1
|
Cubides D, Guimerà X, Jubany I, Gamisans X. A review: Biological technologies for nitrogen monoxide abatement. CHEMOSPHERE 2023; 311:137147. [PMID: 36347354 DOI: 10.1016/j.chemosphere.2022.137147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen oxides (NOx), including nitrogen monoxide (NO) and nitrogen dioxide (NO2), are among the most important global atmospheric pollutants because they have a negative impact on human respiratory health, animals, and the environment through the greenhouse effect and ozone layer destruction. NOx compounds are predominantly generated by anthropogenic activities, which involve combustion processes such as energy production, transportation, and industrial activities. The most widely used alternatives for NOx abatement on an industrial scale are selective catalytic and non-catalytic reductions; however, these alternatives have high costs when treating large air flows with low pollutant concentrations, and most of these methods generate residues that require further treatment. Therefore, biotechnologies that are normally used for wastewater treatment (based on nitrification, denitrification, anammox, microalgae, and combinations of these) are being investigated for flue gas treatment. Most of such investigations have focused on chemical absorption and biological reduction (CABR) systems using different equipment configurations, such as biofilters, rotating reactors, or membrane reactors. This review summarizes the current state of these biotechnologies available for NOx treatment, discusses and compares the use of different microorganisms, and analyzes the experimental performance of bioreactors used for NOx emission control, both at the laboratory scale and in industrial settings, to provide an overview of proven technical solutions and biotechnologies for NOx treatment. Additionally, a comparative assessment of the advantages and disadvantages is performed, and special challenges for biological technologies for NO abatement are presented.
Collapse
Affiliation(s)
- David Cubides
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain; Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain.
| | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| |
Collapse
|
2
|
Shahabivand S, Mortazavi SS, Mahdavinia GR, Darvishi F. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114586. [PMID: 35085972 DOI: 10.1016/j.jenvman.2022.114586] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Phenol is a hazardous organic solvent to living organisms, even in its small amounts. In order to bioremediation of phenol from aqueous solution, a novel bacterial strain was isolated from coking wastewater, identified as Rhodococcus qingshengii based on 16S rRNA sequence analysis and named as strain Sahand110. The phenol-biodegrading capabilities of the free and immobilized cells of Sahand110 on the beads of Na-alginate (NA) and magnetic chitosan-alginate (MCA) nanocomposite were evaluated under different initial phenol concentrations (200, 400, 600, 800 and 1000 mg/L). Results illustrated that Sahand110 was able to grow and complete degrade phenol up to 600 mg/L, as the sole carbon and energy source. Immobilized cells of Sahand110 on NA and MCA were more competent than its free cells in degradation of high phenol concentrations, 100% of 1000 mg/L phenol within 96 h, indicating the improved tolerance and performance of the immobilized cells against phenol toxicity. Therefore, the immobilized Sahand110 on the studied beads, especially MCA bead regarding its suitable properties, has significant potential to enhanced bioremediation of phenol-rich wastewaters.
Collapse
Affiliation(s)
- Saleh Shahabivand
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | | | - Farshad Darvishi
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
Jiang Y, Yang F, Dai M, Ali I, Shen X, Hou X, Alhewairini SS, Peng C, Naz I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. CHEMOSPHERE 2022; 286:131721. [PMID: 34352550 DOI: 10.1016/j.chemosphere.2021.131721] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The discharge of chromium (Cr) contaminated wastewater is creating a serious threat to aquatic environment due to the rapid pace in agricultural and industrial activities. Particularly, the long-term exposure of Cr(VI) polluted wastewater to the environment is causing serious harm to human health. Therefore, the treatment of Cr(VI) contaminated wastewater is demanding widespread attention. Regarding this, the bioremediation is being considered as a reliable and feasible option to handle Cr(VI) contaminated wastewater because of having low technical investment and operating costs. However, certain factors such as loss of microorganisms, toxicity to microorganisms and uneven microbial growth cycle in the presence of high concentrations of Cr(VI) are hindering its commercial applications. Regarding this, microbial immobilization technology (MIT) is getting great research interest because it could overcome the shortcomings of bioremediation technology's poor tolerance against Cr. Therefore, this review is the first attempt to emphases recent research developments in the remediation of Cr(VI) contamination via MIT. Starting from the selection of immobilized carrier, the present review is designed to critically discuss the various microbial immobilizing methods i.e., adsorption, embedding, covalent binding and medium interception. Further, the mechanism of Cr(VI) removal by immobilized microorganism has also been explored, precisely. In addition, three kinds of microorganism immobilization devices have been critically examined. Finally, knowledge gaps/key challenges and future perspectives are also discussed that would be helpful for the experts in improving MIT for the remediation of Cr(VI) contamination.
Collapse
Affiliation(s)
- Yating Jiang
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Fei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Imran Ali
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Xiaoting Hou
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China; Sunwater Environmental Science & Technology Co. Ltd., Rizhao, 262300, China
| | - Saleh S Alhewairini
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
4
|
Recent Breakthroughs and Advancements in NO x and SO x Reduction Using Nanomaterials-Based Technologies: A State-of-the-Art Review. NANOMATERIALS 2021; 11:nano11123301. [PMID: 34947650 PMCID: PMC8703905 DOI: 10.3390/nano11123301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Nitrogen and sulpher oxides (NOx, SOx) have become a global issue in recent years due to the fastest industrialization and urbanization. Numerous techniques are used to treat the harmful exhaust emissions, including dry, traditional wet and hybrid wet-scrubbing techniques. However, several difficulties, including high-energy requirement, limited scrubbing-liquid regeneration, formation of secondary pollutants and low efficiency, limit their industrial utilization. Regardless, the hybrid wet-scrubbing technology is gaining popularity due to low-costs, less-energy consumption and high-efficiency removal of air pollutants. The removal/reduction of NOx and SOx from the atmosphere has been the subject of several reviews in recent years. The goal of this review article is to help scientists grasp the fundamental ideas and requirements before using it commercially. This review paper emphasizes the use of green and electron-rich donors, new breakthroughs, reducing GHG emissions, and improved NOx and SOx removal catalytic systems, including selective/non-catalytic reduction (SCR/SNCR) and other techniques (functionalization by magnetic nanoparticles; NP, etc.,). It also explains that various wet-scrubbing techniques, synthesis of solid iron-oxide such as magnetic (Fe3O4) NP are receiving more interest from researchers due to the wide range of its application in numerous fields. In addition, EDTA coating on Fe3O4 NP is widely used due to its high stability over a wide pH range and solid catalytic systems. As a result, the Fe3O4@EDTA-Fe catalyst is projected to be an optimal catalyst in terms of stability, synergistic efficiency, and reusability. Finally, this review paper discusses the current of a heterogeneous catalytic system for environmental remedies and sustainable approaches.
Collapse
|
5
|
Sharif HMA, Mahmood N, Wang S, Hussain I, Hou YN, Yang LH, Zhao X, Yang B. Recent advances in hybrid wet scrubbing techniques for NO x and SO 2 removal: State of the art and future research. CHEMOSPHERE 2021; 273:129695. [PMID: 33524756 DOI: 10.1016/j.chemosphere.2021.129695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Recently, the discharge of flue gas has become a global issue due to the rapid development in industrial and anthropogenic activities. Various dry and wet treatment approaches including conventional and hybrid hybrid wet scrubbing have been employing to combat against these toxic exhaust emissions. However, certain issues i.e., large energy consumption, generation of secondary pollutants, low regeneration of scrubbing liquid and high efficieny are hindering their practical applications on industrial level. Despite this, the hybrid wet scrubbing technique (advanced oxidation, ionic-liquids and solid engineered interface hybrid materials based techniques) is gaining great attention because of its low installation costs, simultaneous removal of multi-air pollutants and low energy requirements. However, the lack of understanding about the basic principles and fundamental requirements are great hurdles for its commercial scale application, which is aim of this review article. This review article highlights the recent developments, minimization of GHG, sustainable improvements for the regeneration of used catalyst via green and electron rich donors. It explains, various hybrid wet scrubbing techniques can perform well under mild condition with possible improvements such as development of stable, heterogeneous catalysts, fast and in-situ regeneration for large scale applications. Finally, it discussed recovery of resources i.e., N2O, NH3 and N2, the key challenges about several competitive side products and loss of catalytic activity over time to treat toxic gases via feasible solutions by hybrid wet scrubbing techniques.
Collapse
Affiliation(s)
| | - Nasir Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, 3001, Melbourne, Victoria, Australia
| | - Shengye Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ijaz Hussain
- Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Li-Hui Yang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
6
|
Zhang C, Liu S, Li S, Tao Y, Wang P, Ma X, Chen L. Enahanced biosorption of Cu(II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Long XL, Cao HX, Duan BB, Jia ML. Removal of NO with the hexamminecobalt solution catalyzed by the carbon treated with oxalic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27788-27798. [PMID: 28983739 DOI: 10.1007/s11356-017-0328-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
NO can be removed at the same time with SO2 by aqueous Co(NH3)62+ solution. The reduction of Co(NH3)63+ to Co(NH3)62+ is catalyzed by activated carbon to regain the NO absorption ability of the scrubbing solution. Oxalic acid solution is explored to change the carbon surface to ameliorate its catalytic capability. The experimental results suggest that the best catalyst is prepared by impregnating the carbon sample in 0.7 mol l-1 oxalic acid solution for 24 h followed by being activated at 600 °C for 5 h under nitrogen atmosphere. After being treated with oxalic acid solution, the surface area and the acidity on the carbon surface increase. The experiments show that the carbon modified with oxalic acid can get a much higher NO removal efficiency than the original carbon.
Collapse
Affiliation(s)
- Xiang-Li Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai, 200237, People's Republic of China.
| | - Hai-Xia Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai, 200237, People's Republic of China
| | - Bei-Bei Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai, 200237, People's Republic of China
| | - Ming-Lei Jia
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai, 200237, People's Republic of China
| |
Collapse
|
8
|
Chen WT, Shen SM, Shu CM. Application of ethylene diamine tetra acetic acid degrading bacterium Burkholderia cepacia on biotreatment process. BIORESOURCE TECHNOLOGY 2015; 193:357-362. [PMID: 26143003 DOI: 10.1016/j.biortech.2015.06.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Ethylene diamine tetra acetic acid (EDTA), the effluent of secondary biotreatment units, can be properly biodegraded by Burkholderia cepacia. Through batch degradation of EDTA, the raw wastewater of EDTA was controlled at 50 mg/L, and then nutrients was added in diluted wastewater to cultivate activated sludge, which the ratio of composition is depicted as "COD:N:P:Fe = 100:5:1:0.5". After 27 days, the removal efficiency of Fe-EDTA and COD was 100% and 92.0%, correspondingly. At the continuous process, the raw wastewater of EDTA was dictated at 166 mg/L before adding nutrients to cultivate activated sludge, in which the ratio of composition did also follow with batch process. After 22 days, the removal efficiency of Fe-EDTA and COD for experimental group was 71.46% and 62.58%, correspondingly. The results showed that the batch process was more suited for EDTA biodegradation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644, Taiwan, ROC.
| | - Shu-Min Shen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| |
Collapse
|
9
|
Yu W, Xu L, Graham N, Qu J. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment. Sci Rep 2015; 5:13067. [PMID: 26268589 PMCID: PMC4535038 DOI: 10.1038/srep13067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage.
Collapse
Affiliation(s)
- Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Centre for Water Resources Research (CWRR), School of Civil, Structural and Environmental Engineering, University College Dublin, Newstead Building, Belfield, Dublin 4, Ireland
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Lin J, Fan L, Miao R, Le X, Chen S, Zhou X. Enhancing catalytic performance of laccase via immobilization on chitosan/CeO 2 microspheres. Int J Biol Macromol 2015; 78:1-8. [DOI: 10.1016/j.ijbiomac.2015.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
|
11
|
Zhou Z, Lin T, Jing G, Lv B, Liu Y. High-efficiency removal of NO x by a novel integrated chemical absorption and two-stage bioreduction process using magnetically stabilized fluidized bed reactors. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5413-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas. Appl Microbiol Biotechnol 2014; 98:8497-512. [PMID: 25149446 DOI: 10.1007/s00253-014-6016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 01/09/2023]
Abstract
Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.
Collapse
|
13
|
Wang L, Loh KC, Tong YW. Immobilization of growing Sphingomonas sp. HXN-200 to gelatin microspheres: Efficient biotransformation of N-Cbz-pyrrolidine and N-Boc-pyrrolidine into hydroxypyrrolidine derivatives. J Biotechnol 2014; 182-183:74-82. [DOI: 10.1016/j.jbiotec.2014.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/26/2014] [Accepted: 04/27/2014] [Indexed: 11/16/2022]
|
14
|
Evaluation of Fe(III)EDTA and Fe(II)EDTA-NO reduction in a NO x scrubber solution by magnetic Fe3O4-chitosan microspheres immobilized microorganisms. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0207-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zhou Z, Jing G, Zheng X. Reduction of Fe(III)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions. BIORESOURCE TECHNOLOGY 2013; 132:210-216. [PMID: 23411450 DOI: 10.1016/j.biortech.2013.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 06/01/2023]
Abstract
Biological reduction of Fe(III) to Fe(II) is a key step in nitrogen oxides (NOx) removal by the integrated chemical absorption-biological reduction method, which determines the concentration of Fe(II) in the scrubbing liquid. A new Fe(III)EDTA reduction strain, named as FD-3, was isolated from mixed cultures used in the integrated NOx removal process and identified as Klebsiella sp. by 16S rDNA sequence analysis. The reduction abilities of FD-3 and the influence of nitrogen-containing compounds (Fe(II)EDTA-NO, NO3(-) and NO2(-)) and sulfur-containing compounds (SO4(2-), SO3(2-)) on the Fe(III)EDTA reduction were investigated. The results indicated that strain FD-3 could reduce Fe(III)EDTA efficiently. NO3(-), NO2(-) and Fe(II)EDTA-NO inhibit the reduction of Fe(III)EDTA and could also serve as electron acceptor for strain FD-3. SO3(2-) inhibited Fe(III)EDTA reduction while SO4(2-) had no obviously effect on Fe(III)EDTA reduction. The relationship between cell growth and Fe(III)EDTA reduction could be described by the models based on Logistic equation.
Collapse
Affiliation(s)
- Zuoming Zhou
- Department of Environmental Science & Engineering, Huaqiao University, Xiamen 361021, China.
| | | | | |
Collapse
|
16
|
Wang X, Zhou Z, Jing G. Synthesis of Fe3O4 poly(styrene-glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NO(x) scrubbing solution. BIORESOURCE TECHNOLOGY 2013; 130:750-756. [PMID: 23334160 DOI: 10.1016/j.biortech.2012.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/28/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
Magnetic poly(styrene-glycidyl methacrylate) porous microspheres (MPPM) with high magnetic contents were prepared by surfactant reverse micelles and emulsion polymerization of monomers, in which the well-dispersed Fe(3)O(4) nanoparticles were modified by polyethylene glycol (PEG) and oleic acid (OA) respectively. The characterizations showed that both of the OA-MPPM and the PEG-MPPM were ferromagnetic, however, the OA-MPPM was used to immobilize the bacteria for more advantages. Therefore, the effects of monomer ratio, surfactant, crosslinker and amount of Fe(3)O(4) on the structure, morphology and magnetic contents of the OA-MPPM were investigated. Then, the OA-MPPM was utilized to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium for Fe(III)EDTA reduction applied in NO(x) removal. Compared with free bacteria, the immobilized FD-3 showed a better tolerance to the unbeneficial pH and temperature conditions.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Environmental Science & Engineering, Huaqiao University, Xiamen 361021, China
| | | | | |
Collapse
|