1
|
Cao Z, Zhang Q, Chen L, Zilda DS, Patantis G, Li J. Agarase cocktail from agarolytic Alteromonas sp. Aga1552 converts homogenized Gelidium amansii into monosaccharide. Int J Biol Macromol 2024; 283:137745. [PMID: 39557247 DOI: 10.1016/j.ijbiomac.2024.137745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Marine algae biomass utilization has attracted considerable attention, however, the preparation of monosaccharides from raw algae is still hindered by many technical barriers. In this study, three genes, aga1365, aga1364, and aga1360, encoding key enzymes constituting a complete agar decomposition pathway were expressed and characterized. Recombinant Aga1365, Aga1364, and Aga1360 exhibited high optimal reaction temperatures and excellent thermal stability. Moreover, enzyme cocktail was proved to have higher synergistic effect to prepare monosaccharide from raw seaweed. The enzyme cocktail of Aga1360 (GH117) with Aga1365 (GH16) and enzyme cocktail of Aga1360 with both Aga1365 and 1364 (GH50) were used to synergistically degrade homogenized Gelidium amansii, maximum monosaccharide production of 21.47 mg/g and 39.28 mg/g could be achieved, respectively. This study presents an environment-friendly, time saving and efficient way to prepare monosaccharides from raw seaweed, which also provide a potential strategy to effectively convert algae biomass for biofuel and biochemical production by utilizing the synergistic effects of enzyme cocktail.
Collapse
Affiliation(s)
- Zhe Cao
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qian Zhang
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Long Chen
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewi Seswita Zilda
- Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya Pademangan, North Jakarta City, Jakarta 14430, Indonesia
| | - Gintung Patantis
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Kodek Bay, North Lombok, West Nusa Tenggara 83352, Indonesia
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| |
Collapse
|
2
|
Shen J, Zhou M, Dan M, Zheng Y, Zhao G, Wang D. Eco-friendly production and probiotic purification of agarose degradation products: Oligosaccharides and 3,6-anhydro-L-galactose. Int J Biol Macromol 2024; 281:135682. [PMID: 39414527 DOI: 10.1016/j.ijbiomac.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Algal biomass offers a solution to global resource scarcity, with agarose, a key component of Gelidium amansii, containing valuable products like oligosaccharides and 3,6-anhydro-L-galactose. However, current purification methods limit their commercial viability. In this study, we utilized gel filtration chromatography to purify agaro-oligosaccharides and neoagaro-oligosaccharides with varying degrees of polymerization, achieving a novel purification of odd-numbered neoagaro-oligosaccharides. Additionally, by fermenting a mixture of 3,6-anhydro L-galactose and D-galactose with six probiotics, our results demonstrate that five probiotics-Lactobacillus plantarum, Bifidobacterium adolescentis, Streptococcus thermophilus, Lactobacillus acidophilus, and Lactobacillus rhamnosus effectively utilize D-galactose in mixed carbon sources while retaining 3,6-anhydro L-galactose. This approach enables efficient, low-cost, and eco-friendly purification of 3,6-anhydro L-galactose, opening avenues for its widespread utilization.
Collapse
Affiliation(s)
- Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin, Sichuan 644000, China.
| |
Collapse
|
3
|
Pathiraja D, Park B, Kim B, Stougaard P, Choi IG. Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol 2023; 12:1782-1793. [PMID: 37265394 DOI: 10.1021/acssynbio.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Bogun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000, Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Tsevelkhoroloo M, Dhakshnamoorthy V, Hong YS, Lee CR, Hong SK. Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12552-x. [PMID: 37184654 DOI: 10.1007/s00253-023-12552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Agar is a galactan and a major component of the red algal cell wall. Agar is metabolized only by specific microorganisms. The final step of the β-agarolytic pathway is mediated by α-neoagarooligosaccharide hydrolase (α-NAOSH), which cleaves neoagarobiose to D-galactose and 3,6-anhydro-α-L-galactose. In the present study, two α-NAOSHs, SCO3481 and SCO3479, were identified in Streptomyces coelicolor A3(2). SCO3481 (370 amino acids, 41.12 kDa) and SCO3479 (995 amino acids, 108.8 kDa) catalyzed the hydrolysis of the α-(1,3) glycosidic bonds of neoagarobiose, neoagarotetraose, and neoagarohexaose at the nonreducing ends, releasing 3,6-anhydro-α-L-galactose. Both were intracellular proteins without any signal peptides for secretion. Similar to all α-NAOSHs reported to date, SCO3481 belonged to the glycosyl hydrolase (GH) 117 family and formed dimers. On the other hand, SCO3479 was a large monomeric α-NAOSH belonging to the GH2 family with a β-galactosidase domain. SCO3479 also clearly showed β-galactosidase activity toward lactose and artificial substrates, but SCO3481 did not. The optimum conditions for α-NAOSH were pH 6.0 and 25 °C for SCO3481, and pH 6.0 and 30 °C for SCO3479. Enzymatic activity was enhanced by Co2+ for SCO3481 and Mg2+ for SCO3479. The β-galactosidase activity of SCO3479 was maximum at pH 7.0 and 50 °C and was increased by Mg2+. Many differences were evident in the kinetic parameters of each enzyme. Although SCO3481 is typical of the GH117 family, SCO3479 is a novel α-NAOSH that was first reported in the GH2 family. SCO3479, a unique bifunctional enzyme with α-NAOSH and β-galactosidase activities, has many advantages for industrial applications. KEY POINTS: • SCO3481 is a dimeric α-neoagarooligosaccharide hydrolase belonging to GH117. • SCO3479 is a monomeric α-neoagarooligosaccharide hydrolase belonging to GH2. • SCO3479 is a novel and unique bifunctional enzyme that also acts as a β-galactosidase.
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Vijayalakshmi Dhakshnamoorthy
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-Ro, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
5
|
Kim DH, Park SY, Kim KH. Optimal β-galactosidases for producing high-titer 3,6-anhydro-L-galactose from red-algal agarobiose. Appl Microbiol Biotechnol 2022; 106:8111-8120. [PMID: 36399167 DOI: 10.1007/s00253-022-12274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
3,6-Anhydro-L-galactose (L-AHG) is a monomeric sugar in agarose derived from red macroalgae. Owing to its various physiological activities such as anti-inflammation, moisturizing, skin whitening, anti-colon cancer, and anti-cariogenicity, L-AHG is a potential functional ingredient. In our previous study, a simple and efficient two-step L-AHG production process was designed for high-titer L-AHG production, where a single enzyme was used after the liquefaction of agarose by acid prehydrolysis. However, the enzyme used did not completely hydrolyze agarobiose (AB). Therefore, in this study, for the efficient hydrolysis of AB and the high-titer production of L-AHG, various β-galactosidases belonging to glycoside hydrolase families 1, 2, 35, and 42 were compared by testing their substrate specificities and kinetic parameters. Among the five β-galactosidases, Bga42A, originating from Bifidobacterium longum ssp. infantis ATCC 15,697, showed the highest substrate specificity. Consequently, the two-step process utilizing Bga42A as a single enzyme resulted in a high-titer production of L-AHG at 85.9 g/L, demonstrating the feasibility of producing L-AHG from agarose. KEY POINTS: • L-AHG derived from red macroalgae has various physiological activities. • Various β-galactosidases were evaluated to efficiently hydrolyze agarobiose. • Bga42A showed the highest substrate specificity against agarobiose. • The highest amount of L-AHG with 85.9 g/L was simply produced.
Collapse
Affiliation(s)
- Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - So Young Park
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Dutschei T, Zühlke MK, Welsch N, Eisenack T, Hilkmann M, Krull J, Stühle C, Brott S, Dürwald A, Reisky L, Hehemann JH, Becher D, Schweder T, Bornscheuer UT. Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan. Microb Cell Fact 2022; 21:207. [PMID: 36217189 PMCID: PMC9549685 DOI: 10.1186/s12934-022-01931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. Results In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated β-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. Conclusion Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01931-0.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Norma Welsch
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Tom Eisenack
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Maximilian Hilkmann
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Carlo Stühle
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Stefan Brott
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Alexandra Dürwald
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute for Microbiology, University of Greifswald, 17487, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| |
Collapse
|
7
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
8
|
Yu S, Park SY, Kim DH, Yun EJ, Kim KH. Multi-Step Enzymatic Production and Purification of 2-Keto-3-Deoxy-Galactonate from Red-Macroalgae-Derived Agarose. Mar Drugs 2022; 20:md20050288. [PMID: 35621939 PMCID: PMC9147760 DOI: 10.3390/md20050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products.
Collapse
Affiliation(s)
- Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
| | - So Young Park
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
| | - Dong Hyun Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Korea;
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: (E.J.Y.); (K.H.K.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: (E.J.Y.); (K.H.K.)
| |
Collapse
|
9
|
Li G, Guo R, Wu S, Cheng S, Li J, Liu Z, Xie W, Sun X, Zhang Q, Li Z, Xu J, Wu J, Wei Z, Hu F. Characterization of Agarolytic Pathway in a Terrestrial Bacterium Cohnella sp. LGH. Front Microbiol 2022; 13:828687. [PMID: 35432256 PMCID: PMC9008576 DOI: 10.3389/fmicb.2022.828687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have reported that an endo-type β-agarase AgaW was responsible for the hydrolysis of agarose into the major product neoagarotetraose in a terrestrial agar-degrading bacterium Cohnella sp. LGH. Here, we identify and characterize the following depolymerization pathway in strain LGH through the genomic and enzymatic analysis. In the pathway, neoagarotetraose was depolymerized by a novel α-neoagarooligosaccharide (NAOS) hydrolase CL5012 into 3,6-anhydro-α-L-galactose (L-AHG) and agarotriose; Agarotriose was further depolymerized by a novel agarolytic β-galactosidase CL4994 into D-galactose and neoagarobiose; Neoagarobiose was finally depolymerized by CL5012 into L-AHG and D-galactose. Although α-agarase has not been identified in strain LGH, the combined action of CL5012 and CL4994 unexpectedly plays a critical role in the depolymerization of agarotetraose, one theoretical product of α-agarase hydrolysis of agarose. In this pathway, agarotetraose was depolymerized by CL4994 into D-galactose and neoagarotriose; Neoagarotriose was then depolymerized by CL5012 into L-AHG and agarobiose. Furthermore, another novel endo-type β-agarase CL5055 was identified as an isozyme of AgaW with different pH preference in the hydrolysis of agarose into α-NAOSs. Strain LGH seemed to lack a common exo-type β-agarase responsible for the direct depolymerization of agarose or neoagarooligosaccharide into neoagarobiose. These results highlight the diversity of agarolytic manner in bacteria and provide a novel insight on the diversity of agarolytic pathways.
Collapse
Affiliation(s)
- Gen Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Rui Guo
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si Cheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wangliang Xie
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiuyi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - JiaZheng Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jun Wu,
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Bäumgen M, Dutschei T, Bartosik D, Suster C, Reisky L, Gerlach N, Stanetty C, Mihovilovic MD, Schweder T, Hehemann JH, Bornscheuer UT. A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan. J Biol Chem 2021; 297:101210. [PMID: 34547290 PMCID: PMC8511951 DOI: 10.1016/j.jbc.2021.101210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Christoph Suster
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Nadine Gerlach
- Max Planck-Institute for Marine Microbiology, Bremen, Germany; Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
| | | | | | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, Bremen, Germany; Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany.
| |
Collapse
|
11
|
Bäumgen M, Dutschei T, Bornscheuer UT. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. Chembiochem 2021; 22:2247-2256. [PMID: 33890358 PMCID: PMC8360166 DOI: 10.1002/cbic.202100078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| |
Collapse
|
12
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
13
|
Seo JW, Tsevelkhorloo M, Lee CR, Kim SH, Kang DK, Asghar S, Hong SK. Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7. J Microbiol Biotechnol 2020; 30:1659-1669. [PMID: 32876074 PMCID: PMC9728383 DOI: 10.4014/jmb.2008.08017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-Lgalactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium Gayadomonas joobiniege G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase ZgAhgA, from Zobellia galactanivorans, but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from Escherichia coli, was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6- anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20°C, respectively. In particular, rAhg943 could maintain enzyme activity at 10°C (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca2+ ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. Km and Vmax of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.
Collapse
Affiliation(s)
- Ju Won Seo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Maral Tsevelkhorloo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sajida Asghar
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea,Corresponding author Phone: 82-31-330-6198 Fax: 82-31-335-8249 E-mail:
| |
Collapse
|
14
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
15
|
Kim DH, Liu JJ, Lee JW, Pelton JG, Yun EJ, Yu S, Jin YS, Kim KH. Biological upgrading of 3,6-anhydro-L-galactose from agarose to a new platform chemical. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020; 22:1776-1785. [PMID: 33790689 PMCID: PMC8009285 DOI: 10.1039/c9gc04265b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, the utilization of renewable biomass instead of fossil fuels for producing fuels and chemicals is receiving much attention due to the global climate change. Among renewable biomass, marine algae are gaining importance as third generation biomass feedstocks owing to their advantages over lignocellulose. Particularly, red macroalgae have higher carbohydrate contents and simpler carbohydrate compositions than other marine algae. In red macroalgal carbphydrates, 3,6-anhydro-L-galactose (AHG) is the main sugar composing agarose along with D-galactose. However, AHG is not a common sugar and is chemically unstable. Thus, not only AHG but also red macroalgal biomass itself cannot be efficiently converted or utilized. Here, we biologically upgraded AHG to a new platform chemical, its sugar alcohol form, 3,6-anhydro-l-galactitol (AHGol), an anhydrohexitol. To accomplish this, we devised an integrated process encompassing a chemical hydrolysis process for producing agarobiose (AB) from agarose and a biological process for converting AB to AHGol using metabolically engineered Saccharomyces cerevisiae to efficiently produce AHGol from agarose with high titers and yields. AHGol was also converted to an intermediate chemical for plastics, isosorbide. To our knowledge, this is the first demonstration of upgrading a red macroalgal biomass component to a platform chemical via a new biological route, by using an engineered microorganism.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| |
Collapse
|
16
|
Del Río PG, Gomes-Dias JS, Rocha CMR, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. BIORESOURCE TECHNOLOGY 2020; 299:122613. [PMID: 31870706 DOI: 10.1016/j.biortech.2019.122613] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Collapse
Affiliation(s)
- Pablo G Del Río
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Joana S Gomes-Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Park SH, Lee CR, Hong SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 2020; 104:2815-2832. [PMID: 32036436 DOI: 10.1007/s00253-020-10412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.
Collapse
Affiliation(s)
- Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
18
|
Jiang C, Liu Z, Sun J, Mao X. Characterization of a Novel α-Neoagarobiose Hydrolase Capable of Preparation of Medium- and Long-Chain Agarooligosaccharides. Front Bioeng Biotechnol 2020; 7:470. [PMID: 32064255 PMCID: PMC7000632 DOI: 10.3389/fbioe.2019.00470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
α-Neoagarobiose hydrolase plays an important role in saccharification processes of marine biomass. In this study, an α-neoagarobiose hydrolase from Streptomyces coelicolor A3(2), designated as ScJC117, was identified, purified, and characterized. It has a sequence of 370 amino acids and belongs to the GH117 family. ScJC117 exhibited good activity under optimal hydrolysis conditions of pH 6.0 and 30°C, where it showed the Km and kcat for neoagarobiose of 11.57 mM and 0.48 s–1, respectively. ScJC117 showed the ability to hydrolyze neoagarooligosaccharides with the polymerization degrees of 2–14. A basis of catalytic activity toward the first α-1,3-glycosidic bond of the neoagarooligosaccharides from the non-reducing end, ScJC117 can be classified as an exo-type α-neoagarobiose hydrolase. These results suggested that ScJC117 could be used in the preparation of odd agarooligosaccharides (especially agaroheptaose-agaroundecaose) and 3,6-anhydro-L-galactose, which has a functional food additive potential. Moreover, ScJC117 can be used for comprehensive utilization of red algae.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Chi WJ, Seo JW, Hong SK. Characterization of Two Thermostable β-agarases from a Newly Isolated Marine Agarolytic Bacterium, Vibrio sp. S1. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Yu S, Yun EJ, Kim DH, Park SY, Kim KH. Anticariogenic Activity of Agarobiose and Agarooligosaccharides Derived from Red Macroalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7297-7303. [PMID: 31244198 DOI: 10.1021/acs.jafc.9b01245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
3,6-Anhydro-l-galactose (AHG) produced from agarose in red macroalgae was recently suggested as an anticariogenic sugar to replace widely used xylitol. However, the multi-step process for obtaining monomeric sugar AHG from agarose may be expensive. Generally, it is easier to obtain oligosaccharides than monosaccharides from polysaccharides. Therefore, a one-step process to obtain agarobiose (AB) from agarose was recently developed, and here, we suggest AB as a new anticariogenic agent, owing to its anticariogenic activity against Streptococcus mutans. Among AHG-containing oligosaccharides, AB, neoagarobiose (NAB), agarooligosaccharides (AOSs), and neoagarooligosaccharides (NAOSs), AB showed higher inhibitory activity than AOSs against the growth and lactic acid production of S. mutans; no such inhibitory activity was observed for NAB and NAOSs. This inhibitory effect of AB was comparable to the previously reported inhibitory activity of AHG against S. mutans. These results suggest that AB, which can be more economically and simply produced than AHG, may serve as an anticariogenic sugar.
Collapse
Affiliation(s)
- Sora Yu
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Dong Hyun Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - So Young Park
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| |
Collapse
|
21
|
Kim DH, Yun EJ, Lee SH, Kim KH. Novel Two-Step Process Utilizing a Single Enzyme for the Production of High-Titer 3,6-Anhydro-l-galactose from Agarose Derived from Red Macroalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12249-12256. [PMID: 30354118 DOI: 10.1021/acs.jafc.8b04144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
3,6-Anhydro-l-galactose (l-AHG), a major component of agarose derived from red macroalgae, has excellent potential for industrial applications based on its physiological activities such as skin whitening, moisturizing, anticariogenicity, and anti-inflammation. However, l-AHG is not yet commercially available due to the complexity, inefficiency, and high cost of the current processes for producing l-AHG. Currently, l-AHG production depends on a multistep process requiring several enzymes. Here, we designed and tested a novel two-step process for obtaining high-titer l-AHG by using a single enzyme. First, to depolymerize agarose preferentially into agarobiose (AB) at a high titer, the agarose prehydrolysis using phosphoric acid as a catalyst was optimized at a 30.7% (w/v) agarose loading, which is the highest agarose or agar loading reported so far. Then AB produced by the prehydrolysis was hydrolyzed into l-AHG and d-galactose (d-Gal) by using a recently discovered enzyme, Bgl1B. We suggest that this simple and efficient process could be a feasible solution for the commercialization and mass production of l-AHG.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Sang-Hyun Lee
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| |
Collapse
|
22
|
Qu W, Lin D, Zhang Z, Di W, Gao B, Zeng R. Metagenomics Investigation of Agarlytic Genes and Genomes in Mangrove Sediments in China: A Potential Repertory for Carbohydrate-Active Enzymes. Front Microbiol 2018; 9:1864. [PMID: 30177916 PMCID: PMC6109693 DOI: 10.3389/fmicb.2018.01864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Monosaccharides and oligosaccharides produced by agarose degradation exhibit potential in the fields of bioenergy, medicine, and cosmetics. Mangrove sediments (MGSs) provide a special environment to enrich enzymes for agarose degradation. However, representative investigations of the agarlytic genes in MGSs have been rarely reported. In this study, agarlytic genes in MGSs were researched in detail from the aspects of diversity, abundance, activity, and location through deep metagenomics sequencing. Functional genes in MGSs were usually incomplete but were shown as results, which could cause virtually high number of results in previous studies because multiple fragmented sequences could originate from the same genes. In our work, only complete and nonredundant (CNR) genes were analyzed to avoid virtually high amount of the results. The number of CNR agarlytic genes in our datasets was significantly higher than that in the datasets of previous studies. Twenty-one recombinant agarases with agarose-degrading activity were detected using heterologous expression based on numerous complete open-reading frames, which are rarely obtained in metagenomics sequencing of samples with complex microbial communities, such as MGSs. Aga2, which had the highest crude enzyme activity among the 21 recombinant agarases, was further purified and subjected to enzymatic characterization. With its high agarose-degrading activity, resistance to temperature changes and chemical agents, Aga2 could be a suitable option for industrial production. The agarase ratio with signal peptides to that without signal peptides in our MGS datasets was lower than that of other reported agarases. Six draft genomes, namely, Clusters 1-6, were recovered from the datasets. The taxonomic annotation of these genomes revealed that Clusters 1, 3, 5, and 6 were annotated as Desulfuromonas sp., Treponema sp., Ignavibacteriales spp., and Polyangiaceae spp., respectively. Meanwhile, Clusters 2 and 4 were potential new species. All these genomes were first reported and found to have abilities of degrading various important polysaccharides. The metabolic pathway of agarose in Cluster 4 was also speculated. Our results showed the capacity and activity of agarases in the MGS microbiome, and MGSs exert potential as a repertory for mining not only agarlytic genes but also almost all genes of the carbohydrate-active enzyme family.
Collapse
Affiliation(s)
- Wu Qu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Dan Lin
- Novogene Bioinformatics Technology Co. Ltd., Tianjin, China
| | - Zhouhao Zhang
- Novogene Bioinformatics Technology Co. Ltd., Tianjin, China
| | - Wenjie Di
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Boliang Gao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Runying Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China.,Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
23
|
Pathiraja D, Lee S, Choi IG. Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6814-6821. [PMID: 29896965 DOI: 10.1021/acs.jafc.8b01792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
3,6-Anhydro-l-galactose (l-AHG) is a bioactive constituent of agar polysaccharides. To be used as a cosmetic or pharmaceutical ingredient, l-AHG is more favorably prepared by enzymatic saccharification of agar using a combination of agarolytic enzymes. Determining the optimum enzyme combination from the natural repertoire is a bottleneck for designing an efficient enzymatic-hydrolysis process. We consider all theoretical enzymatic-saccharification routes in the natural agarolytic pathway of a marine bacterium, Saccharophagus degradans 2-40. Among these routes, three representative routes were determined by removing redundant enzymatic reactions. We simulated each l-AHG production route with simple kinetic models and validated the reaction feasibility with an experimental procedure. The optimal enzyme mixture (with 67.3% maximum saccharification yield) was composed of endotype β-agarase, exotype β-agarase, agarooligosaccharolytic β-galactosidase, and α-neoagarobiose hydrolase. This approach will reduce the time and effort needed for developing a coherent enzymatic process to produce l-AHG on a mass scale.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Korea
| | - Saeyoung Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Korea
| |
Collapse
|
24
|
Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901 T. Appl Microbiol Biotechnol 2018; 102:6987-6996. [PMID: 29948117 DOI: 10.1007/s00253-018-9142-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Carbohydrates are the product of carbon dioxide fixation by algae in the ocean. Their polysaccharides are depolymerized by marine bacteria, with a vast array of carbohydrate-active enzymes. These enzymes are important tools to establish biotechnological processes based on algal biomass. Green tides, which cover coastal areas with huge amounts of algae from the genus Ulva, represent a globally rising problem, but also an opportunity because their biomass could be used in biorefinery processes. One major component of their cell walls is the anionic polysaccharide ulvan for which the enzymatic depolymerization remains largely unknown. Ulvan lyases catalyze the initial depolymerization step of this polysaccharide, but only a few of these enzymes have been described. Here, we report the cloning, overexpression, purification, and detailed biochemical characterization of the endolytic ulvan lyase from Formosa agariphila KMM 3901T which is a member of the polysaccharide lyase family PL28. The identified biochemical parameters of the ulvan lyase reflect adaptation to the temperate ocean where the bacterium was isolated from a macroalgal surface. The NaCl concentration has a high influence on the turnover number of the enzyme and the affinity to ulvan. Divalent cations were shown to be essential for enzyme activity with Ca2+ likely being the native cofactor of the ulvan lyase. This study contributes to the understanding of ulvan lyases, which will be useful for future biorefinery applications of the abundant marine polysaccharide ulvan.
Collapse
|
25
|
|
26
|
Reisky L, Büchsenschütz HC, Engel J, Song T, Schweder T, Hehemann JH, Bornscheuer UT. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nat Chem Biol 2018; 14:342-344. [PMID: 29459682 DOI: 10.1038/s41589-018-0005-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023]
Abstract
Sugar O-methylation shields algal polysaccharides against microbial hydrolytic enzymes. Here, we describe cytochrome P450 monooxygenases from marine bacteria that, together with appropriate redox-partner proteins, catalyze the oxidative demethylation of 6-O-methyl-D-galactose, which is an abundant monosaccharide of the algal polysaccharides agarose and porphyran. This previously unknown biological function extends the group of carbohydrate-active enzymes to include the class of cytochrome P450 monooxygenases.
Collapse
Affiliation(s)
- Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Hanna C Büchsenschütz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jennifer Engel
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Tao Song
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany. .,University of Bremen, Center for Marine Environmental Sciences (MARUM), Bremen, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
27
|
Di W, Qu W, Zeng R. Cloning, expression, and characterization of thermal-stable and pH-stable agarase from mangrove sediments. J Basic Microbiol 2018; 58:302-309. [DOI: 10.1002/jobm.201700696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjie Di
- Key Laboratory of Marine Genetic Resources; Third Institute of Oceanography; State Oceanic Administration (SOA); Xiamen China
| | - Wu Qu
- School of Life Sciences; Xiamen University; Xiamen China
| | - Runying Zeng
- Key Laboratory of Marine Genetic Resources; Third Institute of Oceanography; State Oceanic Administration (SOA); Xiamen China
- Key Laboratory of Marine Genetic Resources; Xiamen Fujian Province China
| |
Collapse
|
28
|
Kang DH, You SK, Joo YC, Shin SK, Hyeon JE, Han SO. Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae. BIORESOURCE TECHNOLOGY 2018; 250:666-672. [PMID: 29220811 DOI: 10.1016/j.biortech.2017.11.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
In the practice of converting red algae biomass into biofuel or valuable biomaterials, the critical step is the decomposition process of the agarose to give fermentable monomeric sugars. In this study, we selected three enzymes such as agarase, carrageenase and neoagarobiose hydrolase to inducible the simultaneous hydrolysis of the major substrates such as agar and carrageenan constituting the pretreated red algae, and expressed the chimeric enzymes and formed a complexes through optimization of addition ratio. As a result, hydrolysis by enzyme complexes showed a maximum sugar release of 679 mg L-1 with 67.9% saccharification yield from G. verrucosa natural substrate. The difference in the reducing sugar by the enzyme complexes was 3.6-fold higher than that of the monomer enzyme (cAgaB yield 188.6 mg L-1). The synergistic effect of producing sugars from red algae biomass through these enzyme complexes can be a very important biological tools aimed at bioenergy production.
Collapse
Affiliation(s)
- Dae Hee Kang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Seung Kyou You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young-Chul Joo
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
29
|
Yu S, Choi IG, Yun EJ, Kim KH. High substrate specificity of 3,6-anhydro- l -galactose dehydrogenase indicates its essentiality in the agar catabolism of a marine bacterium. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Ramos KRM, Valdehuesa KNG, Maza PAMM, Nisola GM, Lee WK, Chung WJ. Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Gomaa M, Hifney AF, Fawzy MA, Abdel-Gawad KM. Statistical Optimization of Culture Variables for Enhancing Agarase Production by Dendryphiella arenaria Utilizing Palisada perforata (Rhodophyta) and Enzymatic Saccharification of the Macroalgal Biomass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:592-600. [PMID: 29080933 DOI: 10.1007/s10126-017-9778-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Agarase is a promising biocatalyst for several industrial applications. Agarase production was evaluated by the marine fungus Dendryphiella arenaria utilizing Palisada perforata as a basal substrate in semi-solid state fermentation. Seaweed biomass, glucose, and sucrose were the most significant parameters affecting agarase production, and their levels were further optimized using Box-Behnken design. The maximum agarase activity was 7.69 U/mL. Agarase showed a degree of thermostability with half-life of 99 min at 40 °C, and declining to 44.72 min at 80 °C. Thermodynamics suggested an important process of protein aggregation during thermal inactivation. Additionally, the enzymatic saccharification of the seaweed biomass using crude agarase was optimized with respect to biomass particle size, solid/liquid ratio, and enzyme loadings. The amount of biosugars obtained after optimization was 26.15 ± 1.43 mg/g. To the best of our knowledge, this is the first report on optimization of agarase in D. arenaria.
Collapse
Affiliation(s)
- Mohamed Gomaa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mustafa A Fawzy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Khayria M Abdel-Gawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
32
|
Wu YR, Zhang M, Zhong M, Hu Z. Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production. BIORESOURCE TECHNOLOGY 2017; 241:369-373. [PMID: 28578277 DOI: 10.1016/j.biortech.2017.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 05/06/2023]
Abstract
Nowadays, marine biomass is gradually considered as another utilizable material for the sustainable bioenergy development. In the present study, galactose, the main component of agar polysaccharide, was utilized for the biohydrogen production by Enterobacter sp. CN1. The highest hydrogen yield of 303.2mL/g was obtained in the cultivation media containing 5.87g/L of galactose, together with initial pH of 7.3 and incubation temperature of 36°C, after the response surface methodology (RSM) analysis. After the saccharification process by the agarase (AgaXa) and neoagarobiose hydrolase (NH852), the agar hydrolysate obtained was further applied to generate biohydrogen by strain CN1. Under the synergistic enzymatic saccharification and fermentation process, the production of biohydrogen was obtained to be 5047±228mL/L from 50g/L of agar, resulting in 3.86-fold higher than the control without enzymatic pretreatment.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Mingming Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
33
|
Yun EJ, Yu S, Kim KH. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl Microbiol Biotechnol 2017; 101:5581-5589. [DOI: 10.1007/s00253-017-8383-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
34
|
Rapid and robust enzymatic sensing and quantitation of 3,6-Anhydro-L-galactose in a heterogeneous sugar mixture. Carbohydr Res 2017; 446-447:13-18. [DOI: 10.1016/j.carres.2017.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022]
|
35
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
36
|
Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar. Appl Microbiol Biotechnol 2016; 101:1573-1580. [PMID: 27888333 DOI: 10.1007/s00253-016-8011-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
In enzymatic saccharification of agar, endo- and exo-agarases together with neoagarobiose hydrolase (NABH) are important key enzymes for the sequential hydrolysis reactions. In this study, a bifunctional endo/exo-agarase was fused with NABH for production of mono-sugars (D-galactose and 3,6-anhydro-L-galactose) from agar using only one fusion enzyme. Two fusion enzymes with either bifunctional agarase (Sco3476) or NABH (Zg4663) at the N-terminus, Sco3476-Zg4663 (SZ) and Zg4663-Sco3476 (ZS), were constructed. Both fusion enzymes exhibited their optimal agarase and NABH activities at 40 and 35 °C, respectively. Fusions SZ and ZS enhanced the thermostability of the NABH activity, while only fusion SZ showed a slight enhancement in the NABH catalytic efficiency (K cat/K M) from 14.8 (mg/mL)-1 s-1 to 15.8 (mg/mL)-1 s-1. Saccharification of agar using fusion SZ resulted in 2-fold higher mono-sugar production and 3-fold lower neoagarobiose accumulation when compared to the physical mixture of Sco3476 and Zg4663. Therefore, this fusion has the potential to reduce enzyme production cost, decrease intermediate accumulation, and increase mono-sugar yield in agar saccharification.
Collapse
|
37
|
Yun EJ, Lee AR, Kim JH, Cho KM, Kim KH. 3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chem 2016; 221:976-983. [PMID: 27979302 DOI: 10.1016/j.foodchem.2016.11.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 01/25/2023]
Abstract
The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Ah Reum Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Jung Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Kyung Mun Cho
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
38
|
Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 2016; 100:9439-9450. [DOI: 10.1007/s00253-016-7857-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023]
|
39
|
Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, An HJ, Kim JH, Choi IG, Kim KH. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 2016; 101:1111-1120. [DOI: 10.1007/s00253-016-7831-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/14/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
|
40
|
Alkotaini B, Han NS, Kim BS. Enhanced catalytic efficiency of endo-β-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis. Enzyme Microb Technol 2016; 93-94:142-149. [PMID: 27702474 DOI: 10.1016/j.enzmictec.2016.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/23/2016] [Accepted: 08/17/2016] [Indexed: 11/16/2022]
Abstract
Recently, Microbulbifer thermotolerans JAMB-A94 endo-β-agarase I was expressed as catalytic domain (GH16) without a carbohydrate-binding module (CBM). In this study, we successfully constructed different fusions of GH16 with its original CBM6 and CBM13 derived from Catenovulum agarivorans. The optimum temperature and pH for fusions GH16-CBM6, GH16-CBM13, GH16-CBM6-CBM13 and GH16-CBM13-CBM6 were similar to GH16, at 55°C and pH 7. All the constructed fusions significantly enhanced the GH16 affinity (Km) and the catalytic efficiency (Kcat/Km) toward agar. Among them, GH16-CBM6-CBM13 exhibited the highest agarolytic activity, for which Km decreased from 3.67 to 2.11mg/mL and Kcat/Km increased from 98.6 (mg/mL)-1sec-1 to 400.6 (mg/mL)-1sec-1. Moreover, all fusions selectively increased GH16 binding ability to agar, in which the highest binding ability of 95% was obtained with fusion GH16-CBM6-CBM13. Melted agar was prehydrolyzed with GH16-CBM6-CBM13, resulting in a degree of liquefaction of 45.3% and reducing sugar yield of 14.2%. Further addition of Saccharophagus degradans agarolytic enzymes resulted in mono-sugar yields of 35.4% for galactose and 31.5% for 3,6-anhydro-l-galactose. There was no pH neutralization step required and no 5-hydroxymethylfurfural detected, suggesting the potential of a new enzymatic prehydrolysis process for efficient production of bio-products such as biofuels.
Collapse
Affiliation(s)
- Bassam Alkotaini
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
41
|
Wang D, Yun EJ, Kim S, Kim DH, Seo N, An HJ, Kim JH, Cheong NY, Kim KH. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst Eng 2016; 39:959-66. [PMID: 26923145 DOI: 10.1007/s00449-016-1575-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Abstract
This study was performed to evaluate the effectiveness of acidic pretreatment in increasing the enzymatic digestibility of alginate from brown macroalgae. Pretreatment with 1 % (w/v) sulfuric acid at 120 °C for 30 min produced oligosaccharides, mannuronic acid, and guluronic acid. Enzymatic saccharification of pretreated alginate by alginate lyases produced 52.2 % of the theoretical maximal sugar yield, which was only 7.5 % higher than the sugar yield obtained with unpretreated alginate. Mass spectrometric analyses of products of the two reactions revealed that acidic pretreatment and enzymatic saccharification produced saturated monomers (i.e., mannuronic and guluronic acid) with saturated oligosaccharides and unsaturated monomers (i.e., 4-deoxy-L-erythro-5-hexoseulose uronic acid; DEH), respectively. While DEH is further metabolized by microorganisms, mannuronic acid and guluronic acid are not metabolizable. Because of the poor efficacy in increasing enzymatic digestibility and owing to the formation of non-fermentable saturated monomers, acidic pretreatment cannot be recommended for enzymatic saccharification and fermentation of alginate.
Collapse
Affiliation(s)
- Damao Wang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Nam Yong Cheong
- Environmental Analysis Division, Korea Apparel Testing & Research Institute, Seoul, 02579, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
42
|
Seo YB, Park J, Huh IY, Hong SK, Chang YK. Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Direct production of ethanol from neoagarobiose using recombinant yeast that secretes α-neoagarooligosaccharide hydrolase. Enzyme Microb Technol 2016; 85:82-9. [DOI: 10.1016/j.enzmictec.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022]
|
44
|
Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. Int J Mol Sci 2016; 17:145. [PMID: 26861307 PMCID: PMC4783879 DOI: 10.3390/ijms17020145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Marine macroalgae (green, red and brown macroalgae) have attracted attention as an alternative source of renewable biomass for producing both fuels and chemicals due to their high content of suitable carbohydrates and to their advantages over terrestrial biomass. However, except for green macroalgae, which contain relatively easily-fermentable glucans as their major carbohydrates, practical utilization of red and brown macroalgae has been regarded as difficult due to the major carbohydrates (alginate and mannitol of brown macroalgae and 3,6-anhydro-L-galactose of red macroalgae) not being easily fermentable. Recently, several key biotechnologies using microbes have been developed enabling utilization of these brown and red macroalgal carbohydrates as carbon sources for the production of fuels (ethanol). In this review, we focus on these recent developments with emphasis on microbiological biotechnologies.
Collapse
|
45
|
Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 199:311-318. [PMID: 26276401 DOI: 10.1016/j.biortech.2015.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 05/28/2023]
Abstract
Red macroalgae are currently considered as renewable resources owing to their high carbohydrate and low lignin and hemicellulose contents. However, utilization of red macroalgae has been limited owing to the lack of established methods for pretreatment and an effective saccharification system. Furthermore, marine red macroalgae consist of the non-favorable mixed sugars for industrial microorganisms. In this review, we suggest strategies for converting red macroalgae to bio-based products, focusing on the pretreatment and saccharification of red macroalgae to produce fermentable sugars and the microbial fermentation of these sugars by industrial microorganisms. In particular, some recent breakthroughs for the efficient utilization of red macroalgae include the discovery of key enzymes for the complete monomerization of red macroalgal carbohydrate and the catabolic pathway of 3,6-anhydro-l-galactose, the most abundant sugar in red macroalgae. This review provides a comprehensive perspective for the efficient utilization of red macroalgae as sustainable resources to produce bio-based products.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Hee Taek Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Kyung Mun Cho
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
46
|
Lee CH, Yun EJ, Kim HT, Choi IG, Kim KH. Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Liu N, Yang M, Mao X, Mu B, Wei D. Molecular cloning and expression of a new α-neoagarobiose hydrolase from Agarivorans gilvus WH0801 and enzymatic production of 3,6-anhydro-l-galactose. Biotechnol Appl Biochem 2015; 63:230-7. [PMID: 25676340 DOI: 10.1002/bab.1363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022]
Abstract
A new α-neoagarobiose hydrolase (NABH) called AgaWH117 was cloned from Agarivorans gilvus WH0801. The gene encoding this hydrolase consists of 1,086 bp and encodes a protein containing 361 amino acids. This new NABH showed 74% amino acid sequence identity with other known NABHs. The molecular mass of the recombinant AgaWH117 was estimated to be 41 kDa. Purified AgaWH117 showed endolytic activity during neoagarobiose degradation, yielding 3,6-anhydro-l-galactose (l-AHG) and d-galactose as products. It showed a maximum activity at a temperature of 30 °C and a pH of 6.0 and was stable at temperatures below 30 °C. Its Km and Vmax values were 2.094 mg/mL and 6.982 U/mg, respectively. The cloning strategy used and AgaWH117 isolated in this study will provide information on the saccharification process of marine biomass. This study provides a method to produce l-AHG from agarose by using AgaWH117 without an acid and describes its one-step purification by using Bio-Gel P2 chromatography.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Bozhong Mu
- Laboratory for Advanced Materials and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
48
|
Draft Genome Sequence of the Nonmarine Agarolytic Bacterium Cellvibrio sp. OA-2007. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00468-15. [PMID: 25977437 PMCID: PMC4432343 DOI: 10.1128/genomea.00468-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellvibrio sp. OA-2007 is a Gram-negative, aerobic, and agarolytic bacterium isolated from activated sludge. We present the draft genome sequence of strain OA-2007, composed of 97 contigs, totaling 4,595,379 bp in size, and containing 4,094 open reading frames, with a G+C content of 47.71%.
Collapse
|
49
|
Yun EJ, Choi IG, Kim KH. Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 2015; 33:247-9. [DOI: 10.1016/j.tibtech.2015.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
50
|
Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 2014; 17:1677-88. [DOI: 10.1111/1462-2920.12607] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Saeyoung Lee
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Hee Taek Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Jeffrey G. Pelton
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Sooah Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Hyeok-Jin Ko
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - In-Geol Choi
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Kyoung Heon Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| |
Collapse
|