1
|
Garbe M, Lehmann LT, Berger RG, Ersoy F. Improvement in the Stability and Enzymatic Activity of Pleurotus sapidus Lipoxygenase Dissolved in Natural Deep Eutectic Solvents (NADESs). Life (Basel) 2024; 14:271. [PMID: 38398780 PMCID: PMC10890681 DOI: 10.3390/life14020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Natural deep eutectic solvents (NADESs) can serve as solvents for enzymes, are biodegradable, and have low toxicities. Eight NADESs with different hydrogen bond acceptors and donors were tested to improve the stability and activity of a lipoxygenase from Basidiomycete Pleurotus sapidus (LOXPSA). Betaine:sorbitol:water (1:1:3, BSorbW) and betaine:ethylene glycol (1:3, BEtGly) had the best impact on the peroxidation of linoleic acid and the side reaction of piperine to the vanilla-like scented compound piperonal. The yield of piperonal in NADESs increased by 43% in BSorbW and 40% in BEtGly compared to the control. The addition of BSorbW also enhanced the enzyme's stability at various temperatures and increased its activity during incubation at 60 °C. The demonstrated improvement in lipoxygenase activity and stability indicates versatile applications in industry, expanding the potential uses of the enzyme.
Collapse
Affiliation(s)
- Maria Garbe
- Institute of Food Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.T.L.); (F.E.)
| | | | - Ralf Günter Berger
- Institute of Food Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.T.L.); (F.E.)
| | | |
Collapse
|
2
|
Sharma C, Deutsch JM. Upcycling in the context of biotechnology-based solutions for food quality, loss, and consumer perception. Curr Opin Biotechnol 2023; 81:102920. [PMID: 36996729 DOI: 10.1016/j.copbio.2023.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/03/2023] [Accepted: 02/18/2023] [Indexed: 03/30/2023]
Abstract
Wasted food is the single biggest contributor to greenhouse gases. Globally, attempts are being made to both reduce surplus food and divert it into food-to-food operations. This opinion piece covers upcycling and biotechnology-mediated solutions on a technology continuum as a part of the bigger whole to solve this problem. Upcycling is an approach to divert foods that would otherwise be wasted into higher uses that would also have tangible benefits to the environment and society. Likewise, biotechnology can help farmers produce crops with longer shelf life and that satisfy cosmetic standards. Uncertainty, either in the form of food safety, technology, or neophobia in the case of upcycled foods or genes (cisgenic or transgenic) in the case of biotechnology, is a hurdle. Communication and consumer perception should be researched. Both upcycling and biotechnology can provide practical solutions, but their acceptance depends on communication strategies and consumer perception.
Collapse
|
3
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
4
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
5
|
Liu T, Li W, Chen H, Wu T, Zhu C, Zhuo M, Li S. Systematic Optimization of HPO-CPR to Boost (+)-Nootkatone Synthesis in Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15548-15559. [PMID: 36468547 DOI: 10.1021/acs.jafc.2c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an important and expensive natural sesquiterpene compound in grapefruit, the interest in (+)-nootkatone is stimulated by its strong grapefruit-like odor and physiological activities, which induce efforts for its microbial production. However, the low catalytic efficiency of the cytochrome P450-P450 reductase (HPO-CPR) system is the main challenge. We developed a high-throughput screening (HTS) method using the principle of the color reaction between carbonyl compounds and 2,4-dinitrophenylhydrazine (DNPH), which could rapidly screen the activity of candidate HPO mutants. After optimizing the pairing of HPO and CPR and through semirational design, the optimal mutant HPO_M18 with catalytic performance 2.54 times that of the initial was obtained. An encouraging (+)-nootkatone titer of 2.39 g/L was achieved through two-stage fed-batch fermentation after metabolic engineering and endoplasmic reticulum engineering, representing the highest titer reported to date. Our findings lay the foundation for the development of an economically viable bioprocess for (+)-nootkatone.
Collapse
Affiliation(s)
- Tong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wen Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Kokorin A, Urlacher VB. Artificial fusions between P450 BM3 and an alcohol dehydrogenase for efficient (+)-nootkatone production. Chembiochem 2022; 23:e202200065. [PMID: 35333425 PMCID: PMC9325546 DOI: 10.1002/cbic.202200065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/24/2022] [Indexed: 11/27/2022]
Abstract
Multi‐enzyme cascades enable the production of valuable chemical compounds, and fusion of the enzymes that catalyze these reactions can improve the reaction outcome. In this work, P450 BM3 from Bacillus megaterium and an alcohol dehydrogenase from Sphingomonas yanoikuyae were fused to bifunctional constructs to enable cofactor regeneration and improve the in vitro two‐step oxidation of (+)‐valencene to (+)‐nootkatone. An up to 1.5‐fold increased activity of P450 BM3 was achieved with the fusion constructs compared to the individual enzyme. Conversion of (+)‐valencene coupled to cofactor regeneration and performed in the presence of the solubilizing agent cyclodextrin resulted in up to 1080 mg L−1 (+)‐nootkatone produced by the fusion constructs as opposed to 620 mg L−1 produced by a mixture of the separate enzymes. Thus, a two‐step (+)‐valencene oxidation was considerably improved through the simple method of enzyme fusion.
Collapse
Affiliation(s)
- Arsenij Kokorin
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf, Institute of Biochemistry, GERMANY
| | - Vlada B Urlacher
- Heinrich-Heine-Universitat Dusseldorf, Institute of Biochemistry, Universitaetstr. 1, 40225, Dusseldorf, GERMANY
| |
Collapse
|
7
|
Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express 2021; 11:150. [PMID: 34779947 PMCID: PMC8594250 DOI: 10.1186/s13568-021-01304-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycetes, also known as club fungi, consist of a specific group of fungi. Basidiomycetes produce a large number of secondary metabolites, of which sesquiterpenoids, diterpenoids and triterpenoids are the primary components. However, these terpenoids tend to be present in low amounts, which makes it difficult to meet application requirements. Terpenoid biosynthesis improves the quantity of these secondary metabolites. However, current understanding of the biosynthetic mechanism of terpenoids in basidiomycetes is insufficient. Therefore, this article reviews the latest research on the biosynthesis of terpenoids in basidiomycetes and summarizes the CYP450 involved in the biosynthesis of terpenoids in basidiomycetes. We also propose opportunities and challenges for chassis microbial heterologous production of terpenoids in basidiomycetes and provide a reference basis for the better development of basidiomycete engineering.
Collapse
|
8
|
Krahe N, Berger RG, Kahlert L, Ersoy F. Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus. Chembiochem 2021; 22:2857-2861. [PMID: 34033194 PMCID: PMC8518924 DOI: 10.1002/cbic.202100183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Indexed: 11/08/2022]
Abstract
The valuable aroma compound piperonal with its vanilla-like olfactory properties is of high interest for the fragrance and flavor industry. A lipoxygenase (LOXPsa 1) of the basidiomycete Pleurotus sapidus was identified to convert piperine, the abundant pungent principle of black pepper (Piper nigrum), to piperonal and a second volatile product, 3,4-methylenedioxycinnamaldehyde, with a vanilla-like odor through an alkene cleavage. The reaction principle was co-oxidation, as proven by its dependence on the presence of linoleic or α-linolenic acid, common substrates of lipoxygenases. Optimization of the reaction conditions (substrate concentrations, reaction temperature and time) led to a 24-fold and 15-fold increase of the piperonal and 3,4-methylenedioxycinnamaldehyde concentration using the recombinant enzyme. Monokaryotic strains showed different concentrations of and ratios between the two reaction products.
Collapse
Affiliation(s)
- Nina‐Katharina Krahe
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Ralf G. Berger
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Lukas Kahlert
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
- Present address: Institut für Organische Chemie undBiomolekulares WirkstoffzentrumGottfried Wilhelm Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Franziska Ersoy
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
9
|
Li X, Ren JN, Fan G, Zhang LL, Pan SY. Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. J Ind Microbiol Biotechnol 2021; 48:kuab046. [PMID: 34279658 PMCID: PMC8788795 DOI: 10.1093/jimb/kuab046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
(+)-Nootkatone is an important functional sesquiterpene and is comprehensively used in pharmaceutical, cosmetic, agricultural and food flavor industries. However, (+)-nootkatone is accumulated trace amounts in plants, and the demand for industry is mainly met by chemical methods which is harmful to the environment. The oxygen-containing sesquiterpenes prepared using microbial methods can be considered as "natural." Microbial transformation has the advantages of mild reaction conditions, high efficiency, environmental protection, and strong stereoselectivity, and has become an important method for the production of natural spices. The microbial biosynthesis of (+)-nootkatone from the main precursor (+)-valencene is summarized in this paper. Whole-cell systems of fungi, bacteria, microalgae, and plant cells have been employed. It was described that the enzymes involved in the microbial biosynthesis of (+)-nootkatone, including cytochrome p450 enzymes, laccase, lipoxygenase, and so on. More recently, the related enzymes were expressed in microbial hosts to heterologous produce (+)-nootkatone, such as Escherichia coli, Pichia pastoris, Yarrowia lipolytica, and Saccharomyces cerevisiae. Finally, the development direction of research for realizing industrialization of microbial transformation was summarized and it provided many options for future improved bioprocesses.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021; 10:foods10040707. [PMID: 33810435 PMCID: PMC8066995 DOI: 10.3390/foods10040707] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste and byproducts are generated along the entire food processing and storage chain. The large amount of waste deriving from the whole process represents not only a great economic loss but also an important ethical and environmental issue in terms of failure to recycle potentially reusable materials. New, clear strategies are needed to limit the amount of waste produced and, at the same time, promote its enhancement for further conversion and application to different industrial fields. This review gives an overview of the biological approaches used so far to exploit agri-food wastes and byproducts. The application of solid-state fermentation by different microorganisms (fungi, yeasts, bacteria) to produce several value-added products was analyzed, focusing on the exploitation of lactic acid bacteria as workhorses for the production of flavoring compounds.
Collapse
|
11
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
12
|
Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. J Biotechnol 2019; 292:68-75. [PMID: 30690094 DOI: 10.1016/j.jbiotec.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In this study, a combined optimization strategy, based on co-expression of molecular chaperones and supplementation of osmolytes, was used to reduce the formation of inclusion bodies and enhance the expression of the soluble form of 4-α-glucanotransferase. The 4-α-glucanotransferase yield was enhanced by co-expression with pGro7 and supplementation of trimetlylamine oxide. Subsequently, the effects of process conditions (temperature, inducer concentration, and arabinose concentration) on cell growth and 4-α-glucanotransferase production were also investigated in shake flasks. In addition, a modified high-cell-density fermentation approach was proposed and applied in 3-L fermentor supplied with l-arabinose and trimetlylamine oxide, which achieved a dry cell weight of 65.92 g·L-1. Through this cultivation approach at 28 °C, the activity of 4-α-glucanotransferase reached 332.5 U·g-1 dry cell weight, which was 24.6-fold greater than the initial activity in shake flask cultivation. This combined strategy is expected to provide an efficient and economical approach to overproduction of aggregation prone proteins on a large scale.
Collapse
|
13
|
Linke D, Omarini AB, Takenberg M, Kelle S, Berger RG. Long-Term Monokaryotic Cultures of Pleurotus ostreatus var. florida Produce High and Stable Laccase Activity Capable to Degrade ß-Carotene. Appl Biochem Biotechnol 2018; 187:894-912. [PMID: 30099681 DOI: 10.1007/s12010-018-2860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
An extracellular laccase (Lacc10) was discovered in submerged cultures of Pleurotus ostreatus var. florida bleaching ß-carotene effectively without the addition of a mediator (650 mU/L, pH 4). Heterologous expression in P. pastoris confirmed the activity and structural analyses revealed a carotenoid-binding domain, which formed the substrate-binding pocket and is reported here for the first time. In order to increase activity, 106 basidiospore-derived monokaryons and crosses of compatible progenies were generated. These showed high intraspecific variability in growth rate and enzyme formation. Seventy-two homokaryons exhibited a higher activity-to-growth-rate-relation than the parental dikaryon, and one isolate produced a very high activity (1800 mU/L), while most of the dikaryotic hybrids showed lower activity. The analysis of the laccase gene of the monokaryons revealed two sequences differing in three amino acids, but the primary sequences gave no clue for the diversity of activity. The enzyme production in submerged cultures of monokaryons was stable over seven sub-cultivation cycles.
Collapse
Affiliation(s)
- Diana Linke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Alejandra B Omarini
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.,INCITAP (CONICET-UNLPam) Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Pampa, Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - Meike Takenberg
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Sebastian Kelle
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
14
|
A type D ferulic acid esterase from Streptomyces werraensis affects the volume of wheat dough pastries. Appl Microbiol Biotechnol 2017; 102:1269-1279. [PMID: 29188331 DOI: 10.1007/s00253-017-8637-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
A type D ferulic acid esterase (FAE) was identified in the culture supernatant of Streptomyces werraensis, purified, sequenced, and heterologously produced in E. coli BL21(DE3)Star by co-expressing chaperones groES-groEL (69 U L-1). The unique enzyme with a mass of about 48 kDa showed no similarity to other FAEs, and only moderate homology (78.5%) to a Streptomycete β-xylosidase. The purified reSwFAED exhibited a temperature optimum of 40 °C, a pH optimum in the range from pH seven to eight and a clear preference for bulky natural substrates, such as 5-O-trans-feruloyl-L-arabinofuranose (FA) and β-D-xylopyranosyl-(1→2)-5-O-trans-feruloyl-L-arabinofuranose (FAX), compared to the synthetic standard substrate methyl ferulate. Treatment of wheat dough with as little as 0.03 U or 0.3 U kg-1 reSwFAED activity resulted in a significant increase of the bun volume (8.0 or 9.7%, resp.) after baking when combined with polysaccharide-degrading enzymes from Aspergillus. For the first time, the long-standing, but rarely proven positive effect of a FAE in baking was confirmed.
Collapse
|
15
|
Linke D, Riemer SJ, Schimanski S, Nieter A, Krings U, Berger RG. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete – Isaria farinosa. Fungal Biol 2017; 121:763-774. [DOI: 10.1016/j.funbio.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 12/01/2022]
|
16
|
Affiliation(s)
- Elisabetta Brenna
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| | - Fabio Parmeggiani
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
17
|
Behrens CJ, Zelena K, Berger RG. Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases. Appl Biochem Biotechnol 2016; 179:1404-17. [PMID: 27106285 DOI: 10.1007/s12010-016-2073-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/03/2016] [Indexed: 11/29/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.
Collapse
Affiliation(s)
- Christoph J Behrens
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany.
| | - Kateryna Zelena
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
18
|
Cheng Z, Jiang J, Wu H, Li Z, Ye Q. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2016; 200:897-904. [PMID: 26606325 DOI: 10.1016/j.biortech.2015.10.107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
In this study, production of 3-HP via malonyl-CoA was investigated by using metabolically engineered Escherichia coli carrying heterogeneous acetyl-CoA carboxylase (Acc) from Corynebacterium glutamicum and codon-optimized malonyl-CoA reductase (MCR) from Chloroflexus aurantiacus. Three engineered E. coli strains with different host-vector systems were constructed and investigated. The results indicated that the combination of E. coli BL21(DE3) and pET28a was the most efficient host-vector system for 3-HP production, and the highest concentration of 3-HP attained in shake flask cultivation reached 1.80g/L by the strain BE-MDA with induction at 0.25mM IPTG and 25°C, and supplementation of NaHCO3 and biotin. In fed-batch fermentation performed in a 5-L reactor, the concentration of 3-HP achieved 10.08g/L in 36h.
Collapse
Affiliation(s)
- Zhuan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaqi Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Krings U, Esparan V, Berger RG. The taste enhancer divanillin: a review on sources and enzymatic generation. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ulrich Krings
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried Wilhelm Leibniz University Hannover; Callinstrasse 5 D-30167 Hannover Germany
| | - Vida Esparan
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried Wilhelm Leibniz University Hannover; Callinstrasse 5 D-30167 Hannover Germany
| | - Ralf G. Berger
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried Wilhelm Leibniz University Hannover; Callinstrasse 5 D-30167 Hannover Germany
| |
Collapse
|
20
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
21
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
22
|
Omarini AB, Plagemann I, Schimanski S, Krings U, Berger RG. Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone. BIORESOURCE TECHNOLOGY 2014; 171:113-119. [PMID: 25189516 DOI: 10.1016/j.biortech.2014.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
Several hundred monokaryotic and new dikaryotic strains derived thereof were established from (+)-valencene tolerant Pleurotus species. When grouped according to their growth rate on agar plates and compared to the parental of Pleurotus sapidus 69, the slowly growing monokaryons converted (+)-valencene more efficiently to the grapefruit flavour compound (+)-nootkatone. The fast growing monokaryons and the slow×slow and the fast×fast dikaryotic crosses showed similar or inferior yields. Some slow×fast dikaryons, however, exceeded the biotransformation capability of the parental dikaryon significantly. The activity of the responsible enzyme, lipoxygenase, showed a weak correlation with the yields of (+)-nootkatone indicating that the determination of enzyme activity using the primary substrate linoleic acid may be misleading in predicting the biotransformation efficiency. This exploratory study indicated that a classical genetics approach resulted in altered and partly improved terpene transformation capability (plus 60%) and lipoxygenase activity of the strains.
Collapse
Affiliation(s)
- Alejandra B Omarini
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Ina Plagemann
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Silke Schimanski
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Ulrich Krings
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| |
Collapse
|
23
|
Fraatz MA, Rühl M, Zorn H. Food and feed enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 143:229-56. [PMID: 23873095 DOI: 10.1007/10_2013_235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.
Collapse
Affiliation(s)
- Marco Alexander Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | | | | |
Collapse
|
24
|
Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 2014; 24:18-29. [DOI: 10.1016/j.ymben.2014.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022]
|
25
|
Kelle S, Zelena K, Krings U, Linke D, Berger RG. Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris. Protein Expr Purif 2014; 95:233-9. [DOI: 10.1016/j.pep.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
26
|
Leonhardt RH, Berger RG. Nootkatone. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:391-404. [DOI: 10.1007/10_2014_279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Leonhardt RH, Plagemann I, Linke D, Zelena K, Berger RG. Orthologous lipoxygenases of Pleurotus spp. – A comparison of substrate specificity and sequence homology. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Zelena K, Takenberg M, Lunkenbein S, Woche SK, Nimtz M, Berger RG. PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus. Biotechnol Appl Biochem 2013; 60:147-54. [PMID: 23600571 DOI: 10.1002/bab.1077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/30/2012] [Indexed: 11/08/2022]
Abstract
The pfah2 gene coding for a novel hydrophobin PfaH2 from the ascomycete Paecilomyces farinosus was identified during sequencing of random clones from a cDNA library. The corresponding protein sequence of PfaH2 deduced from the cDNA comprised 134 amino acids (aa). A 16 aa signal sequence preceded the N-terminus of the mature protein. PfaH2 belonged to the class Ia hydrophobins. The protein was isolated using trifluoroacetic acid extraction and purified via SDS-PAGE and high-performance liquid chromatography. The surface activity of the recently described PfaH1 and of PfaH2 was compared by the determination of contact angles (CAs) on glass slides and Teflon tape, and the CA of distilled water droplets was measured on glass slides coated with hydrophobin PfaH1 or PfaH2. Surprisingly, both hydrophobins adsorbed to hydrophilic surfaces and changed their physicochemical properties to a similar quantitative extent, although little aa sequence homology was found.
Collapse
Affiliation(s)
- Katerina Zelena
- Naturwissenschaftliche Fakultät der Leibniz Universität Hannover, Institut für Lebensmittelchemie, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Weidmann V, Schaffrath M, Zorn H, Rehbein J, Maison W. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus - conversion of selected spirocyclic terpenoids and computational analysis. Beilstein J Org Chem 2013; 9:2233-41. [PMID: 24204436 PMCID: PMC3817473 DOI: 10.3762/bjoc.9.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ''mushroom catalysis'' is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.
Collapse
Affiliation(s)
- Verena Weidmann
- Department of Chemistry, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Plagemann I, Zelena K, Arendt P, Ringel PD, Krings U, Berger RG. LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. BIORESOURCE TECHNOLOGY 2012; 123:135-143. [PMID: 22940310 DOI: 10.1016/j.biortech.2012.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
In this study, effects of temperature, inducer concentration, time of induction and co-expression of molecular chaperones (GroEL-GroES and DnaKJE), on cell growth and solubilization of model protein, xylanases, were investigated. The yield of soluble xylanases increased with decreasing cultivation temperature and inducer level. In addition, co-expression of DnaKJE chaperone resulted in increased soluble xylanases though the time of induction of chaperone and target protein had a bearing on this yield. A combination of chaperone co-expression and partial induction resulted in ∼40% (in DnaKJE) and 33% (in GroEL-GroES) of total xylanase yield in soluble fraction. However, the conditions for maximum yield of soluble r-XynB and maximum % soluble expression of r-XynB were different. Higher expression of soluble xylanases in a scalable semi-synthetic medium showed potential of the process for soluble enzyme production.
Collapse
Affiliation(s)
- Kamna Jhamb
- CSIR - Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | |
Collapse
|