1
|
Shafiquzzaman M, Hasan MM, Haider H, Ahmed AT, Razzak SA. Comparative evaluation of low-cost ceramic membrane and polymeric micro membrane in algal membrane photobioreactor for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118894. [PMID: 37659359 DOI: 10.1016/j.jenvman.2023.118894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Algal-bacterial membrane photobioreactor (AMPBR) is proven as a highly energy-efficient process for treating domestic wastewater. This study compared the application of polymeric micro-membrane (PMM) and a low-cost ceramic membrane (LCM) to the AMPBR process for treating domestic wastewater with low and high organic pollution levels. Experiments were conducted over 57 days using two PMM-AMPBRs and two LCM-AMPBRs, operating on a 12-h dark/light cycle in a continuous mode. Simulated wastewater containing varying levels of chemical oxygen demand (COD) was fed to reactors for a consistent hydraulic residence time (HRT) of 7 d and a flux rate of 100 L/m2/d. PMM and LCM-AMPBRs demonstrated efficient wastewater treatment capabilities, achieving COD removal rates exceeding 94% and 95% for high and low COD loadings, respectively. PMM-AMPBR achieved 54.1% TN removal at low COD loading, while LCM-AMPBR achieved 57.2%. These removal efficiencies decreased to 45.6% and 47.0% under high COD loading. Total Phosphorus (TP) removal reached 29-33% for PMM-AMPBRs and 21-24% for LCM-AMPBRs, irrespective of COD loading. LCM-AMPBRs showed significantly lower fouling frequency than PMM-AMPBRs. The biomass production rate decreased with increasing COD loading and achieved 40 mg/L/d at low COD loading for both AMPBRs. Net energy return (NER) values for both AMPBRs were close to 0.87, indicating them as energy-efficient processes. Considering the cost-effectiveness and comparable performance, LCM-AMPBR could be a viable alternative to PMM-AMPBR for wastewater treatment, particularly under low COD loading conditions.
Collapse
Affiliation(s)
- Md Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Md Mahmudul Hasan
- Department of Civil Engineering, Bangladesh Army University of Science and Technology, Saidpur, 5310, Bangladesh
| | - Husnain Haider
- Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abdelkader T Ahmed
- Civil Engineering Department, Faculty of Engineering, Islamic University of Madinah, Saudi Arabia
| | - Shaikh Abdur Razzak
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Shams H, Alavi Moghaddam MR, Maknoon R, Mąkinia J, Hasani Zonoozi M. Fouling mechanisms in anoxic-aerobic sequencing batch membrane bioreactor based on adapted Hermia models and main foulant characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116146. [PMID: 36099869 DOI: 10.1016/j.jenvman.2022.116146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Various derivatives of Hermia models (complete pore blocking, intermediate pore blocking, cake layer formation, and standard pore blocking) and different assessments of foulant characteristics have long been used to determine the membrane fouling mechanisms. Accordingly, this study aims to adapt Hermia models and their combination according to the operating conditions of an anoxic-aerobic sequencing batch membrane bioreactor (A/O-SBMBR). In addition, fouling mechanisms of the A/O-SBMBR were assessed using these models along with the main foulant characteristics. Models fitting with the transmembrane pressure (TMP) data indicated that the intermediate-standard model was accounting for the increased fouling during the whole regular operating period, with the residual sum of squares (RSS) of 58.3. A more detailed study on the distinct stages of TMP curve showed that the intermediate-standard model had the best fit in stages of 2 and 3, with the RSS equal to 2.6 and 2.8, respectively. Also, the complete-standard model provided the best description of the fouling mechanism in stage 4, with the RSS of 12.5. Different analyzes revealed how the main foulant characteristics affect the occurrence of intermediate, complete and standard fouling mechanisms in the A/O-SBMBR, which is consistent with the fitting results of the adapted Hermia models. The modeling and experimental methods used in the presented study provided a valuable basis to prevent and control membrane fouling in membrane bioreactors.
Collapse
Affiliation(s)
- Hossein Shams
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Reza Maknoon
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland.
| | - Maryam Hasani Zonoozi
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
| |
Collapse
|
3
|
Membrane filtration of manganese (II) remediated-microalgae: Manganese (II) removal, extracellular organic matter, and membrane fouling. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Ashadullah AKM, Shafiquzzaman M, Haider H, Alresheedi M, Azam MS, Ghumman AR. Wastewater treatment by microalgal membrane bioreactor: Evaluating the effect of organic loading rate and hydraulic residence time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111548. [PMID: 33126200 DOI: 10.1016/j.jenvman.2020.111548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Current microalgal based photobioreactors focus on the secondary treated effluent while limited researches attempted for treating the raw domestic wastewater. This study aimed to assess the microalgal biomass production, removal performance, and fouling characteristics of microalgal membrane bioreactors (MMBRs) for treating synthetic wastewater under different conditions of organic loading rate (OLR) and hydraulic residence time (HRT). The 12h/12 h dark/light cycle continuous experiments were performed for four MMBRs at different OLRs and three MMBRs at different HRTs. Results showed that microalgal biomass production rate (as TSS and chlorophyll-a) decreased with increasing OLR and increased with decreasing of HRT. Regardless of the OLR and HRT conditions, MMBRs can achieve up to 94% organic removal by bacterial oxidation without external aeration. Total nitrogen (TN) and total phosphorus (TP) removals were significantly decreased with increasing OLR. Highest TN removal (68.4%) achieved at the OLR of 0.014 kg/(m3 d) which was reduced to 58.1% at 0.028 kg/(m3 d). Removals of total phosphorous significantly decreased from 48.2% to 37.7% with an increase in OLR from 0.011 to 0.014 kg/(m3 d). TN removal was reduced at shorten HRT (2 d), while, the effect of HRT was found insignificant at higher HRT. An effective removal of P can only be achieved at higher HRTs, i.e., 7 days. OLR up to 0.014 kg/(m3 d) and 2 days HRT was found suitable for maintaining the fouling frequency at an optimal level of 0.016/d. Overall the OLR and HRT need to be carefully selected to achieve optimal efficiency of MMBR. The results of this study provide guidelines for designing the microalgal-based membrane bioreactors for the treatment of domestic wastewater.
Collapse
Affiliation(s)
- A K M Ashadullah
- Gas Seal Engineering Department, John Crane, 2222 Kamitoyama, Ritto-City, Shiga, 520-3084, Japan
| | - Md Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia.
| | - Husnain Haider
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Mohammad Alresheedi
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Mohammad Shafiul Azam
- Department of Environmental Water Resources and Coastal Engineering, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, 1205, Bangladesh
| | - Abdul Razzaq Ghumman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia
| |
Collapse
|
5
|
Alizad Oghyanous F, Etemadi H, Yegani R. Foaming control and determination of biokinetic coefficients in membrane bioreactor system under various organic loading rate and sludge retention time. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Li Y, Sim LN, Ho JS, Chong TH, Wu B, Liu Y. Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO. CHEMOSPHERE 2020; 245:125569. [PMID: 31864040 DOI: 10.1016/j.chemosphere.2019.125569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This study compared the performance of an anaerobic fluidized bed membrane bioreactor (AFMBR)-zeolite adsorption-reverse osmosis (RO) system and an anoxic-aerobic MBR-RO system for municipal wastewater reclamation. Both MBR-RO systems were operated in parallel with the same operating conditions. The results showed that the MBR systems achieved excellent organic removals (>95%) and the anoxic-aerobic MBR could also remove ∼57% of soluble total nitrogen. Compared to the aerobic MBR, the AFMBR displayed better membrane performance with less energy consumption, attributed to effective membrane scouring by liquid-fluidized GAC particles. Furthermore, a zeolite column was employed to remove ammonia in the AFMBR permeate, which ensured comparable organic and nitrogen levels in the feeds to RO units in the two processes. Although less organic substances and microbial cells were accumulated on the RO membrane fed with AFMBR-zeolite column effluent, its fouling rate (∼6.5 ± 2.2 bar/day) was significantly greater than that fed with anoxic-aerobic MBR permeate (∼1.1 ± 1.5 bar/day). This may be associated with more severe inorganic colloidal fouling on the RO membrane, illustrated by an electrical impedance spectroscopy fouling monitoring system.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, PR China
| | - Lee Nuang Sim
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
7
|
Hube S, Eskafi M, Hrafnkelsdóttir KF, Bjarnadóttir B, Bjarnadóttir MÁ, Axelsdóttir S, Wu B. Direct membrane filtration for wastewater treatment and resource recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136375. [PMID: 31923693 DOI: 10.1016/j.scitotenv.2019.136375] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 05/26/2023]
Abstract
Direct membrane filtration has shown great potential in wastewater treatment and resource recovery in terms of its superior treated water quality, efficient nutrient recovery, and sustainable operation, especially under some scenarios where biological treatment is not feasible. This paper aims to give a comprehensive review of the state-of-the-art of direct membrane filtration processes (including pressure-driven, osmotic-driven, thermal-driven, and electrical-driven) in treating different types of wastewater for water reclamation and resource recovery. The factors influencing membrane performance and treatment efficiency in these direct membrane filtration processes are well illustrated, in which membrane fouling was identified as the main challenge. The strategies for improving direct membrane filtration performance, such as physical and chemical cleaning techniques and pretreatment of feed water, are highlighted. Towards scaling-up and long-term operation of direct membrane filtration for effective wastewater reclamation and resource recovery, the challenges are emphasized and the prospects are discussed.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Majid Eskafi
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | | | - Björg Bjarnadóttir
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Margrét Ásta Bjarnadóttir
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Snærós Axelsdóttir
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
8
|
Hong PN, Noguchi M, Matsuura N, Honda R. Mechanism of biofouling enhancement in a membrane bioreactor under constant trans-membrane pressure operation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ly QV, Nghiem LD, Cho J, Maqbool T, Hur J. Organic carbon source-dependent properties of soluble microbial products in sequencing batch reactors and its effects on membrane fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:40-47. [PMID: 31108309 DOI: 10.1016/j.jenvman.2019.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the influence of three different organic carbon sources including sodium acetate (SOD), glucose (GLU), and starch (STAR), on soluble microbial products (SMP), which presumably have dissimilar uptake rates and metabolic pathways, in sequencing batch reactors (SBR) and their subsequent effects on membrane fouling of ultrafiltration (UF). SMP were mainly characterized by fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). SMP produced in SOD-fed SBR showed higher abundances of protein-like fluorescent component and large sized aliphatic biopolymer (BP) than GLU- or STAR-fed counterpart did, while the STAR-based operation resulted in more SMP enriched with humic-like fluorescence. The differences in SMP exerted marked effects on UF membrane fouling as indicated by the highest fouling potential with reversibility shown for the SMP from the SOD-fed reactor. Regardless of the carbon source, BP fraction and protein-like component exhibited the greatest extent of reversible fouling, suggesting that size exclusion plays a critical role. However, notable differences in the reversible fouling propensity of relatively smaller size fractions among the three SBRs signified the possible involvement of chemical interactions as a secondary fouling mechanism and its dependency on different carbon sources. Our results provide a new insight into the roles of carbon sources in the characteristics of SMP in biological treatment systems and their effects on the post-treatment using membrane filtration, which is ultimately beneficial to the optimization of biological treatment design and membrane filtration operation.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW, 2007, Australia
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Tahir Maqbool
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
10
|
Hamedi H, Ehteshami M, Mirbagheri SA, Rasouli SA, Zendehboudi S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamideh Hamedi
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Majid Ehteshami
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
| | | | - Seyed Abbas Rasouli
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
11
|
Ly QV, Nghiem LD, Sibag M, Maqbool T, Hur J. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling. WATER RESEARCH 2018; 134:13-21. [PMID: 29407647 DOI: 10.1016/j.watres.2018.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
The relative ratios of chemical oxygen demand (COD) to nitrogen (N) in wastewater are known to have profound effects on the characteristics of soluble microbial products (SMP) from activated sludge. In this study, the changes in the SMP characteristics upon different COD/N ratios and the subsequent effects on ultrafiltration (UF) membrane fouling potentials were examined in sequencing batch reactors (SBR) using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). Three unique fluorescent components were identified from the SMP samples in the bioreactors operated at the COD/N ratios of 100/10 (N rich), 100/5 (N medium), and 100/2 (N deficient). The tryptophan-like component (C1) was the most depleted at the N medium condition. Fulvic-like (C2) and humic-like (C3) components were more abundant with N rich wastewater. Greater abundances of large size biopolymer (BP) and low molecular weight neutrals (LMWN) were found under the N deficient and N rich conditions, respectively. SMPs from various COD/N exhibited a greater degree on membrane fouling following the order of 100/2 > 100/10 > 100/5. C1 and C2 had close associations with reversible and irreversible fouling, respectively, while the reversible fouling potential of C3 depended on the COD/N ratios. No significant impact of COD/N ratio was observed on the relative contributions of SMP size fractions to either reversible or irreversible fouling potential. However, the COD/N ratios likely altered the BP foulants' composition with greater contribution of proteinaceous substances to reversible fouling under the N deficient condition than at other N richer conditions. The opposite trend was observed for irreversible fouling. Our results provided further insight into changes in different SMP constitutes and their membrane fouling in response to microbial activities under different COD/N ratios.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Mark Sibag
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Tahir Maqbool
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
12
|
Sun L, Tian Y, Zhang J, Li L, Zhang J, Li J. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2018; 251:311-319. [PMID: 29289875 DOI: 10.1016/j.biortech.2017.12.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jian Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Loh CH, Wu B, Ge L, Pan C, Wang R. High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study. CHEMOSPHERE 2018; 194:534-542. [PMID: 29241127 DOI: 10.1016/j.chemosphere.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
N-methyl-2-pyrrolidone (NMP) is widely used as a solvent in polymeric membrane fabrication process, its elimination from the process wastewater (normally at a high concentration > 1000 mg/L) prior to discharge is essential because of environmental concern. This study investigated the feasibility of treating high-strength NMP-containing process wastewater in a sequencing batch reactor (SBR; i.e., batch feeding and intermittent aerobic/anoxic condition) and a membrane bioreactor (MBR; i.e., continuous feeding and aeration), respectively. The results showed that the SBR with the acclimated sludge was capable of removing >90% of dissolved organic carbon (DOC) and almost 98% of NMP within 2 h. In contrast, the MBR with the acclimated sludge showed a decreasing NMP removal efficiency from 100% to 40% over 15-day operation. The HPLC and LC-MS/MS analytical results showed that NMP degradation in SBR and MBR could undergo different pathways. This may be attributed to the dissimilar bacterial community compositions in the SBR and MBR as identified by 16s rRNA gene sequencing analysis. Interestingly, the NMP-degrading capability of the activated sludge derived from MBR could be recovered to >98% after they were operated at the SBR mode (batch feeding mode with intermittent aerobic/anoxic condition). This study reveals that SBR is probably a more feasible process to treat high-strength NMP-containing wastewater, but residual NMP metabolites in the SBR effluent need to be post-treated by an oxidation or adsorption process in order to achieve zero-discharge of toxic chemicals.
Collapse
Affiliation(s)
- Chun Heng Loh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
| | - Liya Ge
- Residues & Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
| | - Chaozhi Pan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
14
|
Yang L, Ren YX, Chen N, Cui S, Wang XH, Xiao Q. Organic loading rate shock impact on extracellular polymeric substances and physicochemical characteristics of nitrifying sludge treating high-strength ammonia wastewater under unsteady-state conditions. RSC Adv 2018; 8:41681-41691. [PMID: 35558802 PMCID: PMC9091943 DOI: 10.1039/c8ra08357f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Laboratory experimentation was used to investigate the impact of the organic loading rate shock on extracellular polymeric substances (EPSs) and the physicochemical characteristics of nitrifying sludge (NS) treating high-strength ammonia wastewater. The increased organic loading rates (OLRs) strongly influenced the stability of the NS with regard to nutrient removal, biomass–liquid separation, and surface properties, leading to the sludge system collapse at the OLR of 0.75 kg COD per kg MLVSS d. However, an incomplete recovery of the NS after the high OLRs shock was observed when decreasing the OLRs. In addition, the variations of OLRs resulted in relatively stable amounts of tightly bound EPS (TB-EPS), but a significant change in loosely bound EPS (LB-EPS). Both in LB-EPS and TB-EPS, the proteins (PN) contents and proteins to polysaccharides (PN/PS) ratios decreased with the increase in OLRs. Results from the excitation emission matrix spectra implied that the tryptophan PN-like substances were the major components in EPS at low OLRs, while the humic acid-like and fulvic acid-like substrates increased markedly at high OLRs. Furthermore, correlation analysis demonstrated that PN and the PN/PS ratio were the most important factors in determining the physicochemical properties of the NS. It was indicated that the PN could accurately reflect the sludge properties of the NS, and thus effectively change the surface properties of the sludge, contributing to the cohesion between the aggregates to maintain a stable structure. Laboratory experimentation was used to investigate the impact of the organic loading rate shock on extracellular polymeric substances (EPSs) and the physicochemical characteristics of nitrifying sludge (NS) treating high-strength ammonia wastewater.![]()
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Ning Chen
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Shen Cui
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Xu-Hui Wang
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Qian Xiao
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| |
Collapse
|
15
|
Tabraiz S, Haydar S, Sallis P, Nasreen S, Mahmood Q, Awais M, Acharya K. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:963-975. [PMID: 28799942 DOI: 10.2166/wst.2017.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m2·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.
Collapse
Affiliation(s)
- Shamas Tabraiz
- Department of Environmental Engineering, University of Engineering and Technology, Taxila, Pakistan E-mail: ;
| | - Sajjad Haydar
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Paul Sallis
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sadia Nasreen
- Department of Environmental Engineering, University of Engineering and Technology, Taxila, Pakistan E-mail: ;
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Awais
- Department of Environmental Engineering, University of Engineering and Technology, Taxila, Pakistan E-mail: ;
| | - Kishor Acharya
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
Maqbool T, Cho J, Hur J. Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods. BIORESOURCE TECHNOLOGY 2017; 234:131-139. [PMID: 28319761 DOI: 10.1016/j.biortech.2017.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC) were utilized to explore the dynamics in extracellular polymeric substances (EPS), soluble microbial products (SMP), and effluent for the membrane bioreactors at two different organic loading rates (OLRs). Combination of three different fluorescent components explained the compositional changes of dissolved organic matter. The lower OLR resulted in a higher production of tryptophan-like component (C1) in EPS, while the opposite trends were found for the other two components (humic-like C2 and tyrosine-like C3), signifying the role of C1 in the endogenous condition. Larger sized molecules were more greatly produced in EPS at the lower OLR. Meanwhile, all the size fractions of SMP were more abundant at the higher OLR particular for the early phase of the operation. Irrespective of the OLR, the higher degrees of the membrane retention were found for relatively large sized and protein-like molecules.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
17
|
Liu J, Zuo W, Zhang J, Li H, Li L, Tian Y. Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater. J Environ Sci (China) 2017; 54:246-255. [PMID: 28391936 DOI: 10.1016/j.jes.2016.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 06/07/2023]
Abstract
The chemical oxygen demand (COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor (MBR) coupled with worm reactors (SSBWR) were evaluated for 210days. The obtained results were compared to those from a conventional MBR (C-MBR) operated in parallel. The results indicated that the combined MBR (S-MBR) achieved higher COD and NH3-N removal efficiency, slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas, Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Wu B, Wang R, Fane AG. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. WATER RESEARCH 2017; 110:120-132. [PMID: 27998784 DOI: 10.1016/j.watres.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
19
|
Deng L, Guo W, Ngo HH, Zhang H, Wang J, Li J, Xia S, Wu Y. Biofouling and control approaches in membrane bioreactors. BIORESOURCE TECHNOLOGY 2016; 221:656-665. [PMID: 27717560 DOI: 10.1016/j.biortech.2016.09.105] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Membrane fouling (especially biofouling) as a critical issue during membrane reactor (MBR) operation has attracted much attention in recent years. Although previous review papers have presented different aspects of MBR's fouling when treating various wastewaters, the information related to biofouling in MBRs has only simply or partially reviewed. This work attempts to give a more comprehensive and elaborate explanation of biofilm formation, biofouling factors and control approaches by addressing current achievements. This also suggests to a better way in controlling biofouling by developing new integrated MBR systems, novel flocculants and biomass carriers.
Collapse
Affiliation(s)
- Lijuan Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Siqing Xia
- Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yun Wu
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
20
|
Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants. Sci Rep 2016; 6:26721. [PMID: 27220287 PMCID: PMC4879546 DOI: 10.1038/srep26721] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A(2)/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes.
Collapse
|
21
|
Chen CH, Fu Y, Gao DW. Membrane biofouling process correlated to the microbial community succession in an A/O MBR. BIORESOURCE TECHNOLOGY 2015; 197:185-192. [PMID: 26340026 DOI: 10.1016/j.biortech.2015.08.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
The microbial community succession of the biofouling layer in a submerged anoxic/oxic membrane biological reactor (A/O MBR) that fed with synthesized domestic wastewater was investigated under three different flux conditions without the changing of the nutrient load. The noticeable microbial community succession and its significant correlation with the metabolic products were observed under the subcritical flux condition. Under the supercritical flux condition, the microbial community shift was in a different pattern compared with that under the subcritical flux condition and it was affected by the increased permeable suction more than the metabolic products. The most abundant microorganisms in the foulants were β-proteobacteria and γ-proteobacteria which can reach more than 20% of the microbial community. However the microorganisms which had significant correlation with the metabolic products were in lower abundance.
Collapse
Affiliation(s)
- Chun-Hong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Lin H, Zhang M, Wang F, Meng F, Liao BQ, Hong H, Chen J, Gao W. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.02.034] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Li Z, Tian Y, Ding Y, Lu Y. Systematic analysis of biomass characteristics associated membrane fouling during start-up of a hybrid membrane bioreactor using worm reactor for sludge reduction. BIORESOURCE TECHNOLOGY 2013; 136:155-162. [PMID: 23567676 DOI: 10.1016/j.biortech.2013.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 06/02/2023]
Abstract
This study focused on the effect of predated sludge recycle on microbial community development in MBR coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR). The microbial activities and community were evaluated. The results indicated that the SSBWR-MBR fed with the predated sludge obtained excellent wastewater treatment performance and membrane permeability. In addition, the LIVE/DEAD staining analyses clearly showed that the viability of sludge in SSBWR-MBR was slightly lower than that in Control-MBR, indicating that SSBWR-MBR had a good ability to digest predated sludge. Changed EPS and SMP characteristics and low EPS production, as the major contributors for the mitigated membrane fouling, were closely associated with microbial community development. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the bacterial communities in the two reactors were different. Further identification of the bacterial populations suggested that decrease of Betaproteobacteria and Gammaproteobacteria and change in Alphaproteobacteria might be responsible for membrane fouling mitigation.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | |
Collapse
|
24
|
Wu B, Kitade T, Chong TH, Lee JY, Uemura T, Fane AG. Flux-Dependent Fouling Phenomena in Membrane Bioreactors under Different Food to Microorganisms (F/M) Ratios. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.724501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. MEMBRANES 2012; 2:565-84. [PMID: 24958297 PMCID: PMC4021913 DOI: 10.3390/membranes2030565] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 11/17/2022]
Abstract
Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed.
Collapse
|
26
|
Wu B, Kitade T, Chong TH, Uemura T, Fane AG. Role of initially formed cake layers on limiting membrane fouling in membrane bioreactors. BIORESOURCE TECHNOLOGY 2012; 118:589-93. [PMID: 22704184 DOI: 10.1016/j.biortech.2012.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 05/26/2023]
Abstract
In this study, an interesting phenomenon was observed that when the levels of soluble polysaccharides (SP) and soluble transparent exopolymer particles (sTEP) in the MBR unexpectedly and suddenly increased, the cleaned membranes tended to be more easily fouled compared to the membranes with the initial cake layers formed in a slow TMP increase stage. Foulant analysis indicated great accumulation amounts of SP and sTEP on the cleaned membrane. FT-IR spectra further confirmed that hydroxyl and amide groups in the soluble substances preferred to attach on the cleaned membranes. While, the initially formed cake layers on the membranes played a role to decrease zeta potential of cleaned membranes, which created less interaction with the soluble substances. It suggests that forming loose-structured cake layers on the primary membranes could be thought as an effective membrane fouling control strategy.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore.
| | | | | | | | | |
Collapse
|
27
|
Li J, Yang F, Liu Y, Song H, Li D, Cheng F. Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic-oxic membrane bioreactor. BIORESOURCE TECHNOLOGY 2012; 103:43-47. [PMID: 22050838 DOI: 10.1016/j.biortech.2011.09.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/18/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
In MBR, severe membrane fouling is often observed in the initial phase in which biomass is yet fully acclimated and stabilized in terms of microbial community structure and biomass characteristics. The focus of this study was to investigate the microbial community development and its influence on biomass characteristics and membrane fouling during start-up of a hybrid anoxic-oxic MBR. PCR-DGGE analysis indicated that the microbial community shifted in start-up period when a severe membrane fouling was observed. Small particle size, high fractal dimension (DF) and high EPS production, which were closely associated with microbial community, were found to be the major contributors to the severe fouling. Microbial community development was most likely the ultimate factor responsible for the severe membrane fouling.
Collapse
Affiliation(s)
- Jianfeng Li
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, PR China
| | | | | | | | | | | |
Collapse
|