1
|
Nnorom MA, Avery L, Hough R, Saroj D, Guo B. Anaerobic digestion at hyper-mesophilic temperatures: Microbiome and antibiotic resistome in full-scale agricultural biogas plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137922. [PMID: 40090309 DOI: 10.1016/j.jhazmat.2025.137922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Temperatures between 40°C and 50°C are increasingly implemented in full-scale agricultural anaerobic digestion (AD), yet the microbial diversity and antibiotic resistome dynamics within this temperature range remain poorly understood. Here, we defined this range as "hyper-mesophilic" and surveyed five full-scale sites. Significant differences were found in the bacterial community structure, potentially stemming from feedstock combination (high vs low/non-manure) and operating temperature. Sites operating at 44°C exhibited superior attenuation efficiency (81-92 %) for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) than sites operating at 41°C (41-83 %). High-risk clinically important ARGs such as sul1, lnuA, tet(O), and tet(L) persisted in sites blending livestock manure. Potential hosts of ARGs were identified and included opportunistic human pathogens like Enterococcus faecalis, Staphylococcus aureus, and Clostridioides difficile. The tnpA transposon accounted for > 50 % of the total MGEs and frequently co-localised with ARGs, while the class 1 integrase, intI1, was only detected in manure-blended AD. Based on prevalence in plasmids, ARGs showed higher mobility potential in sites blending chicken manure. The results obtained here provided initial insights into hyper-mesophilic AD and reinforced the importance of conducting surveillance for crop AD, with or without manure, as part of wider efforts to mitigate antimicrobial resistance in agroecosystems.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), School of Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), School of Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), School of Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
2
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
3
|
Yu F, Li N, Li H, Zhang Y, Chen L, Wang B, Sheng X, Zhang J, Ping Q, Xiao H. Boosting volatile fatty acids (VFAs) production during anaerobic digestion of rich lignocellulose pulp mill excess sludge by inoculating rumen fluid and the study on the microbial community structures and functions. Int J Biol Macromol 2025; 303:140718. [PMID: 39920950 DOI: 10.1016/j.ijbiomac.2025.140718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Hydrolysis is the rate-limiting step in the anaerobic digestion of lignocellulose. In the present study, pulp and paper mill sludge (PPMS), a lignocellulose-rich, high-volume waste, which is difficult to be treated by traditional anaerobic digestion, was inoculated with rumen microorganisms for VFAs production. The maximum extent of VFA accumulation was 3839 mg/L after 84 h in the rumen fluid-inoculated digester, versus 2338 mg/L after 96 h in the digester without rumen fluid addition. The amount was 1.64 times higher than that of digester leachate inoculum. During VFAs production, the hydrolysable of lignocellulose and extracellular polymers were promoted by inoculating rumen liquid. High-throughput sequencing results (16S rRNA genes) showed that there was a significant succession of dominant microbial community during in vitro fermentation of PPMS by rumen fluid. Fermentation by rumen fluid is a potentially effective technology to boost VFAs production from a lignocellulose-rich biomass.
Collapse
Affiliation(s)
- Fangrui Yu
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Na Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Hongbin Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Yuying Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Lianmei Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Bing Wang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Xueru Sheng
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Jian Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Qingwei Ping
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| |
Collapse
|
4
|
Klimek D, Herold M, Vitorino IR, Dedova Z, Lemaigre S, Roussel J, Goux X, Lage OM, Calusinska M. Insights into the phylogenetic and metabolic diversity of Planctomycetota in anaerobic digesters and the isolation of novel Thermoguttaceae species. FEMS Microbiol Ecol 2025; 101:fiaf025. [PMID: 40097306 PMCID: PMC11929135 DOI: 10.1093/femsec/fiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Studying bacteria in anaerobic digestion (AD) is crucial for optimizing microbial processes. While abundant taxa are often studied, less abundant groups may harbour novel metabolic potential. This study fills the gap by focusing on the Planctomycetota phylum, known to encode diverse carbohydrate-active enzymes (CAZymes). Despite their common presence in diverse aerobic and anaerobic environments, their role in AD is relatively unexplored. We utilized both culture-dependent and culture-independent techniques to investigate the phylogenetic and metabolic diversity of Planctomycetota within AD reactors. Our findings revealed that among the diverse planctomycetotal operational taxonomic units present, only a few are prevalent and abundant community members. Planctomycetota share functional traits with e.g. Verrucomicrobiota exhibiting distinct CAZyme gene repertoires that indicates specialization in degrading algal polysaccharides and glycoproteins. To explore the planctomycetotal metabolic capabilities, we monitored their presence in algal-fed digesters. Additionally, we isolated a strain from mucin-based medium, revealing its genetic potential for a mixotrophic lifestyle. Based on the genomic analysis, we propose to introduce the Candidatus Luxemburgiella decessa gen. nov. sp. nov., belonging to the Thermoguttaceae family within the Pirellulales order of the Planctomycetia class. This study enhances our understanding of Planctomycetota in AD by highlighting their phylogenetic diversity and metabolic capabilities.
Collapse
Affiliation(s)
- Dominika Klimek
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Inês Rosado Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Zuzana Dedova
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Sebastien Lemaigre
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Jimmy Roussel
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Xavier Goux
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), 4450-208 Matosinhos, Portugal
| | - Magdalena Calusinska
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| |
Collapse
|
5
|
Induchoodan TG, Choran N, Kalamdhad AS. Domestic sewage as a sustainable freshwater substitute for enhanced anaerobic digestion of lignocellulosic biomass. Sci Rep 2024; 14:31964. [PMID: 39738640 PMCID: PMC11685457 DOI: 10.1038/s41598-024-83546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum. WH (241.5 mL CH4/g VSadded), PWH (200.5 mL CH4/g VSadded), and HV (212 mL CH4/g VSadded) produced significant amounts of methane in the sewage medium. 16S-rRNA analysis showed that, in sewage, ~ 85% of the microbes were hydrolytic bacteria, and 7% were methanogens. This abundant quantity of hydrolytic microbes from sewage accelerated lignin degradation, achieving 28.32% and 38.34% degradation for WH and HV, respectively, within 14 days. Field emission-scanning electron microscopy images visually confirmed the enhanced substrate degradation in the presence of sewage. The net energy produced from the AD of WH and HV was significant (4664 J/g VSadded and 4109 J/g VSadded), but for PWH, it was negative, indicating that using sewage medium may be better than costly pretreatment techniques. This study demonstrated the potential of using sewage as an alternative to freshwater in AD, offering a sustainable solution for freshwater conservation and the possible utilisation of sewage for improved methane production, especially for substrates with lignin that are difficult to degrade.
Collapse
Affiliation(s)
- T G Induchoodan
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Nimitha Choran
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
6
|
Uchimiya M, DeRito CM, Sevigny JL, Hay AG. Meta-analysis of ecological and phylogenetic biomass maturity metrics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:548-556. [PMID: 39461190 DOI: 10.1016/j.wasman.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Although a wide variety of biomass sources have been subjected to 16S rRNA gene sequencing, ecological and phylogenetic signatures of maturity have not been identified quantitatively. In this meta-analysis we reanalyzed data from the only published study with publicly available 16S and temperature data (Zhou et al., 2018), and then applied the Zhou results to 705 samples from 13 additional studies. Using the Zhou data, we found that Faith's alpha diversity index correlated inversely with compost temperature and positively with maturity. We also noted a dramatic shift in the ratios of Bacilliota to Acidobacteriota, Planctomycetota, and Pseudomonadota, as samples cooled below 44 °C (p < 0.001). A negative correlation between Bacillota and Pseudomonadota was also observed in all 705 samples that included compost, sugarcane mill mud, anerobic digestates, and vermicompost. Even in the absence of temperature data for the majority of samples, our meta-analysis shows that microbiomes of diverse residuals converged on similar communities that resemble those of soil, regardless of the starting material or residual management process. We propose that approximately < 0.4 log(Bacillota:Pseudomonadota) and > 43 Faith's phylogenetic diversity indices are indicative of maturity of diverse biomass materials destined for land application.
Collapse
Affiliation(s)
- Minori Uchimiya
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA, United States.
| | | | - Joseph L Sevigny
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, United States
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Baransi-Karkaby K, Yanuka-Golub K, Hassanin M, Massalha N, Sabbah I. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects. Biotechnol Bioeng 2024; 121:3471-3483. [PMID: 39036861 DOI: 10.1002/bit.28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.
Collapse
Affiliation(s)
- Katie Baransi-Karkaby
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Keren Yanuka-Golub
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Mahdi Hassanin
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
8
|
Wang X, Huang S, Wang S, Chen S, Dong S, Zhu Y. Effect of D-limonene on volatile fatty acids production from anaerobic fermentation of waste activated sludge under pH regulation: performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122828. [PMID: 39383742 DOI: 10.1016/j.jenvman.2024.122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
D-limonene extracted from citrus peels possesses an inhibitory effect on methanogenic archaea. This study is aimed to bridge the research gap on the influence of D-limonene on volatile fatty acids (VFA) production from waste activated sludge (WAS) and to address the low VFA yield in standalone anaerobic fermentation of WAS. When the initial pH was not controlled, 1.00 g/g TSS D-limonene resulted in a VFA accumulation of 1175.45 ± 101.36 mg/L (174.45 ± 8.13 mgCOD/gVS). When the initial pH was controlled at 10 and the D-limonene concentration was 0.50 g/g TSS, the VFA accumulation reached 2707.44 ± 183.65 mg/L (445.51 ± 17.10 mgCOD/gVS). The pH-regulated D-limonene treatment enhanced solubilization and acidification, slightly inhibited hydrolysis, and significantly suppressed methanogenesis. D-limonene under alkaline conditions can increase the relative abundance of Clostridium_sensu_stricto, significantly enhancing acidification. Moreover, it markedly inhibited methanogenesis by particularly reducing the relative abundance of Methanothrix that was responsible for acetate consumption, thus favoring the accumulation of VFA. The research reveals the potential mechanism of pH regulation and D-limonene on anaerobic fermentation acid production, providing a theoretical basis for improving the acid production performance of the anaerobic fermentation of WAS.
Collapse
Affiliation(s)
- Xinyun Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shifa Huang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shihao Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Siyuan Chen
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shanyan Dong
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China.
| | - Yichun Zhu
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China
| |
Collapse
|
9
|
Zhao Z, Zheng X, Yang S, He H, Han Z, Li W, Lin T, Xu H. Influence of perfluorooctanoic acid on alkaline anaerobic fermentation of waste activated sludge: Perspective from volatile fatty acids production and sludge reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122581. [PMID: 39303591 DOI: 10.1016/j.jenvman.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Alkaline anaerobic fermentation is an effective approach for resource utilization and reduction of waste activated sludge (WAS). Perfluorooctanoic acid (PFOA) is widespread in WAS, however, its potential impact on alkaline anaerobic fermentation of WAS remains largely unknown. Hence, this study focused on investigating the influence of PFOA on volatile fatty acids (VFAs) production and sludge reduction during alkaline anaerobic fermentation (pH = 10 ± 0.1), as well as the critical mechanisms. Results demonstrated that low PFOA concentration (5 mg/kg-TS) raised VFAs yield to 109.37%, while high levels of PFOA (25 and 50 mg/kg-TS) remarkably decreased VFAs production to 89.55% and 80.44% of the control. Mechanism exploration revealed that PFOA facilitated the solubilization process, and low PFOA level enhanced the accumulation of VFAs via increased bioavailable substrates and the activities of enzymes and microorganisms. On the contrary, high levels of PFOA were substantial biotoxicity, inducing excessive ROS production, causing oxidative damage, and reducing enzyme activity and functional microbial abundance, thereby decreasing VFAs production. Additionally, further analysis of sludge physicochemical properties confirmed that the effect of PFOA on WAS reduction exhibited the same trend as VFAs production. This work provides a basis for PFOA environmental risk assessment and WAS resource utilization.
Collapse
Affiliation(s)
- Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | | | - Haidong He
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenfei Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Ma M, Ma S, Zeng D, Huang X, Zeng Y, Zhu G, Chen L. Temperature-dependent microbial mechanism and accumulation of volatile fatty acids in primary sludge pretreated with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2024; 408:131201. [PMID: 39097236 DOI: 10.1016/j.biortech.2024.131201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.
Collapse
Affiliation(s)
- Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Silan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yuanxin Zeng
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Gaoming Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lixin Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
11
|
Pozzi E, Motteran F, de Mello BS, Rodrigues BCG, Sarti A. Biomass Profiling in a Horizontal-Flow Anaerobic Bioreactor Used for Limonene Degradation. Curr Microbiol 2024; 81:323. [PMID: 39179725 DOI: 10.1007/s00284-024-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
This study characterized the microbial community present in the bench scale horizontal-flow anaerobic immobilized biomass bioreactor (HAIB) used in the removal of limonene, a compound present in citrus processing industries. The HAIB was filled with three support materials (coal, polyurethane foam and gravel) which were inoculated with anaerobic sludge. The limonene initial concentration on the substrate ranged from 10 mg/L to 500 mg/L. The analysis of 16S rRNA showed the presence of 22 OTUs (based on ⩾97% sequence identity), distributed in 57 genera, considering three different matrices. Higher relative abundance of phyla was observed as Synergistetes (43-57%), Proteobacteria (32-42%), Firmicutes (7-8%) and Acidobacteria (2-3%). Actinobacteria, Bacterioidetes and Chloroflexi had the lowest relative abundances between 1 and 2%. Synergistaceae family was the predominated group (47.6%-mineral coal, 55.9%-foam and 43.5%-gravel) followed by Syntrophaceae (2.4%-coal, 1.5%-foam and 2.2%-gravel), which kept a syntrophic relationship with methanogenesis (hydrogenotrophic methanogens) to maintain the anaerobic digestion. Among the Proteobacteria phylum, the Pseudomonadaceae family was predominant in the system with 12.0% on coal, 13.1% on foam, and 20.4% on gravel. The metabolic versatility of Pseudomonas sp. makes them an important bioremediation agent by being capable of metabolizing xenobiotic and chemical toxic compounds, thus having great prominence for the limonene removal in the HAIB bioreactor.
Collapse
Affiliation(s)
- Eloisa Pozzi
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), São Carlos, SP, Brazil
| | - Fabricio Motteran
- Environmental Sanitation Laboratory and Molecular Biology and Environmental Technology Laboratory (LSA/LABIOTA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Bruna Sampaio de Mello
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Brenda Clara Gomes Rodrigues
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Arnaldo Sarti
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil.
- Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Otto P, Puchol-Royo R, Ortega-Legarreta A, Tanner K, Tideman J, de Vries SJ, Pascual J, Porcar M, Latorre-Pérez A, Abendroth C. Multivariate comparison of taxonomic, chemical and operational data from 80 different full-scale anaerobic digester-related systems. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:84. [PMID: 38902807 PMCID: PMC11191226 DOI: 10.1186/s13068-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.
Collapse
Affiliation(s)
- Pascal Otto
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| | - Roser Puchol-Royo
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Asier Ortega-Legarreta
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Kristie Tanner
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, (University of Valencia - CSIC), Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Christian Abendroth
- Chair of Circular Economy, Brandenburgische Technische Universität Cottbus-Senftenberg, Lehrgebäude 4A R2.25, Siemens-Halske-Ring 8, 03046, Cottbus, Germany.
| |
Collapse
|
13
|
Lv L, Chen J, Wei Z, Hao P, Wang P, Liu X, Gao W, Sun L, Liang J, Ren Z, Zhang G, Li W. A new strategy for accelerating recovery of anaerobic granular sludge after low-temperature shock: In situ regulation of quorum sensing microorganisms embedded in polyvinyl alcohol sodium alginate. BIORESOURCE TECHNOLOGY 2024; 401:130709. [PMID: 38636877 DOI: 10.1016/j.biortech.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Ziyin Wei
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Peng Hao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
14
|
Parsy A, Ficara E, Mezzanotte V, Guerreschi A, Guyoneaud R, Monlau F, Sambusiti C. Incorporating saline microalgae biomass in anaerobic digester treating sewage sludge: Impact on performance and microbial populations. BIORESOURCE TECHNOLOGY 2024; 397:130444. [PMID: 38360220 DOI: 10.1016/j.biortech.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to acclimate anaerobic prokaryotes to saline microalgae biomass. Semi-continuous experiments were conducted using two 1.5 L mesophilic reactors for 10 weeks, (hydraulic retention time of 21 days). The first reactor was solely fed with sewage sludge (control), while the second received a mixture of sewage sludge and microalgal biomass (80/20 %w/w) cultivated at 70 g·L-1 salinity. The in-reactor salinity reached after the acclimation phase was 14 g·L-1. Biomethane production was comparable between the control and acclimated reactors (205 ± 29 NmLMethane·gVolatileSolids-1). Salinity tolerance assessment of methanogenic archaea revealed that salinity causing 50% inhibition of methane production increased from 10 to 27 g·L-1 after acclimation. Microbial diversity analyses revealed notable changes in methanogenic archaea populations during co-digestion of saline microalgae biomass, particularly methylotrophic (+27%) and acetotrophic (-26%) methanogens. This study has highlighted the possibility of treating efficiently saline microalgae in co-digestion with sewage sludge in future industrial biogas plants.
Collapse
Affiliation(s)
- Aurélien Parsy
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France; TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Valeria Mezzanotte
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - Arianna Guerreschi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France
| | - Florian Monlau
- TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | | |
Collapse
|
15
|
Wang X, Gong Y, Sun C, Wang Z, Sun Y, Yu Q, Zhang Y. New insights into inhibition of high Fe(III) content on anaerobic digestion of waste-activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170147. [PMID: 38242486 DOI: 10.1016/j.scitotenv.2024.170147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The impacts of the increased iron in the waste-activated sludge (WAS) on its anaerobic digestion were investigated. It was found that low Fe(III) content (< 750 mg/L) promoted WAS anaerobic digestion, while the continual increase of Fe(III) inhibited CH4 production and total chemical oxygen demand (TCOD) removal. As the Fe(III) content increased to 1470 mg/L, methane production has been slightly inhibited about 5 % compared with the group containing 35 mg/L Fe(III). Particularly, as Fe(III) concentration was up to 2900 mg/L, CH4 production, and TCOD removal decreased by 43.6 % and 37.5 %, respectively, compared with the group with 35 mg/L Fe(III). Furthermore, the percentage of CO2 of the group with 2900 mg/L Fe(III) decreased by 52.8 % compared with the group containing 35 mg/L Fe(III). It indicated that Fe(II) generated by the dissimilatory iron reduction might cause CO2 consumption, which was confirmed by X-ray diffraction that siderite (FeCO3) was generated in the group with 2900 mg/L Fe(III). Further study revealed that Fe(III) promoted the WAS solubilization and hydrolysis, but inhibited acidification and methane production. The methanogenesis test with H2/CO2 as a substrate showed that CO2 consumption weakened hydrogenotrophic methanogenesis and then increased H2 partial pressure, further causing VFA accumulation. Microbial community analysis indicated that the abundance of hydrogen-utilizing methanogens decreased with the high Fe(III) content. Our study suggested that the increase of Fe(III) in sludge might inhibit methanogenesis by consuming or precipitating CO2. To achieve maximum bioenergy conversion, the iron content should be controlled to lower than 750 mg/L. The study may provide new insights into the mechanistic understanding of the inhibition of high Fe(III) content on the anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Cheng Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Zhenxin Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Ye Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| | - Yaobin Zhang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| |
Collapse
|
16
|
Jiang Q, Feng L, Luo J, Wu Y, Dong H, Mustafa AM, Su Y, Zhao Y, Chen Y. Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. BIORESOURCE TECHNOLOGY 2024; 395:130367. [PMID: 38266788 DOI: 10.1016/j.biortech.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.
Collapse
Affiliation(s)
- Qingyang Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, School of Medicine, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Tang T, Wang Y, Zhao X. New insights into antibiotic stimulation of methane production during anaerobic digestion. CHEMOSPHERE 2024; 349:140785. [PMID: 38016524 DOI: 10.1016/j.chemosphere.2023.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Residual antibiotics in swine wastewater pose a critical challenge for stable anaerobic digestion (AD). This study offers fresh insights into the anaerobic treatment of swine wastewater. The results showed that the presence of three typical antibiotics (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) in swine wastewater could promote methane production by stimulating the production and conversion of ethanol. Among them, SMX exhibited the strongest methane promotion effect, with the cumulative methane production increasing from 138.47 to 2204.19 mL/g VS. According to the microbial community structure, antibiotics could promote the growth of Corynebacterium, Lutispora and hydrogenotrophic methanogens (Methanosassiliicoccus, Methanobrevibacter, and Methanobacterium), but inhibit the enrichment of acetoclastic methanogen (Methanosaeta). The relative abundance of Methanosaeta decreased from 2.93-19.80% to 0.52-2.58% under antibiotic stress. Furthermore, there were significant differences in the influence of different antibiotic types on methanogenic pathways. Specifically, OTC and CIP promoted the acetoclastic and hydrogenotrophic pathways, respectively, to enhance methane production. However, SMX could promote both acetoclastic and hydrogenotrophic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| | - Yin Wang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China.
| | - Xiaolong Zhao
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| |
Collapse
|
18
|
Illarze G, del Pino A, Irisarri P. Differences in Bacterial Communities and Pathogen Indicators of Raw and Lagoon-Stabilized Farm Dairy Effluents. Microorganisms 2024; 12:305. [PMID: 38399709 PMCID: PMC10893489 DOI: 10.3390/microorganisms12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
One practice for handling farm dairy effluent (DE) comprises recycling them to the soil with the challenge of balancing the tradeoff associated with environmental pollution through nutrient and microorganism loading. This study investigated seasonal bacterial community composition, diversity, abundance, and pathogenic indicators in untreated (Raw) and lagoon-stabilized (Lagoon) DE. The correlation between bacterial profiles and DE physicochemical characteristics was also analyzed. Pathogen-indicator bacteria were studied by enumerating viable counts and the bacterial community structure by 16S rRNA gene sequence analysis. Lagoon storage effectively reduced total solids (64%), suspended solids (77%), organic carbon (40%), and total nitrogen (82%), along with total coliforms, Escherichia coli, and enterococci. However, this efficiency was compromised in winter. Lagoon and Raw sample bacterial communities presented different compositions, with several environmental variables correlating to microbial community differences. Lagoon-treated DE exhibited the most diverse bacterial community, dominated by Firmicutes (40%), Proteobacteria (30%), and Bacteroidota (7.6%), whereas raw DE was mainly composed of Firmicutes (76%). Regardless of the season, dominant genera included Trichococcus, Romboutsia, Corynebacterium, and Paeniclostridium. Overall, the study emphasizes the importance of lagoon treatment for DE stabilization, showcasing its role in altering bacterial community composition and mitigating environmental risks associated with pathogens and nutrients, particularly in summer.
Collapse
Affiliation(s)
- Gabriela Illarze
- Laboratorio de Microbiología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay;
| | - Amabelia del Pino
- Departamento de Suelos y Aguas, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay;
| | - Pilar Irisarri
- Laboratorio de Microbiología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay;
| |
Collapse
|
19
|
Zhang B, Tang X, Xu Q, Fan C, Gao Y, Li S, Wang M, Li C. Anionic polyacrylamide alleviates cadmium inhibition on anaerobic digestion of waste activated sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100306. [PMID: 37701857 PMCID: PMC10494310 DOI: 10.1016/j.ese.2023.100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023]
Abstract
The uncontrolled discharge of industrial wastewater leads to a significant cadmium (Cd) accumulation in waste activated sludge (WAS), posing a serious threat to the steady operation of the anaerobic digestion (AD) system in wastewater treatment plants (WWTPs). Therefore, developing a viable approach to cope with the adverse effects of high-concentration Cd on the AD system is urgently required. This study aims to investigate the potential of using anionic polyacrylamide (APAM), a commonly used agent in WWTPs, to mitigate the adverse effects of Cd in a toxic amount (i.e., 5.0 mg per g total suspended solids (TSS)) on AD of WAS. The results showed that the effectiveness of higher APAM on Cd toxicity alleviation was less than that of lower APAM at the studied level (i.e., the effectiveness order was 1.5 mg APAM per g TSS > 3.0 mg APAM per g TSS > 6.0 mg APAM per g TSS). The moderate supplement of APAM (i.e., 1.5 mg per g TSS) recovered the accumulative methane yield from 190.5 ± 3.6 to 228.9 ± 4.1 mL per g volatile solids by promoting solubilization, hydrolysis, and acidification processes related to methane production. The application of APAM also increased the abundance of key microbes in the AD system, especially Methanolinea among methanogens and Caldilineaceae among hydrolyzers. Furthermore, APAM facilitated the key enzyme activities involved in AD processes and reduced reactive oxygen species (induced by Cd) production via adsorption/enmeshment of Cd by APAM. These findings demonstrate the feasibility of using moderate APAM to mitigate Cd toxicity during AD, providing a promising solution for controlling Cd or other heavy metal toxicity in WWTPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuying Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
- College of Mechanical & Electrical Engineering, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
20
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
21
|
Wang J, Shan S, Li D, Zhang Z, Ma Q. Long-term influence of chloroxylenol on anaerobic microbial community: Performance, microbial interaction, and antibiotic resistance gene behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165330. [PMID: 37419339 DOI: 10.1016/j.scitotenv.2023.165330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The use of antibacterial and disinfection products is increasing in recent years. Para-chloro-meta-xylenol (PCMX), a widely used antimicrobial agent, has been detected in various environments. Herein, the impacts of PCMX with long-term exposure on anaerobic sequencing batch reactors were investigated. The high concentration (50 mg/L, GH group) PCMX severely inhibited the nutrient removal process, and the low concentration group (0.5 mg/L, GL group) slightly affected the removal efficiency which was recovered after 120 days of adaptation compared to the control group (0 mg/L, GC group). Cell viability tests indicated that PCMX inactivated the microbes. A significant reduction in bacterial α-diversity was observed in the GH but not the GL group. The microbial communities were shifted upon PCMX exposure, among which Olsenella, Novosphingobium, and Saccharibacteria genera incertae Sedis became the predominant genera in the GH groups. Network analyses showed that PCMX significantly reduced the complexity and interactions of the microbial communities, consistent with the negative impacts on bioreactor performance. Real-time PCR analysis indicated that PCMX affected the behavior of antibiotic resistance genes (ARGs), and the relationship between ARGs and bacterial genera gradually became complicated after long-term exposure. Most detected ARGs decreased on Day 60 but increased on Day 120 especially in the GL group, implying the potential risk of environment-relevant concentration of PCMX in the ecosystems. This study provides new insights into the understanding of the impacts and risks of PCMX on wastewater treatment processes.
Collapse
Affiliation(s)
- Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuang Shan
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Da Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
22
|
Li W, Zhu L, Wu B, Liu Y, Li J, Xu L, Huangfu X, Shi D, Gu L, Chen C. Improving mesophilic anaerobic digestion of food waste by side-stream thermophilic reactor: Activation of methanogenic, key enzymes and metabolism. WATER RESEARCH 2023; 241:120167. [PMID: 37290195 DOI: 10.1016/j.watres.2023.120167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability. It quickly adapted to thermal stimulation and increased the specific methane production from 359 mL CH4/g·VS to 439 mL CH4/g·VS, which was also higher than 317 mL CH4/g·VS from single-stage thermophilic anaerobic digestion. Further exploration of the mechanism of STA using metagenomic and metaproteomic analysis revealed enhanced activity of key enzymes. The main metabolic pathway was up-regulated, while the dominant bacteria were concentrated, and the multifunctional Methanosarcina was enriched. These results indicate that STA optimized organic metabolism patterns, comprehensively promoted methane production pathways, and formed various energy conservation mechanisms. Further, the system's limited heating avoided adverse effects from thermal stimulation, and activated enzyme activity and heat shock proteins through circulating slurries, which improved the metabolic process, showing great application potential.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lirong Zhu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
23
|
Zheng X, Zhou W, Min B, Zhou Y, Xie L. Impact of carbon monoxide on performance and microbial community of extreme-thermophilic hydrogenotrophic methanation in horizontal rotary bioreactor. BIORESOURCE TECHNOLOGY 2023:129248. [PMID: 37247793 DOI: 10.1016/j.biortech.2023.129248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
A novel horizontal rotary bioreactor was developed for upgrading biogas from coke oven gas at extreme-thermophilic condition. The introduction of CO decreased the outlet methane content from 80% to 50% due to insufficient H2. This hindrance was overcome by increasing the proportion of incoming hydrogen, coupled with a prolonged gas retention time from 24 to 72 h, leading to a restoration of methane content to 91.6%. Notably, CO and CO2 exhibited a competitive relationship to hydrogen, which was determined by their contents. The substitution of Methanothermobacter for Methanobacterium as the dominant genus was observed at 70°C, with relative abundance exceeding 98%. Incorporation of CO increased bacteria diversity and fostered a syntrophic relationship between the bacterial community and M. thermautotrophicus. This study provides both theoretical basis and practical support for biogas upgrading from coke oven gas using a biofilm reactor, thus aiding its future industrialization prospects.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjing Zhou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bolin Min
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuanyuan Zhou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Chengdu institute of planning&design, Chengdu, 610000, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Li R, Lu H, Fu Z, Wang X, Li Q, Zhou J. Effect of riboflavin and carbon black co-modified fillers coupled with alkaline pretreatment on anaerobic digestion of waste activated sludge. ENVIRONMENTAL RESEARCH 2023; 224:115531. [PMID: 36822537 DOI: 10.1016/j.envres.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/29/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Additional various carbon and free riboflavin could improve anaerobic digestion of waste activated sludge (WAS). However, these substances were not reused. In this study, a reusable riboflavin and carbon black (RCB) co-modified filler was developed and combined with alkaline pretreatment for enhancing the production of volatile fatty acids (VFAs) and methane during anaerobic digestion of WAS. The results showed that RCB-modified fillers exhibited a promoting effect on the reduction of alkali-pretreated WAS. The amounts of the accumulated VFAs mainly containing acetate and the produced methane rose with the increased concentration of immobilized riboflavin (0-0.75 g/L) in the presence of 4 g/L carbon black. When the alkaline pretreatment time of WAS increased from 3 d to 8 d, the amount of methane production increased from 22.8% to 63.9% in the presence of 0.75 g/L riboflavin and 4 g/L carbon black compared with that without RCB-modified fillers. Moreover, 0.75 g/L riboflavin and 4 g/L carbon black had a synergetic effect on promoting methane production via broadening extracellular electron transfer pathways. During this process, microbial dehydrogenase activity, electron transport system activity and coenzyme F420 were enhanced. Microbial community analysis showed that RCB-modified filler addition promoted the enrichment of Syntrophomonas and Pseudomonas involved in direct interspecies electron transfer (DIET). These results indicated that DIET establishment was accelerated. Meanwhile, the populations of acetic acid-producing bacteria including Rikenellaceae_RC9_gut_group and Proteiniphilum, aceticlastic and acid-tolerant methanogenic archaea including Methanosarcina and Methanosaeta, RumEn_M2 were increased. These results indicate that RCB-modified fillers coupled with alkaline pretreatment is an effective method to promote the production of methane during anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Ruobing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Su R, Zhou L, Ding L, Fu B, Fu H, Shuang Y, Ye L, Hu H, Ma H, Ren H. How anaerobic sludge microbiome respond to different concentrations of nitrite, nitrate, and ammonium ions: a comparative analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49026-49037. [PMID: 36763271 DOI: 10.1007/s11356-023-25704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
High concentrations of ammonium, nitrite, and nitrate always induce inhibition in anaerobic wastewater treatment. Due to the complexity and vulnerability of the microbial community (especially methanogens) in anaerobic sludge, little is understood about its underlying microbial mechanism under such inhibition. In this study, the shifts of microbial communities in anaerobic sludge under increasing levels of nitrite, nitrate, and ammonium ions were compared. Results show that although half maximal inhibitory concentrations (methanogenesis) were different for nitrite, nitrate, and ammonium ions with EC50 values of 12, 30, and 3000 mg N/L, respectively, bacteria genera Kosmotoga and Brooklawnia dominated in all of the three high-stress inhibitory systems. Network analysis and redundancy analysis (RDA) of the microbial community showed the treatments with nitrate and nitrite ions decreased the modularity of anaerobic microorganisms. RDA showed that specific methanogenic activity was positively related to coenzyme F420 under nitrite inhibition (rp = 0.833, p < 0.05) and closely correlated with viability under nitrate inhibition. Gram-positive and nonmotile Brooklawnia genus showed a negative correlation with physiological characteristics in the ammonia treatments, suggesting its high resistance to ammonia.
Collapse
Affiliation(s)
- Runhua Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lina Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Huimin Fu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yanan Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|
27
|
Azarmanesh R, Qaretapeh MZ, Zonoozi MH, Ghiasinejad H, Zhang Y. Anaerobic co-digestion of sewage sludge with other organic wastes: a comprehensive review focusing on selection criteria, operational conditions, and microbiology. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
28
|
Elucidating interactive effects of sulfidated nanoscale zero-valent iron and ammonia on anaerobic digestion of food waste. J Biosci Bioeng 2023; 135:63-70. [PMID: 36336573 DOI: 10.1016/j.jbiosc.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
In our previous study, anaerobic digestion of food waste could be effectively enhanced by adding sulfidated nanoscale zero-valent iron (S-nZVI) under high-strength ammonia concentrations. In this study, in order to further elucidate the specific interactive effects of S-nZVI and ammonia on anaerobic digestion of nitrogen-rich food waste, the methanogenic performance of anaerobic digestion systems respectively added with nanoscale zero-valent iron (nZVI) and S-nZVI were compared and monitored under different ammonia stress conditions. Both nZVI and S-nZVI could effectively stimulate the methanogenesis process among ammonia concentrations ranging from 0 to 3500 mg/L. However, the enhancing effects of S-nZVI and nZVI on anaerobic digestion of food waste were different, in which anaerobic digestion systems added with S-nZVI and nZVI performed best under 2500 mg/L of ammonia and 1500 mg/L of ammonia, respectively. Furthermore, the analysis of microbial communities suggested that ammonia stress enriched acetoclastic methanogens, while adding nZVI and S-nZVI into anaerobic digestions stimulated the process of hydrogenotrophic methanogenesis. Moreover, S-nZVI performed better in promoting the evolution of DIET-related microorganisms than nZVI, resulting in enhanced methane production under high ammonia-stressed conditions. This work provided fundamental knowledge about the interactive effects of S-nZVI and ammonia on the anaerobic digestion of food waste.
Collapse
|
29
|
Cazaudehore G, Guyoneaud R, Lallement A, Gassie C, Monlau F. Biochemical methane potential and active microbial communities during anaerobic digestion of biodegradable plastics at different inoculum-substrate ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116369. [PMID: 36202034 DOI: 10.1016/j.jenvman.2022.116369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The influence of the inoculum-substrate ratio (ISR) on the mesophilic and thermophilic biochemical methane potential test of two biodegradable plastics was evaluated. Poly(lactic acid) (PLA) and polyhydroxybutyrate (PHB) were selected for this study, the first for being recalcitrant to mesophilic anaerobic digestion (AD) and the second, by contrast, for being readily biodegradable. Several ISRs, calculated on the basis of volatile solids (VS), were tested: 1, 2, 2.85, 4, and 10 g(VS of inoculum).g(VS of substrate)-1. A high ISR was associated with an enhanced methane production rate (i.e., biodegradation kinetics). However, the ultimate methane production did not change, except when inhibition was observed. Indeed, applying the lowest ISR to readily biodegradable plastics such as PHB resulted in inhibition of methane production. Based on these experiments, in order to have reproducible degradation kinetics and optimal methane production, an ISR between 2.85 and 4 is recommended for biodegradable plastics. The active microbial communities were analyzed, and the active bacteria differed depending on the plastic digested (PLA versus PHB) and the temperature of the process (mesophilic versus thermophilic). Previously identified PHB degraders (Ilyobacter delafieldii and Enterobacter) were detected in PHB-fed reactors. Thermogutta and Tepidanaerobacter were detected during the thermophilic AD of PLA, and they are probably involved in PLA hydrolysis and lactate conversion, respectively.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, 64121 Montardon, France; Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France.
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| | - A Lallement
- APESA, Pôle Valorisation, 64121 Montardon, France
| | - C Gassie
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| | - F Monlau
- APESA, Pôle Valorisation, 64121 Montardon, France
| |
Collapse
|
30
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
31
|
Feng L, Lin X, Li X. Combined anaerobic digestion of chicken manure and corn straw: study on methanogenic potential and microbial diversity. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Purpose
To explore the methane production potential and microbial community changes of combined anaerobic digestion of chicken manure and corn straw. Increase methane production, reduce the environmental pollution caused by the burning of livestock manure and straw, and provide some theoretical references for the construction and operation of actual biogas projects.
Methods
Different proportions (3%, 5%, 10%) of corn straw were added to the anaerobic digestion systems of chicken manure in order to improve the C/N ratio and to evaluate the feasibility and potential synergistic effect on the co-digestion. The key point was to use 16S rDNA sequencing to analyze the relationship between the microbial diversity and the hydrolase activity during the anaerobic digestion.
Result
The results showed that the volumetric gas production of methane in the 3% straw addition group was 227.66 ml/gVS, which was 18% higher than the cumulative methane production in the pure chicken manure experimental group. However, with the increase of straw concentration, methane production and the utilization rate of the raw materials continued to decrease. The change in activity of each hydrolase was in agreement with changes in hydrolytic acidifying bacteria, and the activity of the main hydrolase also increased with the addition of straw; the correlation coefficient was 0.9943. Sequencing results showed that the dominant strains of methanogenic archaea were Methanosarcina, Methanosaeta, Methanobacterium, and Methanospirillum. Mainly for hydrogen-eating, acetic acid-eating methanogens, its role is to use H2, methanol and acetic acid, and other substances to metabolize methane, and convert it into CH4 and CO2.
Conclusion
The addition of a small amount of straw enhanced the production capacity of hydrogen-nutritive methane to some extent, and the species richness and evenness were also improved, reducing the pollution caused by livestock manure to the environment while controlling the pollution caused by straw burning.
Graphical Abstract
Collapse
|
32
|
Tian M, Liu F, Guo J, Li W, Zhang M, Li X. Effect of Different Acid and Base Potassium Ferrate Pretreatment on Organic Acid Recovery by Anaerobic Digestion of Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15093. [PMID: 36429813 PMCID: PMC9689993 DOI: 10.3390/ijerph192215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Potassium ferrate has strong oxidation in both acid and alkali environments, which has attracted extensive attention. However, the impact of the pH environment on this coupling process with the goal of resource recovery has not received attention. Under the goal of the efficient recovery of organic acid, the changes of solid-liquid characteristics of sludge after acid and alkaline ferrate pretreatment and during anaerobic digestion were discussed. The results showed that compared with blank control groups, after alkaline ferrate pretreatment, the volatile suspended solids (VSSs) decreased the most, reaching 28.19%. After being pretreated with alkaline ferrate, the sludge showed the maximum VFA accumulation (408.21 COD/g VSS) on the third day of digestion, which was 1.34 times higher than that of the acid ferrate pretreatment. Especially in an alkaline environment, there is no need to add additional alkaline substances to adjust the pH value, and the effect of sludge reduction and acid production is the best.
Collapse
Affiliation(s)
- Mengjia Tian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiawen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
33
|
Yin J, Li J, Qiu X, Zhou Y, Wang M, Feng H, Li Y, Chen X, Chen T. Effect of magnetite particle size on propionate degradation in the propionate-based anaerobic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157592. [PMID: 35901882 DOI: 10.1016/j.scitotenv.2022.157592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The size effect of magnetite (Fe3O4) on the degradation of propionate (PA) in the PA-based anaerobic system was investigated. The sequential bench-scale experiments were conducted. Results showed that the effects of different sized magnetite particles on PA degradation varied, and reaction cycles also played a role in substrate removal/degradation. With the increase of reaction cycle, nano-magnetite promoted PA degradation and CH4 production, which caused faster PA degradation rate (0.997 g/L·d) than the control group (CK) without magnetite (0.834 g/L·d), whereas the groups with micron- and millimeter-sized magnetite had slower PA degradation rates (0.746 and 0.636 g/L·d) than CK group. The particle size or surface characteristics of the magnetite may become the main factor determining the PA degradation rate. Furthermore, the analysis of PA conversion and volatile fatty acids (VFAs) distribution showed the C6-dismutation pathway, which converses PA to butyrate, enhanced by the introduction of magnetite. Microbial community analysis showed that PA was degraded mainly by methyl-malonyl-CoA (MMC) pathway. The relative abundance of Syntrophobacter that catalyze MMC pathway in the group with nano-magnetite were much higher after three reaction cycles at 39 %, as compared to micro-magnetite at 28 %, and millimeter-sized magnetite at 27 %, which contributed to faster degradation of PA. Functional enzyme-encoding genes for the four methanogenesis pathways were identified with reference to KEGG database entries. The methanogenesis pathway using acetate was the most abundant pathway in all groups. The observations have important implications for enhancing the PA removal in PA-inhibited anaerobic digester.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Junrou Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiaopeng Qiu
- Huadong Engineering Corporation Limited of Power China, Hangzhou 311122, PR China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yangyang Li
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Xin Chen
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
34
|
Yang CX, He ZW, Liu WZ, Wang AJ, Wang L, Liu J, Liu BL, Ren NQ, Yu SP, Guo ZC. Chronic effects of benzalkonium chlorides on short chain fatty acids and methane production in semi-continuous anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157619. [PMID: 35901877 DOI: 10.1016/j.scitotenv.2022.157619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As an emerging pollutant, benzalkonium chlorides (BACs) potentially enriched in waste activated sludge (WAS). However, the microbial response mechanism under chronic effects of BACs on acidogenesis and methanogenesis in anaerobic digestion (AD) has not been clearly disclosed. This study investigated the AD (by-)products and microbial evolution under low to high BACs concentrations from bioreactor startup to steady running. It was found that BACs can lead to an increase of WAS hydrolysis and fermentation, but a disturbance to acidogenic bacteria also occurred at low BACs concentration. A noticeable inhibition to methanogenesis occurred when BAC concentration was up to 15 mg/g TSS. Metagenomic analysis revealed the key genes involved in acetic acid (HAc) biosynthesis (i.e. phosphate acetyltransferase, PTA), β-oxidation pathway (acetyl-CoA C-acetyltransferase) and propionic acid (HPr) conversion was slightly promoted compared with control. Furthermore, BACs inhibited the acetotrophic methanogenesis (i.e. acetyl-CoA synthetase), especially BAC concentration was up to 15 mg/g TSS, thereby enhanced short chain fatty acids (SCFAs) accumulation. Overall, chronic stimulation of functional microorganisms with increasing concentrations of BACs impact WAS fermentation.
Collapse
Affiliation(s)
- Chun-Xue Yang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhang-Wei He
- Shanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ling Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jia Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Bao-Ling Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Nan-Qi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shao-Peng Yu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
35
|
Li Y, Zhong W, Ning Z, Feng J, Niu J, Li Z. Effect of biochar on antibiotic resistance genes in the anaerobic digestion system of antibiotic mycelial dreg. BIORESOURCE TECHNOLOGY 2022; 364:128052. [PMID: 36191748 DOI: 10.1016/j.biortech.2022.128052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
To address the problem of antibiotic mycelial dreg (AMD) treatment and removal of antibiotic resistance genes (ARGs), this study adopted anaerobic digestion (AD) technology, and added biochar (BC) and biochar loaded with nanosized zero-valent iron (nZVI-BC) to promote the AD of AMD and enhance the removal of ARGs. Results showed that nZVI-BC was better than BC in promoting AD due to the hydrogen evolution corrosion and the synergistic effect of nZVI and BC. In addition, BC and nZVI-BC can enhance the oxidative stress response and reduce ammonia stress phenomenon, which significantly reduces the abundance of aadA, ant(2″)-Ⅰ, qacEdelta1 and sul1. In conclusion, the enhance effect of nZVI-BC is greater than BC. The removal efficiency rates of nZVI-BC on the above-mentioned four ARGs were improved by 33%, 9%, 24% and 11%.
Collapse
Affiliation(s)
- Yue Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Agricultural Planning and Engineering, Beijing 100125, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Zaixing Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
36
|
Sun M, Xiao K, Zhu Y, Ou B, Yu W, Liang S, Hou H, Yuan S, Gan F, Mi R, Yang J. Deciphering the role of microplastic size on anaerobic sludge digestion: Changes of dissolved organic matter, leaching compounds and microbial community. ENVIRONMENTAL RESEARCH 2022; 214:114032. [PMID: 35952741 DOI: 10.1016/j.envres.2022.114032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 μm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 μm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 μm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.
Collapse
Affiliation(s)
- Mei Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| | - Yuwei Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bei Ou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Fangmao Gan
- Yangtze Ecology and Environment Co. Ltd., 96 Xudong Street, Wuhan, Hubei, 430074, China
| | - Rongxi Mi
- Yangtze Ecology and Environment Co. Ltd., 96 Xudong Street, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
37
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
38
|
Wang L, Hu Z, Hu M, Zhao J, Zhou P, Zhang Y, Zheng X, Zhang Y, Hu ZT, Pan Z. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: A new degradation pathway of 4-chlorophenol in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127670. [PMID: 35878775 DOI: 10.1016/j.biortech.2022.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.
Collapse
Affiliation(s)
- Liang Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Peijie Zhou
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
39
|
Huang L, Li Z, Wang G, Han J, Hou Y, Zhang N. Composite hydrolytic acidification - aerobic MBBR process for treating traditional Chinese medicine wastewater. Biodegradation 2022; 33:509-528. [PMID: 35948760 DOI: 10.1007/s10532-022-09995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Traditional Chinese medicine (TCM) wastewater is characterized by high organic content, unstable water quality and quantity and low biodegradability. In this paper, the hydrolytic acidification reactor-aerobic moving bed biofilm (MBBR) process was used to degrade TCM wastewater. Besides, a small pilot study was conducted. The appropriate operating parameters: hydraulic retention time (HRT) of the hydrolytic reactor was 16 h, HRT of MBBR was 30 h, dissolved oxygen of MBBR was 6 mg/L, sludge return ratio of MBBR was 100%. The hydrolytic reactor was started for 25 days. MBBR was run in series with the hydrolytic reactor after 24 days of separate operation. The start-up of the composite reactor was completed after another 26 days. The average removal efficiencies of chemical oxygen demand and ammonia nitrogen were 92% and 70%. The hydrolytic reactor was effective in decomposing macromolecules and MBBR had a strong ability to degrade pollutants through the excitation-emission-matrix spectra. The evolution pattern of the dominant bacterial genera and the surface morphology of sludge were studied by scanning electron microscopy and high-throughput sequencing analysis. It could be seen that the surface morphology of the biological filler was suitable for the growth and reproduction of microorganisms.
Collapse
Affiliation(s)
- Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Zhe Li
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China.
| | - Jingfu Han
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yue Hou
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ning Zhang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| |
Collapse
|
40
|
Do TT, Nolan S, Hayes N, O'Flaherty V, Burgess C, Brennan F, Walsh F. Metagenomic and HT-qPCR analysis reveal the microbiome and resistome in pig slurry under storage, composting, and anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119271. [PMID: 35398400 DOI: 10.1016/j.envpol.2022.119271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Direct application of pig slurry to agricultural land, as a means of nutrient recycling, introduces pathogens, antibiotic resistant bacteria, or genes, to the environment. With global environmental sustainability policies mandating a reduction in synthetic fertilisation and a commitment to a circular economy it is imperative to find effective on-farm treatments of slurry that maximises its fertilisation value and minimises risk to health and the environment. We assessed and compared the effect of storage, composting, and anaerobic digestion (AD) on pig slurry microbiome, resistome and nutrient content. Shotgun metagenomic sequencing and HT-qPCR arrays were implemented to understand the dynamics across the treatments. Our results identified that each treatment methods have advantages and disadvantages in removal pollutants or increasing nutrients. The data suggests that storage and composting are optimal for the removal of human pathogens and anaerobic digestion for the reduction in antibiotic resistance (AMR) genes and mobile genetic elements. The nitrogen content is increased in storage and AD, while reduced in composting. Thus, depending on the requirement for increased or reduced nitrogen the optimum treatment varies. Combining the results indicates that composting provides the greatest gain by reducing risk to human health and the environment. Network analysis revealed reducing Proteobacteria and Bacteroidetes while increasing Firmicutes will reduce the AMR content. KEGG analysis identified no significant change in the pathways across all treatments. This novel study provides a data driven decision tree to determine the optimal treatment for best practice to minimise pathogen, AMR and excess or increasing nutrient transfer from slurry to environment.
Collapse
Affiliation(s)
- Thi Thuy Do
- Maynooth University, Biology Department, Ireland
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Science and Ryan Institute, Galway, Ireland
| | - Nicky Hayes
- Teagasc, Department of Environment, Soils and Landuse, Johnstown Castle, Wexford, Ireland
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Science and Ryan Institute, Galway, Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Fiona Brennan
- Teagasc, Department of Environment, Soils and Landuse, Johnstown Castle, Wexford, Ireland
| | - Fiona Walsh
- Maynooth University, Biology Department, Ireland.
| |
Collapse
|
41
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
42
|
Zhan Y, Cao X, Xiao Y, Wei X, Wu S, Zhu J. Start-up of co-digestion of poultry litter and wheat straw in anaerobic sequencing batch reactor by gradually increasing organic loading rate: Methane production and microbial community analysis. BIORESOURCE TECHNOLOGY 2022; 354:127232. [PMID: 35483532 DOI: 10.1016/j.biortech.2022.127232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 05/23/2023]
Abstract
Anaerobic co-digestion (ACoD) of poultry litter (PL) and wheat straw (WS) in an anaerobic sequencing batch reactor (ASBR) for continuous bio-energy generation was started up for the first time by gradually increasing the organic loading rate (OLR). A steady-state was reached with a daily biogas production of (13.06 ± 0.21) L and methane content of (54.38 ± 0.53) %. The subsequent regular operation achieved a daily methane yield of (100.41-188.65) mL CH4/g VS added and a total chemical oxygen demand (tCOD) removal rate of (70.3-85.9) % in the effluent under different operating parameters. The overall microbial community became more uniform, and the dominant aceticlastic methanogen of Methanosaeta was enriched after the start-up. While the microbial community was largely stable in the overall structure since the regular operation. Therefore, the start-up of the ACoD of PL and WS was successful with stable and continuous methane production.
Collapse
Affiliation(s)
- Yuanhang Zhan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Xiaoxia Cao
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Yiting Xiao
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xiaoyuan Wei
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
43
|
Luo J, Miao S, Koju R, Joshi TP, Liu R, Liu H, Qu J. Simultaneous removal of aromatic pollutants and nitrate at high concentrations by hypersaline denitrification:Long-term continuous experiments investigation. WATER RESEARCH 2022; 216:118292. [PMID: 35421667 DOI: 10.1016/j.watres.2022.118292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
If we can use toxic aromatic compounds as supplementary carbon source, the simultaneous removal of nitrate (NO3-) and aromatic compounds may be achieved at much lower chemical costs. This study uses the expanded granular sludge bed (EGSB) reactors to investigate the hypersaline (> 3%) denitrification performance, the removal of aromatic compounds, i.e., aniline, phenol, and their mixture, and the mechanisms involved in. The four reactors exhibit high removal efficiency of NO3- (> 92.8%) and aromatic compounds (> 73.9%) at 0-1200 mg/L of aromatic compounds. The formation of toxic intermediates such as catechol and azo dyes is revealed by gas chromatography mass spectrometry (GC-MS) with and without N,O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA) derivation, and their toxic effects lead to the lower cell survival ratios after exposing to phenol (64.2% ∼ 68.9%) than to aniline and mixture (72.7% ∼ 78.0%). The stable performance is associated with the more secretion of extracellular polymeric substances (EPS) and the adsorption of pollutants on EPS, and this was indicated from the higher fluorescence intensity in three-dimensional excitation-emission matrix (3D-EEM). Moreover, the Halomonas and Azoarcus show high abundance and play important roles in the removal of both NO3- and aromatic compounds. Besides, quantitative real time PCR (RT-qPCR) results demonstrate the key role of highly abundant nosZ and nirS genes in denitrification. The toxic organics in industrial wastewaters are potentially feasible carbon sources for denitrification even under high-salinity stress.
Collapse
Affiliation(s)
- Jing Luo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Shiyu Miao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rashmi Koju
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tista Prasai Joshi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Environment and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
44
|
Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Ni J, Ji J, Kubota K, Li YY. Sodium hypochlorite induced inhibition in anaerobic digestion and possible approach to maintain methane fermentation performance. BIORESOURCE TECHNOLOGY 2022; 352:127096. [PMID: 35367600 DOI: 10.1016/j.biortech.2022.127096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Since sodium hypochlorite (NaClO), a commonly used chemical to deal with membrane fouling, is toxic to microorganisms, it is a major concern in the membrane cleaning process. In this study, the concentration-dependent effects of NaClO (0-9 g/L) on the biodegradation performance and microbial activity were investigated via batch experiments. The methane production (obtained approximately 140 mL) and microbial community revealed by principal coordinates analysis were almost unaffected when the NaClO concentration ranged between 0 and 3 g/L. A follow-up batch experiment was conducted and revealed that the microbial products could help protect or recover the activity of anaerobic microorganisms at a high NaClO concentration of 10 g/L. Additionally, correlation analysis was used to investigate the associations between the 15 major bacterial genera. Moreover, the microbial analysis results indicated that the top 10 operational taxonomic units most affected by NaClO were primarily coryneform and filamentous bacteria.
Collapse
Affiliation(s)
- Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
46
|
Lopez JG, Wingreen NS. Noisy metabolism can promote microbial cross-feeding. eLife 2022; 11:70694. [PMID: 35380535 PMCID: PMC8983042 DOI: 10.7554/elife.70694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Cross-feeding, the exchange of nutrients between organisms, is ubiquitous in microbial communities. Despite its importance in natural and engineered microbial systems, our understanding of how inter-species cross-feeding arises is incomplete, with existing theories limited to specific scenarios. Here, we introduce a novel theory for the emergence of such cross-feeding, which we term noise-averaging cooperation (NAC). NAC is based on the idea that, due to their small size, bacteria are prone to noisy regulation of metabolism which limits their growth rate. To compensate, related bacteria can share metabolites with each other to ‘average out’ noise and improve their collective growth. According to the Black Queen Hypothesis, this metabolite sharing among kin, a form of ‘leakage’, then allows for the evolution of metabolic interdependencies among species including de novo speciation via gene deletions. We first characterize NAC in a simple ecological model of cell metabolism, showing that metabolite leakage can in principle substantially increase growth rate in a community context. Next, we develop a generalized framework for estimating the potential benefits of NAC among real bacteria. Using single-cell protein abundance data, we predict that bacteria suffer from substantial noise-driven growth inefficiencies, and may therefore benefit from NAC. We then discuss potential evolutionary pathways for the emergence of NAC. Finally, we review existing evidence for NAC and outline potential experimental approaches to detect NAC in microbial communities.
Collapse
Affiliation(s)
- Jaime G Lopez
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
47
|
Zhang Z, Xi H, Yu Y, Wu C, Yang Y, Guo Z, Zhou Y. Coupling of membrane-based bubbleless micro-aeration for 2,4-dinitrophenol degradation in a hydrolysis acidification reactor. WATER RESEARCH 2022; 212:118119. [PMID: 35114527 DOI: 10.1016/j.watres.2022.118119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Micro-aeration hydrolysis acidification (HA) is an effective method to enhance the removal of toxic and refractory organic matter, but the difficulty in stable dosing control of trace oxygen limits its wide application. Membrane-based bubbleless aeration has been proved as an ideal aeration method because of its higher oxygen transfer rate, more uniform mass transfer, and lower cost than HA. However, the available information on its application in HA is limited. In this study, membrane-based bubbleless micro-aeration coupled with hydrolysis acidification (MBL-MHA) was exploited to investigate the performance of 2,4-dinitrophenol (2,4-DNP) degradation via comparing it with bubble micro-aeration HA (MHA) and anaerobic HA. The results indicated that the performances in MBL-MHA and MHA were higher than those in HA during the experiment. 2,4-DNP degradation rates under redox microenvironments caused by counter-diffusion in MBL-MHA (84.43∼97.28%) were higher than those caused by co-diffusion in MHA (82.41∼94.71%) under micro-aeration of 0.5-5.0 mL air/min. The 2,4-DNP degradation pathways in MBL-MHA were nitroreduction, deamination, aromatic ring cleavage, and fermentation, while those in MHA were hydroxylation, aromatic ring cleavage, and fermentation. Reduction/oxidation-related, interspecific electron transfer-related species, and fermentative species in MBL-MHA were more abundant than that in MHA. Ultimately, more reducing/oxidizing forces formed by more redox proteins/enzymes from these rich species could enhance 2,4-DNP degradation in MBL-MHA.
Collapse
Affiliation(s)
- Zhuowei Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yang Yang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Zhenzhen Guo
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070China
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
48
|
Kong Z, Li L, Wu J, Rong C, Wang T, Chen R, Sano D, Li YY. Unveiling the characterization and development of prokaryotic community during the start-up and long-term operation of a pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152643. [PMID: 34963601 DOI: 10.1016/j.scitotenv.2021.152643] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The anaerobic membrane bioreactor (AnMBR) is a promising sustainable process and technology for the treatment of municipal wastewater from the perspective of carbon neutrality. In this study, a large pilot-scale AnMBR was constructed and the microbial community development of the anaerobic digested sludge in the AnMBR was determined during the treatment of municipal wastewater. The AnMBR system was conducted for 217 days during a long-term operation with the feed of real municipal wastewater. The characterization and dynamics of the microorganisms revealed that a stable prokaryotic community was gradually achieved. In the community of methane-producing archaea (or methanogens), the acetotrophic methanogen Methanosaeta was significantly enriched at an ambient temperature of 25 °C with an overwhelming relative abundance in the entire community. The abundance of Methanosaeta was even higher than the most abundant bacterial phyla Chloroflexi, Firmicutes, Proteobacteria and Bacteroidetes. This phenomenon is quite different from that found in other typical anaerobic systems. The massive enrichment of methanogens is the key to maintaining stable methane production in the treatment of municipal wastewater by the AnMBR. The interspecies cooperation of major functional bacterial groups including protein/carbohydrate/cellulose-degrading (genera Anaerovorax, Aminomonas, Levilinea, Flexilinea and Ruminococcus etc.), sulfate-reducing (Desulfovibrio and Desulfomicrobium etc.) and syntrophic (Syntrophorhabdus and Syntrophus etc.) bacteria with acetotrophic and hydrogenotrophic archaea enhances the stability of reactor operation and help to acclimate the entire prokaryotic community to the characteristics of real municipal wastewater.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chao Rong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
49
|
He ZW, Zou ZS, Sun Q, Jin HY, Yao XY, Yang WJ, Tang CC, Zhou AJ, Liu W, Ren YX, Wang A. Freezing-low temperature treatment facilitates short-chain fatty acids production from waste activated sludge with short-term fermentation. BIORESOURCE TECHNOLOGY 2022; 347:126337. [PMID: 34780904 DOI: 10.1016/j.biortech.2021.126337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
This study proposed a novel and high-efficiency strategy, i.e., freezing followed by low-temperature thermal treatment, to significantly promote short-chain fatty acids (SCFAs) production from waste activated sludge compared to traditional freezing/thawing treatment. The maximal production of SCFAs was 212 mg COD/g VSS with a shortened retention time of five days, and the potentially recovered carbon source, including SCFAs, soluble polysaccharides and proteins, reached 321 mg COD/g VSS, increased by 92.1 and 28.3% compared to sole freezing and thermal treatment. Both the solubilization and hydrolysis steps of WAS were accelerated, and the acid-producing microorganisms, such as Macellibacteroides, Romboutsia and Paraclostridium, were greatly enriched, with a total abundance of 13.9%, which was only 0.54% in control. Interestingly, the methane production was inhibited at a shortened retention time, resulting in SCFAs accumulation, whereas it was increased by 32.0% at a longer sludge retention time, providing a potential solution for energy recovery from WAS.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qian Sun
- Environmental Science Academy of Shaanxi Province, Xi'an 710061, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xing-Ye Yao
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
50
|
Metagenomic Analysis of Bacterial Community Structure and Dynamics of a Digestate and a More Stabilized Digestate-Derived Compost from Agricultural Waste. Processes (Basel) 2022. [DOI: 10.3390/pr10020379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recycling of different products and waste materials plays a crucial role in circular economy, where the anaerobic digestion (AD) constitutes an important pillar since it reuses nutrients in the form of organic fertilizers. Knowledge about the digestate and compost microbial community structure and its variations over time is important. The aim of the current study was to investigate the microbiome of a slurry cow digestate produced on a farm (ADG) and of a more stabilized digestate-derived compost (DdC) in order to ascertain their potential uses as organic amendments in agriculture. The results from this study, based on a partial fragment of 16S bacterial rRNA NGS sequencing, showed that there is a greater microbial diversity in the DdC originated from agricultural waste compared to the ADG. Overall, the existence of a higher microbial diversity in the DdC was confirmed by an elevated number (1115) of OTUs identified, compared with the ADG (494 OTUs identified). In the DdC, 74 bacterial orders and 125 families were identified, whereas 27 bacterial orders and 54 families were identified in the ADG. Shannon diversity and Chao1 richness indexes were higher in DdC samples compared to ADG ones (Shannon: 3.014 and 1.573, Chao1: 68 and 24.75; p < 0.001 in both cases). A possible association between the microbiome composition at different stages of composting process and the role that these microorganisms may have on the quality of the compost-like substrate and its future uses is also discussed.
Collapse
|