1
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
2
|
Effects of Lipase Addition, Hydrothermal Processing, Their Combination, and Co-Digestion with Crude Glycerol on Food Waste Anaerobic Digestion. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To enhance anaerobic fermentation during food waste (FW) digestion, pretreatments can be applied or the FW can be co-digested with other waste. In this study, lipase addition (LA), hydrothermal pretreatment (HTP), and a combination of both methods (HL) were applied to hydrolyze organic matter in FW. Furthermore, the effects of crude glycerol (CG), which provided 5%, 10%, and 15% of the volatile solids (VS) as co-substrate (denoted as CG5, CG10, and CG15, respectively), on the anaerobic digestion of FW were assessed. With an increasing proportion of CG in the co-digestion experiment, CG10 showed higher methane production, while CG15 negatively affected the anaerobic digestion (AD) performance owing to propionic acid accumulation acidifying the reactors and inhibiting methanogen growth. As the pretreatments partially decomposed hard-to-degrade substances in advance, pretreated FW showed a stronger methane production ability compared with raw FW, especially using the HL method, which was significantly better than co-digestion. HL pretreatment was shown to be a promising option for enhancing the methane potential value (1.773 NL CH4/g VS) according to the modified Gompertz model.
Collapse
|
3
|
Braz GHR, Fernandez-Gonzalez N, Lema JM, Carballa M. Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. CHEMOSPHERE 2019; 222:323-332. [PMID: 30708166 DOI: 10.1016/j.chemosphere.2019.01.124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
There is still a lack of information about microbial interactions of anaerobic digestion microbiome during process disturbance which limits our ability to predict the mechanisms that drive community dynamics on these events. This paper aims to determine how an organic overloading affects these interactions and to characterize in detail the microbiome structure and diversity in sewage sludge anaerobic reactors during an acidosis event. Two identical sewage sludge anaerobic reactors were subjected to an organic loading shock by adding glycerol waste. As consequence, volatile fatty acids accumulated after only 24 h (up to 2.5 g/L) while Bacteroidales and Methanomicrobiales became displaced by Firmicutes and Methanosaeta sp, showing that reactor acidosis can occur without an immediate decline of this methanogen. Network analysis revealed 9 clusters of co-occurring microorganisms with different behaviors during overloading. At first, Veillonellaceae family, the main glycerol degrading, associated with Candidatus Cloacimonetes, volatile fatty acids fermenters, increased their relative abundance in detriment of the syntrophic bacteria; although as conditions become more acidic, these groups were displaced by other fermenters like Porphyromonadaceae and Chitinophagaceae. Eventually, the methanogenesis failed 72 h after organic overloading, when pH reached values lower than 6. Overall, our results showed a succession of functionally redundant microorganisms, most likely because of niche specialization during organic overloading. The detailed temporal analysis elucidated the processes governing the dynamics anaerobic digestion microbiome, a knowledge required to develop anaerobic digestion management strategies based on its microbiome during process disturbances.
Collapse
Affiliation(s)
- Guilherme H R Braz
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineerings, Venue Dr. Mergelina, C/ Dr. Mergelina, s/n, Valladolid 47011, Spain; Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
4
|
Rodríguez-Abalde Á, Guivernau M, Prenafeta-Boldú FX, Flotats X, Fernández B. Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess Biosyst Eng 2019; 42:1175-1184. [DOI: 10.1007/s00449-019-02115-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
|
5
|
Im S, Yun YM, Song YC, Kim DH. Enhanced anaerobic digestion of glycerol by promoting DIET reaction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Braz GHR, Fernandez-Gonzalez N, Lema JM, Carballa M. The time response of anaerobic digestion microbiome during an organic loading rate shock. Appl Microbiol Biotechnol 2018; 102:10285-10297. [PMID: 30276715 DOI: 10.1007/s00253-018-9383-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/04/2018] [Accepted: 09/09/2018] [Indexed: 01/30/2023]
Abstract
Knowledge of connections between operational conditions, process stability, and microbial community dynamics is essential to enhance anaerobic digestion (AD) process efficiency and management. In this study, the detailed temporal effects of a sudden glycerol-based organic overloading on the AD microbial community and process imbalance were investigated in two replicate anaerobic digesters by a time-intensive sampling scheme. The microbial community time response to the overloading event was shorter than the shifts of reactor performance parameters. An increase in bacterial community dynamics and in the abundances of several microbial taxa, mainly within the Firmicutes, Tenericutes, and Chloroflexi phyla and Methanoculleus genera, could be detected prior to any shift on the reactor operational parameters. Reactor acidification already started within the first 24 h of the shock and headed the AD process to total inhibition in 72 h alongside with the largest shifts on microbiome, mostly the increase of Anaerosinus sp. and hydrogenotrophic methanogenic Archaea. In sum, this work proved that AD microbial community reacts very quickly to an organic overloading and some shifts occur prior to alterations on the performance parameters. The latter is very interesting as it can be used to improve AD process management protocols.
Collapse
Affiliation(s)
- G H R Braz
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| | - N Fernandez-Gonzalez
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain.
| | - J M Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| | - M Carballa
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
7
|
Zahedi S. Energy efficiency: Importance of indigenous microorganisms contained in the municipal solid wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:763-769. [PMID: 32559968 DOI: 10.1016/j.wasman.2018.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 06/11/2023]
Abstract
2016 was an extraordinary year for renewable energy, as it had the largest global capacity additions seen to date. However, challenges remain, particularly beyond the power sector. Overcoming these challenges means pursuing goals on development and optimization of strategies focused in causing an increase in bioenergy usage. Considering the seriousness of the challenge this paper has been developed. In the present study, indigenous microorganisms gathered from municipal solid waste will be analysed at to find out the role such organisms have on an anaerobic digester and its performance, with the aim of producing biogas in order for it to be used as electricity or treated to produce high quality fuel. The presence of such anaerobic microbiota can help avoid the two most tragic situations of an anaerobic digestion plant: overloading and washing out. The information of the present paper would have to be considered in future researchers about pre-treatments because most novelty studies are focused on hard pre-treatment to destroy microorganisms in the substrate (to increase the biogas production). In the present paper, it is underlined that the destruction of the microbiota in the substrate could produce adverse effects in the performance in the reactor.
Collapse
Affiliation(s)
- S Zahedi
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM) Pol, Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
8
|
Rodríguez-Abalde Á, Flotats X, Fernández B. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:521-528. [PMID: 28024897 DOI: 10.1016/j.wasman.2016.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490days, with a hydraulic retention time of 21-33days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2kgCODm-3d-1. The best methane production rate (0.64Nm3CH4m-3d-1) represented an increment of 2.9-fold the initial one (0.22Nm3CH4m-3d-1 with pig manure solely). It was attained with a ternary mixture composed, in terms of inlet volatile solids, by 35% pig slurry, 47% pasteurized slaughterhouse waste and 18% glycerine. This blend was obtained through a stepwise C/N adjustment: this strategy led to a more balanced biodegradation due to unstressed bacterial populations through the performance, showed by the VFA-related indicators. Besides this, an improved methane yield (+153%) and an organic matter removal efficiency (+83%), regarding the digestion of solely pig slurry, were attained when the C/N ratio was adjusted to 10.3.
Collapse
Affiliation(s)
- Ángela Rodríguez-Abalde
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain; EnergyLab, Edificio CITEXVI - Local 1, Fonte das Abelleiras, s/n, Campus Universitario de Vigo, E-36310 Vigo, Spain
| | - Xavier Flotats
- GIRO Joint Research Unit IRTA-UPC, Department of Agrifood Engineering and Biotechnology, Universitat Politècnica de Catalunya - BarcelonaTECH, Parc Mediterrani de la Tecnologia, Building D-4, E-08860, Castelldefels, Barcelona, Spain
| | - Belén Fernández
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
9
|
Fagbohungbe MO, Herbert BMJ, Hurst L, Ibeto CN, Li H, Usmani SQ, Semple KT. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:236-249. [PMID: 27923546 DOI: 10.1016/j.wasman.2016.11.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/19/2016] [Indexed: 05/22/2023]
Abstract
Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges.
Collapse
Affiliation(s)
- Michael O Fagbohungbe
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Ben M J Herbert
- Stopford Energy and Environment, Merseyton Road, Ellesmere Port, Chester CH65 3AD, United Kingdom
| | - Lois Hurst
- Stopford Energy and Environment, Merseyton Road, Ellesmere Port, Chester CH65 3AD, United Kingdom
| | - Cynthia N Ibeto
- National Centre for Energy Research and Development, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Hong Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Shams Q Usmani
- Ariva Technology, The Heath Business and Technical Park, Runcorn, Cheshire WA7 4EB, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
10
|
Regueiro L, Lema JM, Carballa M. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. BIORESOURCE TECHNOLOGY 2015; 197:208-16. [PMID: 26340029 DOI: 10.1016/j.biortech.2015.08.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/05/2015] [Accepted: 08/15/2015] [Indexed: 05/16/2023]
Abstract
Overloading is one of the most typical process disturbance in anaerobic digesters, resulting in volatile fatty acids (VFAs) accumulation. This work aimed to study the microbial community dynamics during hydraulic (decreasing the hydraulic retention time (HRT)) and organic (increasing the organic loading rate maintaining the HRT constant) overload shocks in anaerobic reactors treating agro-industrial wastes, as well as during the recovery period. In both cases, the organic loading rate increased from 2 to 10gCODL(-1)d(-1), resulting in VFAs accumulation up to 9gL(-1). Both overloads were correlated to an increase in Bacteroidetes and Actinobacteria phyla and with a drop in Syntrophomonadaceae and Pseudomonadaceae families. In contrast, Tissierellaceae family only increased during the organic shock. Active Archaea decreased in both overloads, going from Methanosaeta dominance to Methanosarcina prevalence. During the recovery period, Porphyromonadaceae family increased its presence and Clostridium genus recovered values prior to perturbation.
Collapse
Affiliation(s)
- Leticia Regueiro
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Solli L, Bergersen O, Sørheim R, Briseid T. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:1553-9. [PMID: 24820663 DOI: 10.1016/j.wasman.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/01/2014] [Accepted: 04/10/2014] [Indexed: 05/12/2023]
Abstract
This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37°C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% - 6% - 13% - 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS(-1), obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.
Collapse
Affiliation(s)
- Linn Solli
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Soil and Environment Division, N-1432 Ås, Norway.
| | - Ove Bergersen
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Soil and Environment Division, N-1432 Ås, Norway
| | - Roald Sørheim
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Soil and Environment Division, N-1432 Ås, Norway
| | - Tormod Briseid
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Soil and Environment Division, N-1432 Ås, Norway
| |
Collapse
|
12
|
Tukacs-Hájos A, Pap B, Maróti G, Szendefy J, Szabó P, Rétfalvi T. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp. BIORESOURCE TECHNOLOGY 2014; 166:288-94. [PMID: 24926601 DOI: 10.1016/j.biortech.2014.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 05/06/2023]
Abstract
Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed.
Collapse
Affiliation(s)
| | - Bernadett Pap
- Seqomics Biotechnology Ltd., H-6782 Mórahalom, Vállalkozók útja 7., Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Judit Szendefy
- Biogáz Fejlesztő Ltd., H-7400 Kaposvár, Pécsi út 8-10., Hungary
| | - Piroska Szabó
- Institute of Chemistry, Faculty for Forestry, University of West Hungary, H-9400 Sopron, Bajcsy-Zs. u. 4., Hungary
| | - Tamás Rétfalvi
- Institute of Chemistry, Faculty for Forestry, University of West Hungary, H-9400 Sopron, Bajcsy-Zs. u. 4., Hungary.
| |
Collapse
|
13
|
Nagao N, Tajima N, Kawai M, Niwa C, Kurosawa N, Matsuyama T, Yusoff FM, Toda T. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2012; 118:210-218. [PMID: 22705526 DOI: 10.1016/j.biortech.2012.05.045] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction.
Collapse
Affiliation(s)
- Norio Nagao
- Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|