mitigation of a low-dose anthracene contamination on free-living marine benthic nematodes. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:201-212. [PMID: 24357236 DOI: 10.1007/s10646-013-1163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
A microcosm experiment was used to examine (1) the effects of different bioremediation schemes on degradation of anthracene and the structure of free-living marine nematodes in a lightly contaminated (4.5 μg g(-1)) sediment from Bizerte lagoon and (2) the responses of the nematode community upon an artificial spiking of a low dose anthracene (1 μg g(-1)). For that purpose sediment microcosms were incubated in laboratory for 40 days. Bioremediation techniques decreased the anthracene contamination, and interestingly, biodegradation were more efficient when anthracene was artificial supplied into the sediment suggesting that the addition of bioavailable anthracene stimulated the bacterial community to adjust towards a PAH-degrading community. Spiking with this low dose of anthracene provoked significant changes in the nematode community structure and abundance, with the elimination of specific species such as Mesacanthion diplechma, the decrease of the dominant species Oncholaimus campylocercoides and the increase in abundance of opportunistic species such as Spirinia parasitifera. This would suggest a low tolerance of the nematode community despite the presence of a weak anthracene contamination in the sediment that could have allow dominance of an anthracene tolerant nematode species. Anthracene toxicity was alleviated in biostimulation treatments, leading to a strong increase in nematode abundance, concomitantly with changes in the nematode community structure; Prochromadorella neapolitana became the most abundant species.
Collapse
Affiliation(s)
- Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S319-24. [PMID: 21420227 DOI: 10.1016/j.jenvman.2011.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/31/2011] [Accepted: 02/23/2011] [Indexed: 05/06/2023]
Abstract
This research evaluated the effects of arbuscular mycorrhizal fungi (AMF) on growth, nutritional status, total antioxidant activity (AOX), total soluble phenolics content (TPC), and total nitrate reductase activity (NRA) of leaves and roots of Melilotus albus Medik planted in diesel-contaminated sand (7500 mg kg(-1)). Seedlings of Melilotus either Non inoculated (Non-AMF) or pre-inoculated plants (AMF) with the AMF-inoculum Glomus Zac-19 were transplanted to non-contaminated or contaminated sand. After 60 days, diesel significantly reduced plant growth. AMF- plants had no significant greater (64% and 89%, respectively) shoot and leaf dry weight than Non-AMF plants, but AMF plants had lower specific leaf area. AMF-plants had significantly greater content of microelements than non-AMF plants. Regardless diesel contamination, the total AOX and TPC were significantly higher in leaves when compared to roots; in contrast, NRA was higher in roots than leaves. Diesel increased total AOX of leaves, but AMF-plants had significantly lower AOX than non-AMF plants. In contrast, roots of AMF-plants had significantly higher AOX but lower NRA than non-AMF plants. AMF-colonization in roots detected via the fungal alkaline phosphatase activity was significantly reduced by the presence of diesel. AMF-inoculation alleviated diesel toxicity on M. albus by enhancing plant biomass, nutrient content, and AOX activity. In addition, AMF-plants significantly contributed in higher degradation of total petroleum hydrocarbons when compared to non-AMF-plants.
Collapse
Affiliation(s)
- Herminia Alejandra Hernández-Ortega
- Área de Microbiología, Postgrado de Edafología, Colegio de Postgraduados, Carretera México-Texcoco Km 36.5, Montecillo 56230, Estado de México, Mexico
| | | | | | | | | | | |
Collapse
|
11
|
Nkansah MA, Christy AA, Barth T. The use of anthracene as a model compound in a comparative study of hydrous pyrolysis methods for industrial waste remediation. CHEMOSPHERE 2011; 84:403-408. [PMID: 21507456 DOI: 10.1016/j.chemosphere.2011.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 05/30/2023]
Abstract
Polycyclic aromatic hydrocarbons are very stable compounds and tend to bioaccumulate in the environment due to their high degree of conjugation and aromaticity. Hydrous pyrolysis is explored as a technique for the treatment of industrial water containing PAH, using anthracene as a model compound. The reactivity of anthracene under a range of temperatures and durations are studied in this paper. Aliquots of 1.0-10.0mg of anthracene in a range of 1.0-5.0 mL of H(2)O are subjected to hydrous pyrolysis under varied conditions of temperature, reagents and duration. The conditions include oxidising systems comprising distilled water, hydrogen peroxide and Nafion-SiO(2) solid catalyst in water; and reducing systems of formic acid and formic acid/Nafion-SiO(2)/Pd-C catalysts to assess a range of redox reaction conditions. Oxygen in air played a role in some of the reaction conditions. Pyrolysed products were identified and quantified by the use of Gas Chromatography-Mass Spectrometry (GC-MS). The major products were anthrone, anthraquinone, xanthone from oxidation; and multiple hydro-anthracene derivatives from reductive hydogenation. The nature of reaction conditions influenced the extent of anthracene degradation. The products formed are more reactive (less stable) as compared to anthracene the starting material and will therefore be less persistent in the environment.
Collapse
Affiliation(s)
- Marian Asantewah Nkansah
- Department of Science, Faculty of Engineering and Science, University of Agder Service Box 422, NO-4604, Kristiansand, Norway.
| | | | | |
Collapse
|
12
|
Gao Y, Li Q, Ling W, Zhu X. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:703-709. [PMID: 20956057 DOI: 10.1016/j.jhazmat.2010.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/29/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
An available remediation technique--arbuscular mycorrhizal phytoremediation (AMPR)--is further proposed for soils contaminated with phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs) utilizing a greenhouse pot experiment. The initial concentrations of phenanthrene and/or pyrene in soils were 103 mg kg(-1) and 74 mg kg(-1), respectively. The host plant was alfalfa (Medicago sativa L.), and the experimental arbuscular mycorrhizal fungi (AMF) were Glomus mosseae and G. etunicatum. More than 98.6% and 88.1% of phenanthrene and pyrene were degraded after 70 days in soils with AMPR. Use of multiple mycorrhizal species significantly promoted degradation of PAHs in soils. The co-contaminant (pyrene) present clearly inhibited the degradation of a single PAH (phenanthrene) in soil. Mycorrhizal colonization caused increased accumulation of PAHs in plant roots but a decrease in shoot. However, plant uptake contributed negligibly to PAH dissipation in AMPR, and plant accumulated PAHs amounted to less than 3.24% of total PAH degradation in mycorrhizal soils. In contrast, the optimized microbiota in mycorrhizal association was responsible for PAH degradation in AMPR. The high rate of PAH dissipation in mycorrhizal soils, the evident promotion of PAH degradation by AM colonization, and the healthy plant growth suggest encouraging opportunities for AMPR of PAH-contaminated soils.
Collapse
Affiliation(s)
- Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, PR China.
| | | | | | | |
Collapse
|
13
|
A 60-year journey of mycorrhizal research in China: Past, present and future directions. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1374-98. [DOI: 10.1007/s11427-010-4096-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 03/17/2010] [Indexed: 10/18/2022]
|
14
|
Li X, Lin X, Li P, Liu W, Wang L, Ma F, Chukwuka KS. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:601-605. [PMID: 19682791 DOI: 10.1016/j.jhazmat.2009.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/21/2009] [Accepted: 07/11/2009] [Indexed: 05/28/2023]
Abstract
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) (8.15 mg PAHs kg(-1) soil) in aged contaminated soil by isolated microbial consortium (five fungi and three bacteria) during the incubation of 64d is reported. The applied treatments were: (1) biodegradation by adding microbial consortium in sterile soils (BM); (2) biodegradation by adding microbial consortium in non-sterile soils (BMN); and (3) biodegradation by in situ "natural" microbes in non-sterile soils (BNN). The fungi in BM and BMN soils grew rapidly 0-4d during the incubation and then reached a relative equilibrium. In contrast the fungi in BNN soil remained at a constant level for the entire time. Comparison with the fungi, the bacteria in BNN soils grew rapidly during the incubation 0-2d and then reached a relative equilibrium, and those in BM and BMN soils grew slowly during the incubation of 64 d. After 64 d of incubation, the PAH biodegradations were 35%, 40.7% and 41.3% in BNN, BMN and BM, respectively. The significant release of sequestrated PAHs in aged contaminated soil was observed in this experiment, especially in the BM soil. Therefore, although bioaugmentation of introduced microbial consortium increased significantly the biodegradation of PAHs in aged contaminated soil with low PAH concentration, the creation of optimum of the environmental situation might be the best way to use bioremediation successfully in the field.
Collapse
Affiliation(s)
- Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|