1
|
Antunes E, Cintra B, Bredel M, Temmink H, Schuur B. Fractionation of Extracellular Polymeric Substances by Aqueous Three-Phase Partitioning Systems. Ind Eng Chem Res 2024; 63:10748-10760. [PMID: 38911146 PMCID: PMC11191973 DOI: 10.1021/acs.iecr.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Extracellular polymeric substances (EPS) are natural polymers secreted by microorganisms and represent a key chemical for the development of a range of circular economy applications. The production of EPS comes with notable challenges such as downstream processing. In this work, a three-phase partitioning (TPP) system was investigated as a fractionation technique for the separation of polysaccharides and proteins, both present in the EPS culture broth. The effect of the type of phase-forming compounds (alcohol, polymer, or ionic liquid, in combination with salt) and its concentration were evaluated and compared to the results previously obtained with model systems. The recyclability of phase-forming compounds used to form the fractionation platform was assessed by ultrafiltration. The best fractionation of EPS was achieved using a TPP system composed of 23 wt % ethanol and 25% K3C6H5O7 as 82% EPS-PS partitioned to the salt-rich/bottom phase, and 76% EPS-PN was recovered as an interfacial precipitate, which could be readily resolubilized in water. This represented an increase of 1.24 and 2.83-fold in the purity of EPS-PS and EPS-PN, respectively, in relation to the initial feed concentration. Finally, high recovery yields of phase-forming compounds (>99%) and fractionated EPS (>80%) were obtained using ultrafiltration/diafiltration (UF/DF) as the regeneration technique. The substantial fractionation yields, selectivity, and recyclability of the phase-forming compounds confirm the potential of TPP systems in combination with UF/DF as the separation method for real biopolymer mixtures. Key contributions of this study include the demonstration of the applicability of a readily scalable and cost-effective separation technique for the fractionation of EPS from real EPS-containing broths, while also the limitations of prescreening with model systems became clear through the observed deviating trends between model system studies and real broth studies.
Collapse
Affiliation(s)
- Evelyn
C. Antunes
- Wetsus—European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
- Sustainable
Process Technology Group, Department of Chemical Engineering, Faculty
of Science and Technology, University of
Twente, Drienerlolaan 5, 7522 Enschede, The Netherlands
| | - Bruna Cintra
- Wetsus—European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
| | - Matthieu Bredel
- Wetsus—European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
| | - Hardy Temmink
- Wetsus—European
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, The Netherlands
- Department
of Environmental Technology, Wageningen
University and Research, Bornse Weilanden 9, 6708 Wageningen, The Netherlands
| | - Boelo Schuur
- Sustainable
Process Technology Group, Department of Chemical Engineering, Faculty
of Science and Technology, University of
Twente, Drienerlolaan 5, 7522 Enschede, The Netherlands
| |
Collapse
|
2
|
Yilmaz T, Demir EK, Aşık G, Başaran ST, Cokgor E, Sözen S, Sahinkaya E. Performance of a high-rate membrane bioreactor for energy-efficient treatment of textile wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120845. [PMID: 38599093 DOI: 10.1016/j.jenvman.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
High-rate membrane bioreactors (MBR), where the wastewater undergoes partial oxidation due to the applied short sludge retention time (SRT) and hydraulic retention time (HRT) values, retain the majority of the organic substances in the sludge through growth and biological flocculation. Thus, a raw material source with a high biomethane production potential is created for the widespread use of circular economy or energy-neutral plants in wastewater treatment. While high-rate MBRs have been successfully employed for energy-efficient treatment of domestic wastewater, there is a lack of research specifically focused on textile wastewater. This study aimed to investigate the textile wastewater treatment and organic matter recovery performances of an aerobic MBR system containing a hollow fiber ultrafiltration membrane with a 0.04 μm pore diameter. The system was initially operated at short SRTs (5 and 3 d) and different SRT/HRT ratios (5, 10, and 20) and subsequently at high-rate conditions (SRT of 0.5-2 d and HRT of 1.2-9.6 h) which are believed to be the most limiting conditions tested for treatment of real textile wastewater. The results showed that chemical oxygen demand (COD) removal averaged 77% even at SRT of 0.5 d and HRT of 1.2 h. Slowly biodegradable substrates and soluble microbial products (SMP) accumulated within the MBR at SRT of 0.5 and 1 d, which resulted in decreased sludge filterability. The observed sludge yield (Yobs) exhibited a considerable increase when SRT was reduced from 5 to 1 d. On the other hand, the SRT/HRT ratio displayed a decisive effect on the energy requirement for aeration.
Collapse
Affiliation(s)
- Tülay Yilmaz
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| | - Emir Kasım Demir
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Gulfem Aşık
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Senem Teksoy Başaran
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Emine Cokgor
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Seval Sözen
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Erkan Sahinkaya
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| |
Collapse
|
3
|
Ren W, Zhang S, Liu Y, Ju W, Liu G, Xie K. Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11032. [PMID: 38698675 DOI: 10.1002/wer.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.
Collapse
Affiliation(s)
- Wenyi Ren
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Yutian Liu
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Weipeng Ju
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Guo X, Wang Y, Jiang S, Wang Y, Wang J, Liang H, Tang X. Influence of operation modes on gravity-driven membrane process in treating the secondary effluent: Flux improvement and biocake layer property. CHEMOSPHERE 2023; 310:136692. [PMID: 36202370 DOI: 10.1016/j.chemosphere.2022.136692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
A low flux level of the gravity-driven membrane (GDM) process constrained its extensive application in treating the secondary effluent. In this study, different operation modes were introduced to the GDM process without aeration, backwashing, and chemical cleanings, hoping to develop simple and economic flux regulating strategies, and their influences on the filtration performances and biocake layer characteristics were systematically investigated. The results indicated that the stable fluxs in the intermittent GDM systems elevated by 40%-100% relative to the continuous GDM case, attributing to the synergetic effects of forming more permeable, mushroom-like structures and reducing the concentrations of EPS and SMP within biocake layers. The quantitative analysis of biocake layer properties suggested that the structural parameters of porosity and absolute roughness were closely related to the flux variation compared to the thickness and relative roughness. Besides, the intermittent GDM system generated an apparent detachment of the biocake layer from the membrane surface along with a persistent flux increase than in the continuous GDM case during long-term filtration, achieving its self-sustained operation in a higher flux level without any interferences. The periodical flux recovery and decline occurred daily in each intermittent GDM system since the biocake layer attached to the membrane surface was mainly reversible. Although there were no significant differences in removing dissolved organic pollutants under different operation modes, the manganese removals decreased by 0%-25% in the intermittent GDM filtrations compared to the continuous GDM scenario. The optimized daily operation mode was 16 h on / 8 h off (operation of 16 h, interruption of 8 h), considering the trade-off effects between membrane flux level and water production. These findings provide a new simply-feasible optimized GDM process operation strategy and benefit promoting the application of the GDM system in the reclamation of wastewater.
Collapse
Affiliation(s)
- Xishou Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Yanrui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Shu Jiang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Yuanxin Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
5
|
Miwa T, Takimoto Y, Mizuta Y, Hatamoto M, Watari T, Yamaguchi T. An increase in sludge loading rate induces gel fouling in membrane bioreactors treating real sewage. CHEMOSPHERE 2022; 309:136557. [PMID: 36185000 DOI: 10.1016/j.chemosphere.2022.136557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to investigate the cause of gel fouling in membrane bioreactors (MBRs) treating real sewage in terms of soluble microbial products (SMPs) and microbial aspects. Two anoxic/oxic-MBRs were operated as the control reactor (S1) and the sludge loading rate increased reactor (S2). The reactors were operated under low-temperature around 11 °C conditions. Membrane permeability substantially decreased in S2, and gel layer biofilm was formed on membrane surface. In contrast, the permeability of S1 gradually decreased and cake layer formed. When gel fouling occurred, the protein and polysaccharide of SMP in S2 were 47 and 23 mg L-1, which were significantly lower than those recorded in S1 accounted for 118 and 68 mg L-1, respectively. Furthermore, the total organic carbon concentration of SMPs was 24 mg L-1, which was lower than the influent in S2, accounted for 62 mg L-1. Finally, Campylobacteraceae which exists in sewage and uncultured OD1, dominated the gel layer biofilm in S2, unlike the cake layer biofilm in S1. These results indicated that the gel layer biofilm might be composed of influent substances, demonstrating the importance of influent decomposition in MBR for gel fouling mitigation.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuya Takimoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuki Mizuta
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan.
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| |
Collapse
|
6
|
Plevri A, Mamais D, Noutsopoulos C. Anaerobic MBR technology for treating municipal wastewater at ambient temperatures. CHEMOSPHERE 2021; 275:129961. [PMID: 33677279 DOI: 10.1016/j.chemosphere.2021.129961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
An innovative way to treat municipal wastewater and produce energy at the same time is anaerobic treatment. Anaerobic processes are traditionally used for high-strength wastewater or municipal sludge treatment and only recently have been applied for the treatment of low strength municipal wastewater To investigate the performance of anaerobic wastewater treatment through the incorporation of membrane technology, a 40 L laboratory scale Anaerobic Membrane Bioreactor (AnMBR) with a flat sheet submerged membrane along with a 40 L reservoir for trapping and measuring the biogas produced have been installed and set in operation. The scope of this study is to examine, through long term bench scale experiments, the impact that different temperatures and also different operating conditions have on the efficiency of AnMBR in order to identify the possibility of integrating this technology into Wastewater Treatment Plants (WWTPs). This paper evaluates the efficiency of AnMBR in the temperature range 14-26 °C, operating at three different hydraulic retention times (HRTs). The three different HRTs examined were 2 d, 1 d and 12 h. Each HRT is divided into two different temperature ranges. As the HRT decreased the effluent quality decreased and the membrane fouled more rapidly. AnMBR was able to produce permeate water with an average COD of 51 ± 8 mg L-1 at an HRT of 2 d during the summer period with an average temperature of 24 °C. The effluent COD increased to 67 ± 10 mg L-1 and reached 91 ± 5 mg L-1 for HRT 1 d and 12 h respectively for the same temperature range.
Collapse
Affiliation(s)
- A Plevri
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, 157 80, Athens, Greece.
| | - D Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, 157 80, Athens, Greece
| | - C Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, 157 80, Athens, Greece
| |
Collapse
|
7
|
Jang Y, Kim HS, Ham SY, Park JH, Park HD. Investigation of critical sludge characteristics for membrane fouling in a submerged membrane bioreactor: Role of soluble microbial products and extracted extracellular polymeric substances. CHEMOSPHERE 2021; 271:129879. [PMID: 33736214 DOI: 10.1016/j.chemosphere.2021.129879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Membrane bioreactors (MBRs) are considered a promising tool for resource recovery in wastewater treatment. Nevertheless, membrane fouling is an inevitable phenomenon that deteriorates the MBR performance. Although many studies have attempted to elucidate the effect of sludge characteristics on MBR fouling, they posed certain limitations. Most of the previous studies focused on the initial sludge or employ the results of short-term batch tests without long-term transmembrane pressure (TMP) profiles in the interpretation of fouling behaviors. This study was conducted considering these limitations to determine the sludge characteristics most closely related to long-term TMP profiles and to identify their role in fouling behaviors. In long-term TMP profiles, critical time (tc; time to TMP jump) and fouling rates (the increase in the TMP slope) were used as fouling indexes, which were used to correlate with average values of sludge characteristics before and after experiments. According to the results, the concentration of the total soluble microbial product (SMP) and extracted extracellular polymeric substance (eEPS) in sludge significantly increased by 1.9 times and up to 28 times after experiment. The increase in the SMP and eEPS caused early TMP jumps and resulted in low-fouling rates by increasing particle size. Owing to the increase in the SMP and eEPS concentration, the origin of fouling potential was shifted from suspended solids to colloids and soluble materials. Fouling resistance caused by soluble material increased by up to 11.38 times.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - So-Young Ham
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jeong-Hoon Park
- Jeju Regional Division, Korea Institute of Industrial Technology (KITECH), Cheju, 63243, Republic of Korea.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Medina SC, Zamora-Vacca N, Luna HJ, Ratkovich N, Rodríguez Susa M. SMP Production in an Anaerobic Submerged Membrane Bioreactor (AnMBR) at Different Organic Loading Rates. MEMBRANES 2020; 10:E317. [PMID: 33142958 PMCID: PMC7692452 DOI: 10.3390/membranes10110317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have demonstrated an excellent capability to treat domestic wastewater. However, biofouling reduces membrane permeability, increasing operational costs and overall energy demand. Soluble microbial products (SMPs) that build up on the membrane surface play a significant role in the biofouling. In this study, the production of SMPs in a 32 L submerged AnMBR operated at three different organic loads (3.0, 4.1 and 1.2 kg chemical oxygen demand (COD)/m3d for phases 1, 2 and 3, respectively) during long-term operation of the reactor (144, 83 and 94 days) were evaluated. The samples were taken from both the permeate and the sludge at three different heights (0.14, 0.44 and 0.75 m). Higher production of SMPs was obtained in phase 2, which was proportional to the membrane fouling. There were no statistically significant differences (p > 0.05) in the SMPs extracted from sludge at different heights among the three phases. In the permeate of phases 1, 2 and 3, the membrane allowed the removal of 56%, 70% and 64% of the SMP concentration in the sludge. SMPs were characterized by molecular weight (MW). A bimodal behavior was obtained, where fractions prevailed with an MW < 1 kDa, associated with SMPs as utilization-associated products (UAPs) caused fouling by the pore-blocking mechanism. The chemical analysis found that, in the SMPs, the unknown COD predominated over the known COD, such as carbohydrates and proteins. These results suggest that further studies in SMP characterization should focus on the unknown COD fraction to understand the membrane fouling in AnMBR systems better.
Collapse
Affiliation(s)
- Sandra C. Medina
- Environmental Engineering Research Center (CIIA), Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1 #18a 12, Bogotá 111711, Colombia; (S.C.M.); (H.J.L.); (M.R.S.)
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nataly Zamora-Vacca
- Environmental Engineering Research Center (CIIA), Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1 #18a 12, Bogotá 111711, Colombia; (S.C.M.); (H.J.L.); (M.R.S.)
- Escuela de Ciencias, Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Calle 14 Sur # 23 - 14, Bogotá 551015, Colombia
| | - Hector J. Luna
- Environmental Engineering Research Center (CIIA), Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1 #18a 12, Bogotá 111711, Colombia; (S.C.M.); (H.J.L.); (M.R.S.)
- Facultad de Ingeniería Ambiental, Universidad Antonio Nariño, Calle 22 Sur # 12D - 81, Bogotá 111511, Colombia
| | - Nicolas Ratkovich
- Department of Chemical and Food Engineering, School of Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Manuel Rodríguez Susa
- Environmental Engineering Research Center (CIIA), Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1 #18a 12, Bogotá 111711, Colombia; (S.C.M.); (H.J.L.); (M.R.S.)
| |
Collapse
|
9
|
Samree K, Srithai PU, Kotchaplai P, Thuptimdang P, Painmanakul P, Hunsom M, Sairiam S. Enhancing the Antibacterial Properties of PVDF Membrane by Hydrophilic Surface Modification Using Titanium Dioxide and Silver Nanoparticles. MEMBRANES 2020; 10:membranes10100289. [PMID: 33076583 PMCID: PMC7602841 DOI: 10.3390/membranes10100289] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
This work investigates polyvinylidene fluoride (PVDF) membrane modification to enhance its hydrophilicity and antibacterial properties. PVDF membranes were coated with nanoparticles of titanium dioxide (TiO2-NP) and silver (AgNP) at different concentrations and coating times and characterized for their porosity, morphology, chemical functional groups and composition changes. The results showed the successfully modified PVDF membranes containing TiO2-NP and AgNP on their surfaces. When the coating time was increased from 8 to 24 h, the compositions of Ti and Ag of the modified membranes were increased from 1.39 ± 0.13 to 4.29 ± 0.16 and from 1.03 ± 0.07 to 3.62 ± 0.08, respectively. The water contact angle of the membranes was decreased with increasing the coating time and TiO2-NP/AgNP ratio. The surface roughness and permeate fluxes of coated membranes were increased due to increased hydrophilicity. Antimicrobial and antifouling properties were investigated by the reduction of Escherichia coli cells and the inhibition of biofilm formation on the membrane surface, respectively. Compared with that of the original PVDF membrane, the modified membranes exhibited antibacterial efficiency up to 94% against E. coli cells and inhibition up to 65% of the biofilm mass reduction. The findings showed hydrophilic improvement and an antimicrobial property for possible wastewater treatment without facing the eminent problem of biofouling.
Collapse
Affiliation(s)
- Kajeephan Samree
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Pen-umpai Srithai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Panaya Kotchaplai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisut Painmanakul
- Department of Environmental Engineering, Faculty of Engineer, Chulalongkorn University, Bangkok 10300, Thailand;
- Research Program on Development of Technology and Management Guideline for Green Community, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
- Research Unit on Technology for Oil Spill and Contamination Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mali Hunsom
- Academy of Science, The Royal Society of Thailand, Office of the Royal Society, Dusit, Bangkok 10300, Thailand;
| | - Sermpong Sairiam
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
- Correspondence:
| |
Collapse
|
10
|
Tenore A, Vieira J, Frunzo L, Luongo V, Fabbricino M. Calibration and validation of an activated sludge model for membrane bioreactor wastewater treatment plants. ENVIRONMENTAL TECHNOLOGY 2020; 41:1923-1936. [PMID: 30468630 DOI: 10.1080/09593330.2018.1551940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A mathematical model to simulate the biological processes occurring in a membrane bioreactor (MBR) is presented. The model accounts for different MBR technical features by introducing specific permeability parameters for the applied membrane system. The model considers for the heterotrophic storage process and the formation of soluble microbial products. The introduction of an inhibition coefficient influencing the anoxic kinetics enables the model to simulate the particular operating conditions of the plant, such as a high or low dissolved oxygen concentration in the denitrification tank. The model was applied at the MBR wastewater treatment plant of Vila Nova do Ceira (Portugal) which uses a classic pre-denitrification cycle. Data for calibration and validation were sampled at the same wastewater treatment plant. Calibration was achieved by varying the kinetic parameters of the model to match the simulation results to the experimental data. The values of the kinetic parameters were similar to those found in the literature. The validation was performed by two different methodologies to analyse the model response to diverse operating conditions, and to evaluate the resilience of the MBR. Calibration and validation results were evaluated with mean average error, root mean square error and fractional mean bias as performance indexes. In most cases, these indexes confirmed the high accuracy of the model. Overall, the results of the calibration and validation steps enriched the proposed model by providing an effective biological description of the processes characterizing the MBR. Thus, the model is a reliable tool for the management and designing of MBR.
Collapse
Affiliation(s)
- Alberto Tenore
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - João Vieira
- INESCC - Institute for Systems Engineering and Computers at Coimbra, Department of Civil Engineering, University of Coimbra, Coimbra, Portugal
| | - Luigi Frunzo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Vincenzo Luongo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Gkotsis P, Zouboulis A, Mitrakas M. Using Additives for Fouling Control in a Lab-Scale MBR; Comparing the Anti-Fouling Potential of Coagulants, PAC and Bio-Film Carriers. MEMBRANES 2020; 10:membranes10030042. [PMID: 32178462 PMCID: PMC7143806 DOI: 10.3390/membranes10030042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
This study investigates the effect of different additives, such as coagulants/flocculants, adsorption agents (powdered activated carbon, PAC), and bio-film carriers, on the fouling propensity of a lab-scale membrane bio-reactor (MBR) treating synthetic municipal wastewater. The coagulation agents FO 4350 SSH, Adifloc KD 451, and PAC1 A9-M at concentrations of 10 mg/L, 10 mg/L, and 100 mg Al/L, respectively, and PAC at a concentration of 3.6 ± 0.1 g/L, exhibited the best results during their batch-mode addition to biomass samples. The optimal additives FO 4350 SSH and Adifloc KD 451 were continuously added to the bioreactor at continuous-flow addition experiments and resulted in increased membrane lifetime by 16% and 13%, respectively, suggesting that the decrease of SMPc concentration and the increase of sludge filterability is the dominant fouling reduction mechanism. On the contrary, fouling reduction was low when PAC1 A9-M and PAC were continuously added, as the membrane lifetime was increased by approximately 6%. Interestingly, the addition of bio-film carriers (at filling ratios of 40%, 50%, and 60%) did not affect SMPc concentration, sludge filterability, and trans-membrane pressure (TMP). Finally, the effluent quality was satisfactory in terms of organics and ammonia removal, as chemical oxygen demand (COD), biochemical oxygen demand (BOD)5, and ΝΗ-N concentrations were consistently below the permissible discharge limits and rarely exceeded 30, 15, and 0.9 mg/L, respectively.
Collapse
Affiliation(s)
- Petros Gkotsis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.G.); (A.Z.)
| | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.G.); (A.Z.)
| | - Manassis Mitrakas
- Analytic Chemistry Laboratory, Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-997-794
| |
Collapse
|
12
|
Jafari S, Salehiziri M, Foroozesh E, Bardi MJ, Rad HA. An evaluation of lysozyme enzyme and thermal pretreatments on dairy sludge digestion and gas production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1052-1062. [PMID: 32541121 DOI: 10.2166/wst.2020.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion is one of the common methods of managing and stabilizing sludge. However, due to the limitations of the biological sludge hydrolysis stage, anaerobic decomposition is slow and requires a long time. This study evaluated the effects of thermal (80 °C) (TH-PRE) and a combination of thermal with the lysozyme enzyme (LTH-PRE) pretreatments on the enhancement of anaerobic activated sludge digestion. Response surface methodology was implemented to optimize enzyme pretreatment conditions (enzyme and mixed liquid suspended solids concentration). The results showed that both pretreatment methods increase soluble chemical oxygen demand (COD) and reduces total and volatile suspended solids (VSS), and phosphate concentration. The COD removal rate in LTH-PRE and TH-PRE was 95% and 81%, respectively. The value of VSS reduction in LTH-PRE and TH-PRE was 41% and 31%, more than the control operation, respectively. The biogas production in LTH-PRE and in TH-PRE also increased by 124% and 96%, respectively.
Collapse
Affiliation(s)
- Shakiba Jafari
- Babol Noshirvani University of Technology, Bobol, Iran E-mail:
| | | | - Elham Foroozesh
- Babol Noshirvani University of Technology, Bobol, Iran E-mail:
| | | | - Hasan A Rad
- Babol Noshirvani University of Technology, Bobol, Iran E-mail:
| |
Collapse
|
13
|
Computational Thermodynamic Analysis of the Interaction between Coagulants and Monosaccharides as a Tool to Quantify the Fouling Potential Reduction in the Biofilm Membrane Bioreactor. WATER 2019. [DOI: 10.3390/w11061275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The membrane bioreactor (MBR) and the biofilm membrane bioreactor (BF-MBR) are among key solutions to water scarcity; however, membrane fouling is the major bottleneck for any expansion of these technologies. Prepolymerized aluminum coagulants tend to exhibit the greatest extent of fouling alleviation, with the reduction of soluble microbial products (SMPs) being among the governing mechanisms, which, nevertheless, has been poorly understood. This current study demonstrates that the investigation of the chemical coordination of monosaccharides, which are the major foulants in MBR and BF-MBR, to the main hydrolysis species of the prepolymerized aluminum coagulant, is among the key approaches to the comprehension of the fouling mitigation mechanisms in BF-MBR. Quantum chemical and thermodynamic calculations, together with the multivariate chemometric analysis, allowed the team to determine the principal mechanisms of the SMPs removal, understand the thermodynamic patterns of fouling mitigation, develop the model for the prediction of the fouling mitigation based on the thermodynamic stability of the inorganic-organic complexes, and classify these complexes into thermodynamically stable and less stable species. The results of the study are practically significant for the development of plant surveillance and automated process control with regard to MBR and BF-MBR systems.
Collapse
|
14
|
Arimi MM. Particle size distribution as an emerging tool for the analysis of wastewater. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1540666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Milton M. Arimi
- Department of Environmental Technology, Technische Universität Berlin, Berlin, Germany
- Faculty of Technology, Moi University Main Campus, Eldoret, Kenya
| |
Collapse
|
15
|
Multivariate Chemometric Analysis of Membrane Fouling Patterns in Biofilm Ceramic Membrane Bioreactor. WATER 2018. [DOI: 10.3390/w10080982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane fouling highly limits the development of Membrane bioreactor technology (MBR), which is among the key solutions to water scarcity. The current study deals with the determination of the fouling propensity of filtered biomass in a pilot-scale biofilm membrane bioreactor to enable the prediction of fouling intensity. The system was designed to treat domestic wastewater with the application of ceramic microfiltration membranes. Partial least squares regression analysis of the data obtained during the long-term operation of the biofilm-MBR (BF-MBR) system demonstrated that Mixed liquor suspended solids (MLSS), diluted sludge volume index (DSVI), chemical oxygen demand (COD), and their slopes are the most significant for the estimation and prediction of fouling intensity, while normalized permeability and its slope were found to be the most reliable fouling indicators. Three models were derived depending on the applied operating conditions, which enabled an accurate prediction of the fouling intensities in the system. The results will help to prevent severe membrane fouling via the change of operating conditions to prolong the effective lifetime of the membrane modules and to save energy and resources for the maintenance of the system.
Collapse
|
16
|
Dynamics of Archaeal and Bacterial Communities in Response to Variations of Hydraulic Retention Time in an Integrated Anaerobic Fluidized-Bed Membrane Bioreactor Treating Benzothiazole Wastewater. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:9210534. [PMID: 29853797 PMCID: PMC5949192 DOI: 10.1155/2018/9210534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
Abstract
An integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) was investigated to treat synthetic high-strength benzothiazole wastewater (50 mg/L) at a hydraulic retention time (HRT) of 24, 18, and 12 h. The chemical oxygen demand (COD) removal efficiency (from 93.6% to 90.9%), the methane percentage (from 70.9% to 69.27%), and the methane yield (from 0.309 m3 CH4/kg·CODremoved to 0.316 m3 CH4/kg·CODremoved) were not affected by decreasing HRTs. However, it had an adverse effect on membrane fouling (decreasing service period from 5.3 d to 3.2 d) and benzothiazole removal efficiency (reducing it from 97.5% to 82.3%). Three sludge samples that were collected on day 185, day 240, and day 297 were analyzed using an Illumina® MiSeq platform. It is striking that the dominant genus of archaea was always Methanosaeta despite of HRTs. The proportions of Methanosaeta were 80.6% (HRT 24), 91.9% (HRT 18), and 91.2% (HRT 12). The dominant bacterial genera were Clostridium in proportions of 23.9% (HRT 24), 16.4% (HRT 18), and 15.3% (HRT 12), respectively.
Collapse
|
17
|
Su X, Zhang Z. Structural characteristics of extracellular polymeric substances (EPS) in membrane bioreactor and their adsorptive fouling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1537-1546. [PMID: 29595156 DOI: 10.2166/wst.2018.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble (S), loosely bound (LB) and tightly bound (TB) extracellular polymeric substances (EPS) were extracted from sludge flocs of a membrane bioreactor to evaluate their characteristics and adsorptive fouling. The degrees of adsorptive fouling by the EPS fractions were in the order S-EPS < TB-EPS < LB-EPS. The images of atomic force microscopy showed the membrane fouled by LB-EPS was rougher than that fouled by the other fractions. The adsorbed EPS layer, which was sensed by quartz crystal microbalance with dissipation, was found to be more rigid and compact for LB-EPS, compared with the other EPS fractions. The excitation-emission matrix and Fourier transform infrared techniques were also used to characterize the individual EPS fractions. Compared with S-EPS and TB-EPS, the LB-EPS contained a larger amount of aromatic protein and less carbohydrates and lipids, exhibiting characteristics of greater aromaticity and hydrophobicity. These characteristics should be responsible for more severe fouling, and the stiffer and more compact structure of the adsorbed layer.
Collapse
Affiliation(s)
- Xinying Su
- Department of Environmental Engineering, School of Food Engineering, Harbin University of Commerce, Harbin 150076, China E-mail:
| | - Zhigang Zhang
- Science and Technology on Underwater Acoustic Laboratory, College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
18
|
Influence of the Backwash Cleaning Water Temperature on the Membrane Performance in a Pilot SMBR Unit. WATER 2018. [DOI: 10.3390/w10030238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wang BB, Liu XT, Chen JM, Peng DC, He F. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. WATER RESEARCH 2018; 129:133-142. [PMID: 29145083 DOI: 10.1016/j.watres.2017.11.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 05/16/2023]
Abstract
Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPSMono-ProS, the proportion of proteins in EPSLoP-ProS and EPSHiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPSLoP-ProS and EPSHiP-ProS were ∼6 and ∼16-fold higher than that in EPSMono-ProS, respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPSHiP-ProS, indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems.
Collapse
Affiliation(s)
- Bin-Bin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
| | - Xue-Ting Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
| | - Dang-Cong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
20
|
Marín E, Pérez JI, Gómez MA. Behaviour of biopolymeric substances in the activated sludge of an MBR system working with high hydraulic retention time. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1184-1193. [PMID: 28910575 DOI: 10.1080/10934529.2017.1356209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study was undertaken to analyse the activated sludge of a membrane bioreactor (MBR), the behaviour of extracellular polymeric substances (EPS) and soluble microbial products (SMP) as well as their biopolymers composition, in the activated sludge of a membrane bioreactor (MBR) and their influence on membrane fouling were analysed. For the experiment an experimental fullscale MBR working with real urban wastewater at high hydraulic retention time with a variable sludge-retention time (SRT) was used. The MBR system worked in denitrification/nitrification conformation at a constant flow rate (Q = 0.45 m3/h) with a recirculation flow rate of 4Q. The concentrations of SMP in the activated sludge were lower than the concentrations of EPS over the entire study, with humic substances being the main components of the two biopolymers. SMP and, more specifically, SMP carbohydrates, were the most influential biopolymers in membrane fouling, while for EPS and their components, no relation was found with fouling. The SRT and temperature were the operational variables that most influenced the SMP and EPS concentration, causing the increase of SRT and temperature a lower concentration in both biopolymers, although the effect was not the same for all the components, particularly for the EPS carbohydrates, which increased with longer SRTs. Both operational variables were also the ones most influential on the concentration of organic matter of the effluent, due to their effect on the SMP. The volatile suspended solid/total suspended solid (VSS/TSS) ratio in the activated sludge can be applied as a good indicator of the risk of membrane fouling by biopolymers in MBR systems.
Collapse
Affiliation(s)
- Eugenio Marín
- a Technologies for Water Management and Treatment Research Group , Department of Civil Engineering, and Water Research Institute , University of Granada , Spain
| | - Jorge I Pérez
- a Technologies for Water Management and Treatment Research Group , Department of Civil Engineering, and Water Research Institute , University of Granada , Spain
| | - Miguel A Gómez
- a Technologies for Water Management and Treatment Research Group , Department of Civil Engineering, and Water Research Institute , University of Granada , Spain
| |
Collapse
|
21
|
Zouboulis AI, Gkotsis PK, Zamboulis DX, Mitrakas MG. Application of powdered activated carbon (PAC) for membrane fouling control in a pilot-scale MBR system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2350-2357. [PMID: 28541943 DOI: 10.2166/wst.2017.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane fouling is considered to be the most serious drawback in wastewater treatment when using membrane bioreactors (MBRs), leading to membrane permeability decrease and efficiency deterioration. This work aims to develop an integrated methodology for membrane fouling control, using powdered activated carbon (PAC), which will enhance the adsorption of soluble microbial products (SMP) and improve membrane filterability, by altering the mixed liquor's characteristics. Reversible fouling was assessed in terms of sludge filterability measurements, according to the standard time-to-filter (TTF) method, while irreversible fouling was assessed in terms of SMP removal. Results showed that the addition of PAC at the concentration of 3 g/L in the mixed liquor reduced SMP concentration and enhanced substantially the sludge filterability. Furthermore, the TTFPAC/TTFno PAC ratios were lower, than the corresponding SMPPAC./SMPno PAC ratios, indicating that the batch-mode, short-term addition of PAC promotes the reversible, rather than the irreversible fouling mitigation.
Collapse
Affiliation(s)
- A I Zouboulis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece E-mail:
| | - P K Gkotsis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece E-mail:
| | - D X Zamboulis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece E-mail:
| | - M G Mitrakas
- School of Engineering, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Yu D, Chen Y, Wei Y, Wang J, Wang Y, Li K. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9026-9035. [PMID: 26564195 DOI: 10.1007/s11356-015-5751-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m-2 h-1 bar-1, and 4.5 × 1012 m-1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L-1) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L-1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics, operational conditions, and feed characteristics.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yutao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jianxing Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kun Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
23
|
Remmas N, Melidis P, Paschos G, Statiris E, Ntougias S. Protozoan indicators and extracellular polymeric substances alterations in an intermittently aerated membrane bioreactor treating mature landfill leachate. ENVIRONMENTAL TECHNOLOGY 2017; 38:53-64. [PMID: 27194208 DOI: 10.1080/09593330.2016.1190792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
A membrane bioreactor was operated under intermittent aeration and various organic loading rates (OLR: 0.070, 0.159 and 0.291 g COD L-1 d-1) to remove carbon and nitrogen from mature landfill leachate, where external carbon source (glycerol) addition resulted in effective nitrate removal. A relative increase in soluble microbial product (SMP) over extracellular polymeric substances (EPS) was observed at the highest OLR and glycerol addition, whereas no membrane biofouling occurred. SMP (proteins and carbohydrates) and carbohydrate EPS correlated positively and negatively, respectively, with suspended solids and transmembrane pressure (TMP). Moreover, proteinous SMP significantly correlated with carbon and nitrogen load. Principal component analysis also revealed the influence of leachate organic and nitrogen content on biomass production, TMP and sessile ciliate densities. Although filamentous index (FI) was sustained at high levels (3-4), with Haliscomenobacter hydrossis being the main filamentous bacterium identified, no bulking phenomena occurred. High glycerol addition resulted in a rapid increase in sessile ciliate population. Increased Epistylis and Vorticella microstoma population was detected by microscopic examination during high glycerol addition, while a remarkable Rhogostoma population (supergroup Rhizaria) was identified by molecular techniques. The contribution of Rhizaria in nitrogen processes may lead to the dominance of Rhogostoma during landfill leachate treatment.
Collapse
Affiliation(s)
- Nikolaos Remmas
- a Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering , Democritus University of Thrace , Xanthi , Greece
| | - Paraschos Melidis
- a Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering , Democritus University of Thrace , Xanthi , Greece
| | - Georgios Paschos
- a Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering , Democritus University of Thrace , Xanthi , Greece
| | - Evangelos Statiris
- a Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering , Democritus University of Thrace , Xanthi , Greece
| | - Spyridon Ntougias
- a Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering , Democritus University of Thrace , Xanthi , Greece
| |
Collapse
|
24
|
The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes. WATER 2016. [DOI: 10.3390/w8120602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Galib M, Elbeshbishy E, Reid R, Hussain A, Lee HS. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:477-485. [PMID: 27526085 DOI: 10.1016/j.jenvman.2016.07.098] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/07/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs.
Collapse
Affiliation(s)
- Mohamed Galib
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L3G1, Canada
| | - Elsayed Elbeshbishy
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L3G1, Canada; Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Robertson Reid
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L3G1, Canada
| | - Abid Hussain
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L3G1, Canada
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L3G1, Canada.
| |
Collapse
|
26
|
Kang J, Ma TF, Zhang P, Gao X, Chen YP. Characterization of soluble microbial products in a drinking water biological aerated filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8721-8730. [PMID: 26801929 DOI: 10.1007/s11356-015-5973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.
Collapse
Affiliation(s)
- Jia Kang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Xu Gao
- Chongqing Water Group Co., Ltd., Chongqing, 400045, China.
| | - You-Peng Chen
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
27
|
Lu H, Xue Z, Saikaly P, Nunes SP, Bluver TR, Liu WT. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. WATER RESEARCH 2016; 88:337-345. [PMID: 26512812 DOI: 10.1016/j.watres.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/24/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zheng Xue
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal Saikaly
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ted R Bluver
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
28
|
Hu H, He J, Liu J, Yu H, Tang J, Zhang J. Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Adv 2016. [DOI: 10.1039/c5ra23466b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing (QS) signaling has been extensively studied in granules and single species populations.
Collapse
Affiliation(s)
- Huizhi Hu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Junguo He
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Liu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Huarong Yu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Tang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jie Zhang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
29
|
Wang J, Li K, Wei Y, Cheng Y, Wei D, Li M. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. CHEMOSPHERE 2015; 121:92-100. [PMID: 25475971 DOI: 10.1016/j.chemosphere.2014.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/07/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
A double membrane system comprising a membrane bioreactor (MBR) combined with a nanofiltration (NF) membrane was investigated on a pilot scale for the treatment of antibiotic production wastewater over a three-month period at a pharmaceutical company in Wuxi, China. By recycling the NF concentrate, the combined MBR-NF process was shown to be effective for the treatment of antibiotic production wastewater, resulting in excellent water quality and a high water yield of 92±5.6%. The water quality of the pilot-scale MBR-NF process was excellent; e.g., the concentrations of TOC, NH4(+)-N, TP were stable at 5.52, 0.68, 0.34 mg L(-1), respectively, and the values of turbidity and conductivity of the NF permeate were 0.15 NTU and 2.5 mS cm(-1), respectively; these values meet China's water quality standard requirements for industrial use (GB21903-2008). Not only were the antibiotic removal rates of spiramycin (SPM) and new spiramycin (NSPM) over 95%, the acute toxicity was also drastically reduced by the MBR-NF pilot system. The main organics in the MBR effluent were proteins, polysaccharides, and humic-like substances; they were almost completely retained by the NF membrane and further biodegraded in the MBR because the NF concentrate was recycled. The microbial community of the MBR did not significantly change with the recycling of the NF concentrate.
Collapse
Affiliation(s)
- Jianxing Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Kun Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yuansong Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Yutao Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; CCID Consulting Co., Ltd, Beijing 100048, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Mingyue Li
- Wuxi Fortune Pharmaceutical Co. Ltd, Wuxi 214046, China
| |
Collapse
|
30
|
He JG, Xin XD, Qiu W, Zhang J, Wen ZD, Tang J. Performance of the lysozyme for promoting the waste activated sludge biodegradability. BIORESOURCE TECHNOLOGY 2014; 170:108-114. [PMID: 25127008 DOI: 10.1016/j.biortech.2014.07.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
The fresh waste activated sludge (WAS) from a lab-scale sequencing batch reactor was used to determine the performance of the lysozyme for promoting its biodegradability. The results showed that a strict linear relationship presented between the degree of disintegration (DDM) of WAS and the lysozyme incubation time from 0 to 240min (R(2) was 0.992, 0.995 and 0.999 in accordance with the corresponding lysozyme/TS, respectively). Ratio of net SCOD increase augmented significantly by lysozyme digestion for evaluating the sludge biodegradability changes. Moreover, the protein dominated both in the EPS and SMP. In addition, the logarithm of SMP contents in supernatant presented an increasing trend similar with the ascending logarithmic relation with the lysozyme incubation time from 0 to 240min (R(2) was 0.960, 0.959 and 0.947, respectively). The SMP, especially the soluble protein, had an important contribution to the improvement of WAS biodegradability.
Collapse
Affiliation(s)
- Jun-Guo He
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Dong Xin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Dan Wen
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jian Tang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Influence of surface hydrophilicity on polytetrafluoroethylene flat sheet membrane fouling in a submerged membrane bioreactor using two activated sludges with different characteristics. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Gao DW, Wang XL, Xing M. Dynamic variation of microbial metabolites and community involved in membrane fouling in A/O-MBR. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Zhou Z, Meng F, Lu H, Li Y, Jia X, He X. Simultaneous alkali supplementation and fouling mitigation in membrane bioreactors by on-line NaOH backwashing. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Gao DW, Hu Q, Yao C, Ren NQ. Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. BIORESOURCE TECHNOLOGY 2014; 159:193-198. [PMID: 24650533 DOI: 10.1016/j.biortech.2014.02.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
The performance of a novel integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) for treating practical domestic wastewater was investigated at a step dropped temperature from 35, 25, to 15°C. The COD removal was 74.0 ± 3.7%, 67.1 ± 2.9% and 51.1 ± 2.6% at 35, 25 and 15°C, respectively. The COD removal depended both on influent strength and operational temperature. The accumulation of VFAs (Volatile Fatty Acids) was affected by temperature, and acetic acid was the most sensitive one to the decrease of temperature. The methanogenic activity of the sludge decreased eventually and the methane yield was dropped from 0.17 ± 0.03, 0.15 ± 0.02 to 0.10 ± 0.01 L/Ld. And as compared with a mesophilic temperature, a low temperature can accelerate membrane biofouling. Proteins were the dominant matters causing membrane fouling at low temperature and membrane fouling can be mitigated by granular active carbon (GAC) through protein absorption.
Collapse
Affiliation(s)
- Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qi Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Yao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
35
|
Mangwani N, Shukla SK, Rao TS, Das S. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B Biointerfaces 2014; 114:301-9. [DOI: 10.1016/j.colsurfb.2013.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 12/31/2022]
|
36
|
Gao DW, Wen ZD, Li B, Liang H. Microbial community structure characteristics associated membrane fouling in A/O-MBR system. BIORESOURCE TECHNOLOGY 2014; 154:87-93. [PMID: 24384314 DOI: 10.1016/j.biortech.2013.11.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/17/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling.
Collapse
Affiliation(s)
- Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhi-Dan Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bao Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
37
|
Hu J, Shang R, Deng H, Heijman SGJ, Rietveld LC. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water. BIORESOURCE TECHNOLOGY 2014; 154:290-296. [PMID: 24412856 DOI: 10.1016/j.biortech.2013.12.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation.
Collapse
Affiliation(s)
- Jingyi Hu
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands.
| | - Ran Shang
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China
| | | | - Luuk C Rietveld
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands
| |
Collapse
|
38
|
Gao DW, Wen ZD, Li B, Liang H. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures. BIORESOURCE TECHNOLOGY 2013; 143:172-177. [PMID: 23792756 DOI: 10.1016/j.biortech.2013.05.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition.
Collapse
Affiliation(s)
- Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | |
Collapse
|
39
|
Characterization of dissolved organic matter in a dynamic membrane bioreactor for wastewater treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5710-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Jimenez J, Vedrenne F, Denis C, Mottet A, Déléris S, Steyer JP, Cacho Rivero JA. A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples. WATER RESEARCH 2013; 47:1751-1762. [PMID: 23357791 DOI: 10.1016/j.watres.2012.11.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
Biochemical characterization of organic matter is becoming of key importance in wastewater treatment. The main objectives are to predict organic matter properties, such as granulation or flocculation, and hence treatment performance. Although standardized methods do exist for some organic molecules, such as volatile fatty acids or lipids, there are no standard methods to measure proteins and carbohydrates content, both biochemical families being the main components of sewage sludge. Consequently, the aim of the present work is to investigate the efficiency of several colorimetric methods to determine proteins and carbohydrates content as well as their compatibility with the sludge matrices. The different methods have been evaluated based on statistical criteria such as sensitivity, linearity, accuracy, rightness, and specificity using standard molecules such as Bovine Serum Albumin (BSA), glucose, cellulose and a certified reference product. The Lowry and the Dubois methods have been shown to be the best compromise for the considered criteria after having been tested on sewage sludge samples obtained from different locations in a wastewater treatment plant. In average, the measured volatile fatty acids, lipids, proteins and carbohydrates contents represented 80 ± 7% (% volatile solids) of the organic matter. Proteins and carbohydrates represented in average 69 ± 3%. This study underlined that the choice of a relevant methodology is of great importance for organic matter measurement.
Collapse
Affiliation(s)
- Julie Jimenez
- VERI, VEOLIA Recherche et Innovation, Chemin de Digue, BP 76, 78603 Maisons Laffitte Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chon K, Cho J, Shon HK. Fouling characteristics of a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation. BIORESOURCE TECHNOLOGY 2013; 130:239-247. [PMID: 23313668 DOI: 10.1016/j.biortech.2012.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
A laboratory-scale membrane bioreactor (MBR) and nanofiltration (NF) hybrid system has been built to investigate effects of changes in characteristics of effluent organic matter by the MBR on fouling characteristics of the NF membranes. Large amounts of polysaccharide-like substances with small molecular weight and strong fluorescence intensity at the excitation wavelength of 230nm and the emission wavelength of 420nm were produced by microbial growth in the MBR. These substances had a great influence on fouling formation of the NF membranes. Fouling characteristics of the MBR were governed by both hydrophobic and hydrophilic fractions while hydrophilic fractions were found as major constituents of the desorbed NF membrane foulants. Flux decline rates of the NF membranes were closely associated with differences in their fouling layer compositions, meaning that performances of the NF membranes (i.e., flux decline) could be influenced by the membrane characteristics (i.e., surface zeta potential and contact angle).
Collapse
Affiliation(s)
- Kangmin Chon
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| | | | | |
Collapse
|
42
|
Wang Z, Mei X, Ma J, Grasmick A, Wu Z. Potential Foulants and Fouling Indicators in MBRs: A Critical Review. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.682288] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Shen YX, Xiao K, Liang P, Sun JY, Sai SJ, Huang X. Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.05.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. MEMBRANES 2012; 2:565-84. [PMID: 24958297 PMCID: PMC4021913 DOI: 10.3390/membranes2030565] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 11/17/2022]
Abstract
Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed.
Collapse
|
45
|
Zhou Z, Meng F, Chae SR, Huang G, Fu W, Jia X, Li S, Chen GH. Microbial transformation of biomacromolecules in a membrane bioreactor: implications for membrane fouling investigation. PLoS One 2012; 7:e42270. [PMID: 22912694 PMCID: PMC3415425 DOI: 10.1371/journal.pone.0042270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). FINDINGS In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. SIGNIFICANCE The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.
Collapse
Affiliation(s)
- Zhongbo Zhou
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Fangang Meng
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
- * E-mail:
| | - So-Ryong Chae
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| | - Guocheng Huang
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Wenjie Fu
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Xiaoshan Jia
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shiyu Li
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Guang-Hao Chen
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCI ET), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
46
|
Navaratna D, Elliman J, Cooper A, Shu L, Baskaran K, Jegatheesan V. Impact of herbicide Ametryn on microbial communities in mixed liquor of a membrane bioreactor (MBR). BIORESOURCE TECHNOLOGY 2012; 113:181-190. [PMID: 22230781 DOI: 10.1016/j.biortech.2011.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Ametryn, which is a second generation herbicide, was introduced to a lab-scale MBR at a concentration of 1mg/L and a 20-40% removal was observed at HRT ranging from 7.8 to 15.6h for an average influent Ametryn concentration of 0.8 mg/L. Components of EPS (protein and carbohydrates) increased in the bioreactor and the observed biomass production reduced after the addition of Ametryn. In a batch study, GAC was added to MBR mixed liquor and removal of Ametryn via biodegradation and adsorption were measured. Five common bacterial colony types (Gram negative and positive bacilli and Gram negative cocci) were identified and three of these were resistant to Ametryn up to 5mg/L. GAC was found to be a very effective Ametryn adsorption medium and in some occasions Ametryn may have acted as a nutrient source for bacteria.
Collapse
Affiliation(s)
- Dimuth Navaratna
- School of Engineering, Deakin University, Waurn Ponds Campus, Geelong, VIC 3220, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Wu B, Yi S, Fane AG. Effect of Substrate Composition (C/N/P ratio) on Microbial Community and Membrane Fouling Tendency of Biomass in Membrane Bioreactors. SEP SCI TECHNOL 2012. [DOI: 10.1080/01496395.2011.621503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Zhou Z, Meng F, Liang S, Ni BJ, Jia X, Li S, Song Y, Huang G. Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules (BMM) in a membrane bioreactor. RSC Adv 2012. [DOI: 10.1039/c1ra00420d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Zhang H, Gao J, Jiang T, Gao D, Zhang S, Li H, Yang F. A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors. BIORESOURCE TECHNOLOGY 2011; 102:11121-11131. [PMID: 22014502 DOI: 10.1016/j.biortech.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain a better understanding of the cake layer formation mechanism in the flocculants added MBRs, a model was developed on the basis of particle packing model considering cake collapse effect and a frictional force balance equation to predict the porosity and permeability of the cake layers. The important characteristic parameters of the flocs (e.g., floc size, fractal dimensions) and operating parameters of MBRs (e.g., transmembrane pressure, cross-flow velocity) are considered in this model. With this new model, the calculated results of porosities and specific cake resistances under different MBR operational conditions agree fairly well with the experimental data.
Collapse
Affiliation(s)
- Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Yuzir A, Chelliapan S, Sallis PJ. Influence of step increases in hydraulic retention time on (RS)-MCPP degradation using an anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2011; 102:9456-9461. [PMID: 21862323 DOI: 10.1016/j.biortech.2011.07.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.
Collapse
Affiliation(s)
- Ali Yuzir
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia.
| | | | | |
Collapse
|