1
|
de Oliveira Garcia S, Comunello AFV, Pinheiro DFA, Marimón-Sibaja KV, Nogueira WV, Garda-Buffon J. Simultaneous mitigation of ochratoxin A and zearalenone by Amano lipase A: conditions and application. Braz J Microbiol 2025:10.1007/s42770-025-01679-w. [PMID: 40287600 DOI: 10.1007/s42770-025-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Mycotoxins such as ochratoxin A (OTA) and zearalenone (ZEA) are secondary metabolites produced by fungi that exhibit high toxicity and are frequently detected in food and beverages, including beer, the third most consumed beverage worldwide, posing a significant public health concern. The mitigation of these contaminants has become an increasingly urgent priority, particularly in the face of climate change, which is expected to exacerbate their prevalence and concentration throughout the food supply chain. In this context, the development of effective, safe, and food-compatible strategies for reducing mycotoxin levels in complex food matrices is essential to ensure both food quality and consumer safety. Accordingly, this study aimed to evaluate the action of the enzyme Amano lipase A (ALA) in the simultaneous mitigation of OTA and ZEA in model solution and Pilsen type beer. The reaction and kinetic parameters (KM and Vmax) were optimized for this. The application of the enzyme (0.3 U mL-1) in the mitigation of OTA and ZEA in beer was evaluated. Under optimal reaction conditions to ALA in model solution, consisting of 50 mM pH 7 phosphate buffer, 40 ºC and 22 h of incubation, it simultaneously degraded OTA and ZEA by up to 100.0 and 30.6%, respectively. The kinetic parameters KM and Vmax of ALA in the mitigation of OTA and ZEA were 0.03 and 3.14 µM and 6.56 × 10-05 and 19.57 × 10-03 μM min-1, respectively. The enzyme degraded 89.5% OTA and 6.5% ZEA. The enzyme ALA presents as an alternative for controlling these contaminants in beer or food.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Ana Flávia Vendramin Comunello
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Karen Vanessa Marimón-Sibaja
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Wesclen Vilar Nogueira
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil.
| |
Collapse
|
2
|
Machado BR, Duarte SH, Santos LO. Extracellular lipase production by Yarrowia lipolytica under magnetic fields. World J Microbiol Biotechnol 2023; 39:290. [PMID: 37650985 DOI: 10.1007/s11274-023-03732-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
This study aimed at estimating cultivation conditions to enable Yarrowia lipolytica NNRL Y-1095 to produce extracellular lipase and at evaluating the influence of magnetic fields (MF) on the lipase production and on its catalytic conditions. Culture conditions of carbon sources and surfactant defined to produce extracellular lipase were 10 g L-1 glucose, 15 g L-1 olive oil and 2 g L-1 Triton X-100. The highest lipase activity (34.8 U mL-1) was reached after 144 h when MFs were applied from 72 to 144 h of culture. It corresponds to an increase of 287.5% by comparison with the highest lipase activity in the control culture. MF application from 72 to 144 h did not change the optimal temperature of lipase, which was 37 °C, by comparison with the control. However, the optimal pH of the control was 7.0 while the one of lipase produced with MF was 8.0. Findings highlighted that the presence of MFs led to increase in synthesis of lipase by Y. lipolytica, with changes in the catalytic profile. This is one of the first studies of MF application to Y. lipolytica NRRL Y-1095 cultures to produce lipase.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Susan Hartwig Duarte
- Laboratory of Biochemistry and Microbiology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
3
|
Investigation and Screening of Mixed Microalgae Species for Lipase Production and Recovery using Liquid Biphasic Flotation Approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
5
|
Bitencourt TB, Souza FA, Gomes da Silva V, Kleinert EJ, Martins A. Nutrient biomass production from agro-industrial residues using Yarrowia lipolytica: screening and optimization of growing conditions. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.28720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The possibility of using agro-industrial residues in bioconversion processes advances with the development of biotechnology and the search for processes in which is possible to add commercial value to previously discarded products. These processes should be low cost, easy to control and chemical-free. The yeast Yarrowia lipolytica (YL) is widely used to produce lipids, enzymes, citric acid, and proteins, among others. This study aimed to evaluate the capacity of this yeast to use agro-industrial residues as a source of carbon without adding extra carbohydrate sources for the development of cells. The study evaluated the production of proteins and lipids from different carbon sources as well as the optimization of the process (agitation, temperature, and nitrogen source). Indeed, YL produced 22.3% of protein and 9.4% of lipids in dry biomass, a 179% of protein and 660% of lipid increase from raw material, respectively, when using cassava residues as a carbon source. However, lipase production was low, indicating that the strain had priority for cell growth.
Collapse
|
6
|
Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Curr Genet 2021; 68:243-251. [PMID: 34837516 DOI: 10.1007/s00294-021-01224-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Lipases from Pseudomonas species are particularly useful due to their broader biocatalytic applications and temperature activity. In this study, we amplified the gene encoding wild-type cold-active lipase from the genome of psychrotrophic bacterium isolated from the Himalayan glacier. The isolated CRBC14 strain was identified as Pseudomonas sp. based on the 16S rRNA gene sequence. Lipase activity was determined by observing the hydrolysis zone on nutrient agar containing tributyrin (1%, v/v). The sequence analysis of cold-active lipase revealed a protein of 611 amino acids with a calculated molecular mass of 63.71 kDa. The three-dimensional structure of this lipase was generated through template-supported modeling. Distinct techniques stamped the model quality, following which the binding free energies of tributyrin and oleic acid in the complex state with this enzymatic protein were predicted through molecular mechanics generalized born surface area (MMGBSA). A relative comparison of binding free energy values of these substrates indicated tributyrin's comparatively higher binding propensity towards the lipase. Using molecular docking, we evaluated the binding activity of cold-active lipase against tributyrin and oleic acid. Our docking analysis revealed that the lipase had a higher affinity for tributyrin than oleic acid, as evidenced by our measurement of the hydrolysis zone on two media plates. This study will help to understand the bacterial diversity of unexplored Himalayan glaciers and the possible application of their cold-adapted enzymes.
Collapse
|
7
|
Sundaramahalingam MA, Amrutha C, Sivashanmugam P, Rajeshbanu J. An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech 2021; 11:481. [PMID: 34790505 PMCID: PMC8557240 DOI: 10.1007/s13205-021-03003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/26/2021] [Indexed: 10/19/2022] Open
Abstract
Biodiesel is a renewable, sulfur-free, toxic-free, and low carbon fuel which possesses enhanced lubricity. Transesterification is the easiest method employed for the production of biodiesel, in which the oil is transformed into biodiesel. Biocatalyst-mediated transesterification is more advantageous than chemical process because of its non-toxic nature, the requirement of mild reaction conditions, absence of saponification, easy product recovery, and production of high-quality biodiesel. Lipases are found to be the primary enzymes in enzyme-mediated transesterification process. Currently, researchers are using lipases as biocatalyst for transesterification. Lipases are extracted from various sources such as plants, microbes, and animals. Biocatalyst-based biodiesel production is not yet commercialized due to high-cost of purified enzymes and higher reaction time for the production process. However, research works are growing in the area of various cost-effective techniques for immobilizing lipase to improve its reusability. And further reduction in the production cost of lipases can be achieved by genetic engineering techniques. The reduction in reaction time can be achieved through ultrasonic-assisted biocatalytic transesterification. Biodiesel production by enzymatic transesterification is affected by many factors. Various methods have been developed to control these factors and improve biodiesel production. This report summarizes the various sources of lipase, various production strategies for lipase and the lipase-mediated transesterification. It is fully focused on the lipase enzyme and its role in biodiesel production. It also covers the detailed explanation of various influencing factors, which affect the lipase-mediated transesterification along with the limitations and scope of lipase in biodiesel production.
Collapse
Affiliation(s)
- M. A. Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - C. Amrutha
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - P. Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - J. Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610 005 India
| |
Collapse
|
8
|
Mhetras N, Mapare V, Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl Biochem Biotechnol 2021; 193:2245-2266. [PMID: 33544363 DOI: 10.1007/s12010-021-03516-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lipases are enzymes that catalyze the ester bond hydrolysis in triglycerides with the release of fatty acids, mono- and diglycerides, and glycerol. The microbial lipases account for $400 million market size in 2017 and it is expected to reach $590 million by 2023. Many biotechnological processes are expedited at high temperatures and hence much research is dealt with thermostable enzymes. Cold active lipases are now gaining importance in the detergent, synthesis of chiral intermediates and frail/fragile compounds, and food and pharmaceutical industries. In addition, they consume less energy since they are active at low temperatures. These cold active lipases have not been commercially exploited so far compared to mesophilic and thermophilc lipases. Cold active lipases are distributed in microbes found at low temperatures. Only a few microbes were studied for the production of these enzymes. These cold-adapted enzymes show increased flexibility of their structures in response to freezing effect of the cold habitats. This review presents an update on cold-active lipases from microbial sources along with some structural features justifying high enzyme activity at low temperature. In addition, recent achievements on their use in various industries will also be discussed.
Collapse
Affiliation(s)
- Nutan Mhetras
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, India
| | - Vidhyashri Mapare
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Digambar Gokhale
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
9
|
Gaikwad P, Joshi S, Mandlecha A, RaviKumar A. Phylogenomic and biochemical analysis reassesses temperate marine yeast Yarrowia lipolytica NCIM 3590 to be Yarrowia bubula. Sci Rep 2021; 11:5487. [PMID: 33750815 PMCID: PMC7943819 DOI: 10.1038/s41598-021-83914-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Yarrowia clade contains yeast species morphologically, ecologically, physiologically and genetically diverse in nature. Yarrowia lipolytica NCIM 3590 (NCIM 3590), a biotechnologically important strain, isolated from Scottish sea waters was reinvestigated for its phenotypic, biochemical, molecular and genomic properties as it exhibited characteristics unlike Y. lipolytica, namely, absence of extracellular lipolytic activity, growth at lower temperatures (less than 20 °C) and in high salt concentrations (10% NaCl). Molecular identification using ITS and D1/D2 sequences suggested NCIM 3590 to be 100% identical with reference strain Yarrowia bubula CBS 12934 rather than Y. lipolytica CBS 6124 (87% identity) while phylogenetic analysis revealed that it clustered with Y. bubula under a separate clade. Further, whole genome sequencing of NCIM 3590 was performed using Illumina NextSeq technology and the draft reported here. The overall genome relatedness values obtained by dDDH (94.1%), ANIb/ANIm (99.41/99.42%) and OrthoANI (99.47%) indicated proximity between NCIM 3590 and CBS 12934 as compared to the reference strain Y. lipolytica. No extracellular lipase activity could be detected in NCIM 3590 while LIP2 gene TBLASTN analysis suggests a low 42% identity with e value 2 e-77 and 62% coverage. Hence molecular, phylogenetic, genomics, biochemical and microbial analyses suggests it belongs to Yarrowia bubula.
Collapse
Affiliation(s)
- Prashant Gaikwad
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Swanand Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Akshay Mandlecha
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Ameeta RaviKumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India.
| |
Collapse
|
10
|
MARTÍNEZ-CORONA R, BANDERAS-MARTÍNEZ FJ, PÉREZ-CASTILLO JN, CORTÉS-PENAGOS C, GONZÁLEZ-HERNÁNDEZ JC. Avocado oil as an inducer of the extracellular lipase activity of Kluyveromyces marxianus L-2029. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.06519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Zhang H, Xia Y, Zhou M, Zheng J, Wang Z, Zhang Y. Purification and characterization of a thermoalkaliphilic esterase from Bacillus cereus WZZ006 for enantioselective resolution of indoxacarb intermediate. Int J Biol Macromol 2019; 140:358-367. [PMID: 31430490 DOI: 10.1016/j.ijbiomac.2019.08.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/11/2023]
Abstract
An intracellular esterase (BCE) from Bacillus cereus WZZ006 was purified to homogeneity with an 89.5-fold purification, specific activity of 1.79 U/mg, and 26.7% recovery. The estimated molecular weight of BCE was 96 kDa which was analyzed by SDS-PAGE and MALDI-TOF-MS. Activity staining denotes that BCE has an unexplored new carboxyl esterase characteristic. BCE enzyme activity was maximum at pH 8.5 and also at 50 °C with pNP-caproate as a substrate. This indicates that the studied BCE as a thermoalkaliphilic esterase. The kinetic properties like Km, Vmax, kcat and kcat/Km value for BCE was found to be 0.98 mM, 0.03 mM/min, 69.47 min-1 and 70.89 mM-1 min-1, respectively. Synthesis of (S)-5-chloro-1-oxo-2,3-dihydro-2-hydroxy-1H-indole-2-carboxylic acid methyl ester ((S)-CODHCM) by BCE can be shortened to 3 h compared to 36 h with whole-cell catalysis. The e.e.s achieved was 93.83%, and conversion around 52.78% with E being 39.95. These features render BCE as a promising biocatalyst for the synthesis of a key chiral intermediate for indoxacarb.
Collapse
Affiliation(s)
- Hongyun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ying Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mingpeng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
12
|
de Souza CEC, Ribeiro BD, Coelho MAZ. Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Appl Biochem Biotechnol 2019; 189:933-959. [DOI: 10.1007/s12010-019-03047-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
13
|
Cong S, Tian K, Zhang X, Lu F, Singh S, Prior B, Wang ZX. Synthesis of flavor esters by a novel lipase from Aspergillus niger in a soybean-solvent system. 3 Biotech 2019; 9:244. [PMID: 31168437 DOI: 10.1007/s13205-019-1778-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
To find a lipase for synthesis of flavor esters in food processing, a total of 35 putative lipases from Aspergillus niger F0215 were heterologously expressed and their esterification properties in crude preparations were examined. One of them, named An-lipase with the highest esterification rate (23.1%) was selected for further study. The purified An-lipase had the maximal activity at 20 °C and pH 6.5 and the specific activity of 1293 U/mg. Sixty percent of the activity was maintained in a range of temperatures of 0-30 °C and pHs of 3.0-8.5. The highest hydrolysis activity of An-lipase was towards pNPC (C8), followed by pNPB (C4) and pNPA (C2), then pNPL (C12). K m, V max, k cat, and k cat/K m towards pNPC were 26.7 mmol/L, 129.9 mmol/(L h), 23.2 s-1, and 0.8/mM/s, respectively. The ethyl lactate, butyl butyrate, and ethyl caprylate flavor esters were produced by esterification of the corresponding acids with conversion efficiencies of 15.8, 37.5, and 24.7%, respectively, in a soybean-oil-based solvent system. In conclusion, An lipase identified in this study significantly mediated synthesis of predominant flavor esters (ethyl lactate, butyl butyrate, and ethyl caprylate) in a soybean-oil-lacking other toxic organic solvents, which has potential application in food industries.
Collapse
Affiliation(s)
- Shanzi Cong
- 1College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- 2Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kangming Tian
- 2Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Xin Zhang
- 1College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Fuping Lu
- 1College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Suren Singh
- 3Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4001 South Africa
| | - Bernard Prior
- 4Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa
| | - Zheng-Xiang Wang
- 2Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
14
|
da S. Pereira A, Fontes-Sant’Ana GC, Amaral PF. Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Mohamad Ali MS. New Recombinant Cold-Adapted and Organic Solvent Tolerant Lipase from Psychrophilic Pseudomonas sp. LSK25, Isolated from Signy Island Antarctica. Int J Mol Sci 2019; 20:ijms20061264. [PMID: 30871178 PMCID: PMC6470613 DOI: 10.3390/ijms20061264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 01/03/2023] Open
Abstract
In recent years, studies on psychrophilic lipases have become an emerging area of research in the field of enzymology. The study described here focuses on the cold-adapted organic solvent tolerant lipase strain Pseudomonas sp. LSK25 isolated from Signy Station, South Orkney Islands, maritime Antarctic. Strain LSK25 lipase was successfully cloned, sequenced, and over-expressed in an Escherichia coli system. Sequence analysis revealed that the lipase gene of Pseudomonas sp. LSK25 consists of 1432 bp, lacks an N-terminal signal peptide and encodes a mature protein consisting of 476 amino acids. The recombinant LSK25 lipase was purified by single-step purification using Ni-Sepharose affinity chromatography and had a molecular mass of approximately 65 kDa. The final recovery and purification fold were 44% and 1.3, respectively. The LSK25 lipase was optimally active at 30 °C and at pH 6. Stable lipolytic activity was reported between temperatures of 5–30 °C and at pH 6–8. A significant enhancement of lipolytic activity was observed in the presence of Ca2+ ions, the organic lipids of rice bran oil and coconut oil, a synthetic C12 ester and a wide range of water immiscible organic solvents. Overall, lipase strain LSK25 is a potentially desirable candidate for biotechnological application, due to its stability at low temperatures, across a range of pH and in organic solvents.
Collapse
Affiliation(s)
- Leelatulasi Salwoom
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- National Antarctic Research Centre (NARC) B303, Block B, Level 3, IPS Building, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| |
Collapse
|
16
|
Lopes M, Miranda SM, Alves JM, Pereira AS, Belo I. Waste Cooking Oils as Feedstock for Lipase and Lipid-Rich Biomass Production. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800188] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Sílvia M. Miranda
- Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Joana M. Alves
- Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Ana S. Pereira
- Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Isabel Belo
- Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
17
|
Mehta A, Grover C, Gupta R. Purification of lipase fromAspergillus fumigatususing Octyl Sepharose column chromatography and its characterization. J Basic Microbiol 2018; 58:857-866. [DOI: 10.1002/jobm.201800129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Akshita Mehta
- Department of Biotechnology; Himachal Pradesh University; Summerhill, Shimla Himachal Pradesh India
| | - Chetna Grover
- Department of Biotechnology; Himachal Pradesh University; Summerhill, Shimla Himachal Pradesh India
| | - Reena Gupta
- Department of Biotechnology; Himachal Pradesh University; Summerhill, Shimla Himachal Pradesh India
| |
Collapse
|
18
|
Malekabadi S, Badoei-dalfard A, Karami Z. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. Int J Biol Macromol 2018; 109:389-398. [DOI: 10.1016/j.ijbiomac.2017.11.173] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022]
|
19
|
Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia. BIORESOURCE TECHNOLOGY 2018; 250:306-316. [PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
Collapse
Affiliation(s)
- Revathy Sankaran
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Sze Ying Lee
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yee Jiun Yap
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Han Z, Park A, Su WW. Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids. RSC Adv 2018; 8:27963-27972. [PMID: 35542705 PMCID: PMC9084329 DOI: 10.1039/c8ra05539d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Seed oil from papaya waste was validated as a novel carbon substrate for Yarrowia lipolytica to produce high-value products.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alex Park
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| |
Collapse
|
21
|
Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Thakur IS. Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. BIORESOURCE TECHNOLOGY 2017; 245:743-750. [PMID: 28918245 DOI: 10.1016/j.biortech.2017.08.194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
An extracellular lipase was purified and characterized from psychrotolerant bacterium Pseudomonas sp. ISTPL3 isolated from Pangong lake. Lipase was purified by sequential methods of ammonium sulphate precipitation, dialysis, DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration chromatography, resulting in a purification fold of 6.53 and yield of 5.45%. The molecular weight was approximately 31kDa. The purified lipase was used for transesterification of lipids produced by oleaginous chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel. Upon biochemical characterization, lipase was found to be alkalophilc, thermostable, active in organic polar solvents and sensitive to detergents. Further, lipase was immobilized on activated biochar to assess its transesterification efficiency during biodiesel production. Immobilized lipase gave the highest yield of fatty acid methyl esters (FAMEs) (92.23%)>unimmobilized lipase>NaOH. The immobilized lipase was assessed for its reusability and retained 75.11% of its activity after 3 cycles of biodiesel production.
Collapse
Affiliation(s)
- Khushboo Khosla
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Maurya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Edgard Gnansounou
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
22
|
Darvishi F, Fathi Z, Ariana M, Moradi H. Yarrowia lipolytica as a workhorse for biofuel production. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Syal P, Gupta R. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 fromYarrowia lipolyticaMSR80 inEscherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity. Biotechnol Appl Biochem 2017; 64:851-861. [DOI: 10.1002/bab.1542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/16/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Poonam Syal
- Department of Microbiology; University of Delhi South Campus; New Delhi India
| | - Rani Gupta
- Department of Microbiology; University of Delhi South Campus; New Delhi India
| |
Collapse
|
24
|
de Castro FF, Pinheiro ABP, Nassur CB, Barbosa-Tessmann IP. Mycelium-bound lipase from a locally isolated strain of Aspergillus westerdijkiae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Carvalho T, Finotelli PV, Bonomo RC, Franco M, Amaral PF. Evaluating aqueous two-phase systems for Yarrowia lipolytica extracellular lipase purification. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Wongwatanapaiboon J, Klinbunga S, Ruangchainikom C, Thummadetsak G, Chulalaksananukul S, Marty A, Chulalaksananukul W. Cloning, expression, and characterization of Aureobasidium melanogenum lipase in Pichia pastoris. Biosci Biotechnol Biochem 2016; 80:2231-2240. [DOI: 10.1080/09168451.2016.1206809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.
Collapse
Affiliation(s)
- Jinaporn Wongwatanapaiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
| | - Sirawut Klinbunga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Faculty of Science, Center of Excellence for Marine Biotechnology, Chulalongkorn University, Bangkok, Thailand
| | - Chalermchai Ruangchainikom
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Gamgarn Thummadetsak
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Suphang Chulalaksananukul
- Faculty of Engineering, Department of Chemical Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Jadhav DD, Patil HS, Chaya PS, Thulasiram HV. Fungal mediated kinetic resolution of racemic acetates to ( R )-alcohols using Fusarium proliferatum. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Duan X, Zheng M, Liu Y, Jiang Z, Yang S. High-level expression and biochemical characterization of a novel cold-active lipase from Rhizomucor endophyticus. Biotechnol Lett 2016; 38:2127-2135. [DOI: 10.1007/s10529-016-2200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
29
|
Čanak I, Berkics A, Bajcsi N, Kovacs M, Belak A, Teparić R, Maraz A, Mrša V. Purification and Characterization of a Novel Cold-Active Lipase from the Yeast Candida zeylanoides. J Mol Microbiol Biotechnol 2016; 25:403-11. [PMID: 26820306 DOI: 10.1159/000442818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Cold-active lipases have attracted attention in recent years due to their potential applications in reactions requiring lower temperatures. Both bacterial and fungal lipases have been investigated, each having distinct advantages for particular applications. Among yeasts, cold-active lipases from the genera Candida, Yarrowia, Rhodotorula, and Pichia have been reported. In this paper, biosynthesis and properties of a novel cold-active lipase from Candida zeylanoides isolated from refrigerated poultry meat are described. Heat-sterilized olive oil was found to be the best lipase biosynthesis inducer, while nonionic detergents were not effective. The enzyme was purified to homogeneity using hydrophobic chromatography and its enzymatic properties were tested. Pure enzyme activity at 7 °C was about 60% of the maximal activity at 27 °C. The enzyme had rather good activity at higher temperatures, as well. Optimal pH of pure lipase was between 7.3 and 8.2, while the enzyme from the crude extract had an optimum pH of about 9.0. The enzyme was sensitive to high ionic strength and lost most of its activity at high salt concentrations. Due to the described properties, cold-active C. zeylanoides lipase has comparative advantages to most similar enzymes with technological applications and may have potential to become an industrially important enzyme.
Collapse
Affiliation(s)
- Iva Čanak
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yan Q, Duan X, Liu Y, Jiang Z, Yang S. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:86. [PMID: 27081399 PMCID: PMC4831154 DOI: 10.1186/s13068-016-0501-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/01/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND The biodiesel production can be carried out by transesterification using either chemical or enzymatic process. The enzymatic transesterification is more promising as it offers an environmental friendly option compared to the chemical process, where the lipases with high catalytic efficiency and good stability play a key role. Hence, it is of great value to identify novel lipases which are suitable for biodiesel production. RESULTS A lipase gene (ReLipA) from Rhizomucor endophyticus was cloned and heterologously expressed in Pichia pastoris. ReLipA shared the highest identity of 61 % with the lipases from Rhizopus delemar, Rhizopus oryzae, and Saccharomyces cerevisiae. The recombinant lipase (ReLipA) was secreted as an active protein with the highest activity of 1961 U mL(-1) in a 5-L fermentor by high cell-density fermentation. ReLipA was purified to homogeneity with a recovery yield of 75.7 %. The purified enzyme was most active at pH 6.0 and 40 °C, respectively, and it was stable up to 55 °C. ReLipA displayed 75 % of its maximal activity at 0 °C, indicating that it is a cold-adapted lipase. It exhibited broad substrate specificity toward various p-nitrophenyl esters and triglycerides. ReLipA hydrolyzed triolein to release mainly 1,2-diolein without the formation of 1,3-diolein, suggesting that it is a sn-1,3 regiospecific lipase. Furthermore, ReLipA synthesized different types of oleates by esterification using oleic acid and short chain alcohols (e.g., methanol, ethanol, and butanol) as the substrates with the highest conversion yield of 82.2 %. Therefore, the cold-adapted lipase may be a good biocatalyst in ester synthesis in biodiesel industry. CONCLUSIONS A novel cold-adapted lipase was identified and characterized. The high yield and excellent properties may confer the enzyme with great potential for biodiesel production in bioenergy industry. This is the first report on a cold-adapted lipase from Rhizomucor species.
Collapse
Affiliation(s)
- Qiaojuan Yan
- />Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Xiaojie Duan
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Yu Liu
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
31
|
Dong J, Zhao W, Gasmalla MA, Sun J, Hua X, Zhang W, Han L, Fan Y, Feng Y, Shen Q, Yang R. A novel extracellular cold-active esterase of Pseudomonas sp. TB11 from glacier No.1: Differential induction, purification and characterisation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Ji X, Li S, Wang B, Zhang Q, Lin L, Dong Z, Wei Y. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica. Protein Expr Purif 2015; 115:125-31. [PMID: 26256062 DOI: 10.1016/j.pep.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 11/30/2022]
Abstract
A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60°C with an optimum activity at 25°C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2 KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, Gansu, PR China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Zhiyang Dong
- Institute of Microbiology Chinese Academy of Sciences, Beijing, PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China.
| |
Collapse
|
33
|
Xu H, Yan Q, Duan X, Yang S, Jiang Z. Characterization of an acidic cold-adapted cutinase from Thielavia terrestris and its application in flavor ester synthesis. Food Chem 2015; 188:439-45. [PMID: 26041215 DOI: 10.1016/j.foodchem.2015.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
An acidic cutinase (TtcutB) from Thielavia terrestris CAU709 was purified to apparent homogeneity with 983 Um g(-1) specific activity. The molecular mass of the enzyme was estimated to be 27.3 and 27.9 kDa by SDS-PAGE and gel filtration, respectively. A peptide sequence homology search revealed no homologous cutinases from T. terrestris, except for one putative cutinase gene (XP003656017.1), indicating that TtcutB is a novel enzyme. TtcutB exhibited an acidic pH optimum of 4.0, and stability at pH 2.5-10.5. Optimal activity was at 55 °C, it was stable up to 65 °C, and retained over 30% activity at 0 °C. Km values toward p-nitrophenyl (pNP) acetate, pNP-butyrate and pNP-caproate were 8.3, 1.1 and 0.88 mM, respectively. The cutinase exhibited strong synthetic activity on flavor ester butyl butyrate under non-aqueous environment, and the highest esterification efficiency of 95% was observed under the optimized reaction conditions. The enzyme's unique biochemical properties suggest great potential in flavor esters-producing industries.
Collapse
Affiliation(s)
- Haibo Xu
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Duan
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
34
|
Ji X, Chen G, Zhang Q, Lin L, Wei Y. Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 2015; 55:718-28. [PMID: 25677080 DOI: 10.1002/jobm.201400730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/03/2015] [Indexed: 12/12/2022]
Abstract
An extracellular cold-adapted alkaline lipase from the psychrotrophic Yersinia enterocolitica strain KM1 was purified 26-fold to homogeneity. The enzyme was active over a broad range spanning 0-60 °C with an optimum activity at 37 °C, and it was found to be alkaline-preferring with an optimum activity at pH 9.0. The molecular weight was estimated to be 34.3 KDa and monomeric. The lipase could be activated by Ca(2+) and low concentration (10%) of ethanol, dimethyl sulphoxide, methanol, and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+), SDS, EDTA, and PMSF. Using p-nitrophenyl butyrate as a substrate at 37 °C, the Km and Vmax of the enzyme were found to be 16.58 mM and 5.24 × 10(5) μM · min(-1), respectively. This extracellular cold-adapted alkaline lipase may be a good candidate for detergents and biocatalysts at low temperature.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guiyuan Chen
- Biochemistry and Molecule Biology, Department of Basic Medicine College, Dali University, Dali, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
35
|
Purification and characterization of a cold-active lipase from Pichia lynferdii Y-7723: pH-dependant activity deviation. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
El haouhay N, Samaniego-Sánchez C, Asehraou A, Villalón-Mir M, López-García de la Serrana H. Microbiological characterization of Picholine variety olives and analysis of olive oil produced in traditional oil mills in Morocco. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.918178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Li XL, Zhang WH, Wang YD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP. A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorldJournal 2014; 2014:476207. [PMID: 24715814 PMCID: PMC3970049 DOI: 10.1155/2014/476207] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022] Open
Abstract
Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest.
Collapse
|
39
|
Brígida AI, Amaral PF, Coelho MA, Gonçalves LR. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Li M, Yang LR, Xu G, Wu JP. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. BIORESOURCE TECHNOLOGY 2013; 148:114-20. [PMID: 24050922 DOI: 10.1016/j.biortech.2013.08.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 05/20/2023]
Abstract
An extracellular organic solvent-tolerant and cold-active lipase producing bacterium was isolated from oil-contaminated soil samples, and identified taxonomically as Stenotrophomonas maltophilia. The lipase from S. maltophilia CGMCC 4254 (SML) was purified 60.5-fold to homogeneity with 38.9 U/mg specific activity. Partially purified SML displayed remarkable stability in 50% and 100% (v/v) hydrophobic organic solvents after incubation for 7 days. The enzyme also retained more than 50% of its residual activity in several pure hydrophilic organic solvents after incubation for 7 days. SML showed 57% maximum activity at 5°C, and had optimal activity at 35°C. These unique properties of SML make it promising as a biocatalyst for industrial processes.
Collapse
Affiliation(s)
- Mu Li
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
41
|
Purification, characterisation and expression in Saccharomyces cerevisiae of LipG7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermostability characteristics. Enzyme Microb Technol 2013; 53:18-24. [DOI: 10.1016/j.enzmictec.2013.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/23/2022]
|
42
|
Bresciani FR, Santi L, Macedo AJ, Abraham WR, Vainstein MH, Beys-da-Silva WO. Production and activity of extracellular lipase from Luteibacter sp. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0657-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Zhou J, Chen WW, Jia ZB, Huang GR, Hong Y, Tao JJ, Luo XB. Purification and Characterization of Lipase Produced by Aspergillus oryzae CJLU-31 Isolated from Waste Cooking Oily Soil. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajft.2012.596.608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Gaikaiwari RP, Wagh SA, Kulkarni BD. Efficient lipase purification using reverse micellar extraction. BIORESOURCE TECHNOLOGY 2012; 108:224-230. [PMID: 22230773 DOI: 10.1016/j.biortech.2011.11.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Reverse micellar extraction (RME) of enzyme provides an attractive option for conventional method with the potential to achieve purification and concentration in a single step with high yield. This study presents a methodology for optimization of RME with Pseudomonas lipase as model system. Fold-purification, percent recovery and extraction time were the objective functions while the type and concentration of surfactant, contact time, pH, ionic strength, and the ratio of organic to aqueous phase were the decision variables. Under optimized conditions, the AOT (Aerosol OT (bis 2-ethylhexyl) sodium sulfosuccinate)-isooctane system gave a 15-fold purification, 80% recovery and 2.5-fold concentration of the Pseudomonas lipase with process time of 45 min.
Collapse
Affiliation(s)
- Raghavendra P Gaikaiwari
- Hi Tech Biosciences India Ltd., C 2, 102-103 Saudamini Complex, Paud Road, Pune 411038, MS, India.
| | | | | |
Collapse
|