1
|
Andrade LP, Rodrigues MI, Murakami MT, de Moraes Rocha GJ. Pilot-scale high-consistency mechanical refining improves enzymatic saccharification of lignocellulosic feedstock. Sci Rep 2025; 15:10514. [PMID: 40140476 PMCID: PMC11947289 DOI: 10.1038/s41598-025-94675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The natural recalcitrance of lignocellulosic biomass poses a major challenge for biorefineries aiming to convert these materials into fuels, chemicals, and polymers. This study explored the impact of pilot-scale high-consistency mechanical refining on the enzymatic depolymerization of lignocellulosic biomass when associated with low-severity hydrothermal (HPTB) and steam explosion (SEPTB) pretreatments, 180 °C for 15 min and 190 °C for 10 min respectively. Under industrially relevant conditions and using sugarcane bagasse as model lignocellulosic feedstock, we observed that the mechanical refining had a distinct effect on the fiber morphology depending on the pretreatment process. While statistical analyses indicated no correlation between refining parameters and saccharification efficiency for HPTB, an 8% increase in glucose release was observed for SEPTB with mechanical refining. Scanning electron microscopy revealed enhanced fiber morphology and delamination in SEPTB material after mechanical refining, suggesting increased porosity and accessibility for enzymes. Furthermore, distinct chemical compositions were observed between HPTB and SEPTB materials, aligning with the distinct responses to mechanical refining. These findings highlight the potential of combining mechanical refining with steam explosion pretreatment to improve the enzymatic depolymerization of lignocellulosic biomass, advancing the current knowledge on the application and challenges of high-consistency mechanical refining in lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Liliane Pires Andrade
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory (LNBR), Campinas, SP, Brazil
- Postgraduate Program in Functional and Molecular Biology (BFM), Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Isabel Rodrigues
- Protimiza Consulting and Training in Experimental Design and Process Optimization, Campinas, SP, Brazil
| | - Mário Tyago Murakami
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory (LNBR), Campinas, SP, Brazil.
| | - George Jackson de Moraes Rocha
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory (LNBR), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Rodrigues DM, da Silva MF, de Mélo AHF, Carvalho PH, Baudel HM, Goldbeck R. Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives. Food Res Int 2024; 192:114843. [PMID: 39147474 DOI: 10.1016/j.foodres.2024.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.
Collapse
Affiliation(s)
- Danielle Matias Rodrigues
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Marcos Fellipe da Silva
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Allan Henrique Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Henrique Macedo Baudel
- Department of Chemical Engineering, Federal University of Pernambuco, Zip Code: 50100-100, Recife, Pernambuco, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Ruan L, Wu H, Wu S, Zhou L, Wu S, Shang C. Optimizing the Conditions of Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse for Bioethanol Production. ACS OMEGA 2024; 9:29566-29575. [PMID: 39005808 PMCID: PMC11238294 DOI: 10.1021/acsomega.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Haifeng Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shiya Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Lifei Zhou
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shangxin Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
4
|
Ali S, Rana QUA, Riaz F, Haq A, Sajjad W, Gauttam R, Ali M, Badshah M. Agricultural Waste Management by Production of Second-Generation Bioethanol from Sugarcane Bagasse Using Indigenous Yeast Strain. Curr Microbiol 2024; 81:161. [PMID: 38700667 DOI: 10.1007/s00284-024-03668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/17/2024] [Indexed: 05/16/2024]
Abstract
In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.
Collapse
Affiliation(s)
- Sidra Ali
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Qurrat Ul Ain Rana
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Fatima Riaz
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Haq
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Peshawar Laboratories Complex, Pakistan Council of Scientific & Industrial Research, Peshawar, 25120, Pakistan
| | - Wasim Sajjad
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment, and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | | | - Mahwish Ali
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Malik Badshah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Nunes da Silva VF, Farias de Menezes F, Gonçalves AR, Martín C, de Moraes Rocha GJ. Modulating the properties and structure of lignins produced by alkaline delignification of sugarcane bagasse pretreated with two different mineral acids at pilot-scale. Int J Biol Macromol 2024; 263:130111. [PMID: 38346614 DOI: 10.1016/j.ijbiomac.2024.130111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Sugarcane bagasse was pretreated with dilute phosphoric acid or sulfuric acid to facilitate cellulose hydrolysis and lignin extraction. With phosphoric acid, only 8 % of the initial cellulose was lost after delignification, whereas pretreatment with sulfuric acid resulted in the solubilization of 38 % of the initial cellulose. After enzymatic hydrolysis, the process using phosphoric acid produced approximately 35 % more glucose than that using sulfuric acid. In general, the lignins showed 95-97 % purity (total lignin, w/w), an average molar mass of 9500-10,200 g mol-1, a glass transition temperature of 140-160 °C, and a calorific value of 25 MJ kg-1. Phosphoric acid lignin (PAL) was slightly more polar than sulfuric acid lignin (SAL). PAL had 13 % more oxidized units and 20 % more OH groups than SAL. Regardless of the acid used, the lignins shared similar properties, but differed slightly in the characteristics of their functional groups and chemical bonds. These findings show that pretreatment catalyzed with either of the two acids resulted in lignin with sufficiently good characteristics for use in industrial processes.
Collapse
Affiliation(s)
| | - Fabricia Farias de Menezes
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro, 10000, Campinas, SP 13083-970, Brazil
| | - Adilson Roberto Gonçalves
- Bioenergy Reasearch Institute (IPBEN), Universidade Estadual Paulista (UNESP), Rua 10, 2527, Rio Claro, SP 13500-230, Brazil
| | - Carlos Martín
- Inland Norway University of Applied Sciences, Department of Biotechnology, N-2317 Hamar, Norway; Department of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro, 10000, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
6
|
Novel recycling of pineapple leaves into cellulose microfibers by two-step grinding of ball milling and high-speed rotor–stator homogenization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment. Sci Rep 2022; 12:4561. [PMID: 35296788 PMCID: PMC8927152 DOI: 10.1038/s41598-022-08717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
The use of a method of an effective delignification of lignocellulosic biomass is a key stage of designing processes of its microbiological conversion e.g. for the purposes of the production of cellulosic ethanol. The study was aimed at evaluating the effectiveness of microwave-assisted hydrotropic pretreatment using sodium cumene sulfonate (NaCS) for the delignification of pine and beech chips and wheat straw. Research results presenting the impact of process parameters of microwave-assisted hydrotropic delignification confirm a high effectiveness of this method of pretreatment of lignocellulosic biomass. The observed effects included changes in the composition of the biomass and an increased susceptibility of cellulose to the subsequent enzymatic hydrolysis. The use of microwave heating combined with an addition of hydrotrope of 40% w/v NaCS and 117 PSI for 60 min enabled a reduction of the absolute concentration of lignins by 36.58% in pine chips, by 57.68% in beech chips, and by 74.08% in wheat straw. After enzymatic hydrolysis was conducted, the highest concentration of glucose: 463.27 ± 11.25 mg glucose/g (hydrolysis yield 46.76 ± 1.14%) was obtained from the wheat straw, while 327.70 ± 22.15 mg glucose/g (hydrolysis yield 35.13 ± 2.37%) was acquired from the beech chips, and only 50.77 ± 0.75 mg glucose/g (hydrolysis yield 6.63 ± 0.10%) was obtained from the pine chips. Microwave-assisted hydrotropic delignification in the optimum process conditions additionally allows a complete removal of hemicellulose from biomass, which improves the effectiveness of enzymatic hydrolysis. Due to a significant reduction of lignin and hemicellulose concentration in biomass, cellulose—which is susceptible to enzymatic hydrolysis and a source of carbon in biosynthesis processes—becomes the main biomass component.
Collapse
|
8
|
Pereira B, Marcondes WF, Carvalho W, Arantes V. High yield biorefinery products from sugarcane bagasse: Prebiotic xylooligosaccharides, cellulosic ethanol, cellulose nanofibrils and lignin nanoparticles. BIORESOURCE TECHNOLOGY 2021; 342:125970. [PMID: 34583112 DOI: 10.1016/j.biortech.2021.125970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated biorefining strategy was applied to fractionate Sugarcane bagasse (SCB) into its major constituents, enabling high-yield conversion of the fractionated materials into high-value coproducts alongside cellulosic ethanol. Pilot-scale steam explosion produced a hydrolysate rich in low molecular weight xylooligosaccharides that had a high in vitro efficacy as a prebiotic towards different bifidobacteria. Lignin recovered after alkaline treatment of the steam-exploded SCB was converted into uniform spherical lignin nanoparticles (11.3 nm in diameter) by a green mechanical method. The resulting cellulose was hydrolyzed at 17.5% (w/v) consistency and low enzyme loading (17.5 mg/g) to yield a pure glucose hydrolysate at a high concentration (100 g/L) and a cellulosic solid residue that was defibrillated by disc ultra-refining into homogeneous cellulose nanofibrils (20.5 nm in diameter). Statistical optimization of the cellulosic hydrolysate fermentation led to ethanol production of 67.1 g/L, with a conversion yield of 0.48 g/g and productivity of 1.40 g/L.h.
Collapse
Affiliation(s)
- Bárbara Pereira
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Wilian F Marcondes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Walter Carvalho
- Biochemistry Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil.
| |
Collapse
|
9
|
Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Castilla-Archilla J, Papirio S, Lens PN. Two step process for volatile fatty acid production from brewery spent grain: Hydrolysis and direct acidogenic fermentation using anaerobic granular sludge. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Lignin isolated from Caesalpinia pulcherrima leaves has antioxidant, antifungal and immunostimulatory activities. Int J Biol Macromol 2020; 162:1725-1733. [DOI: 10.1016/j.ijbiomac.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
|
12
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
13
|
Kariuki SW, Wachira J, Kawira M, Murithi G. Crop residues used as lignocellulose materials for particleboards formulation. Heliyon 2020; 6:e05025. [PMID: 33024858 PMCID: PMC7527642 DOI: 10.1016/j.heliyon.2020.e05025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 09/18/2020] [Indexed: 11/29/2022] Open
Abstract
Efforts to reduce pressure on use of wood in particleboard formulation have included the use of non-wood materials such as crop residues. Physical and mechanical properties are determined by the number of the hydroxyl (-OH) groups. Hydroxyl (-OH) groups attracts water molecules through hydrogen bonding affecting water absorption (WA) and thickness swelling (TS). WA and TS affect curing process of adhesive. Curing process of adhesives affects the mechanical characteristics of formulated particleboards. These challenges have been acted upon continuously through research. This review paper presents crop residues used as alternative lignocellulose material source in particleboard formulation and the various advances that have been made to improve on the properties of the resultant particleboards. Improvement over time of the non-wood material in composite materials focusses on increasing water resistance and compatibility between lignocellulose and binder. Crop residues-based are used in making medium and low density particleboards. These boards have shown good mechanical characteristics which include modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB). MOR, MOE and IB have over time been improved by enhancing chemical compatibility of lignocellulose material and the binders. Water absorption and thickness swelling remain challenge. This review paper further explored various methods of improving water absorption and thickness swelling of crop-residue based particleboards.
Collapse
Affiliation(s)
| | - Jackson Wachira
- Department of Physical Sciences, University of Embu, P.O. Box, 6-60100, Embu, Kenya
| | - Millien Kawira
- Department of Physical Sciences, University of Embu, P.O. Box, 6-60100, Embu, Kenya
| | - Genson Murithi
- Department of Physical Sciences, University of Embu, P.O. Box, 6-60100, Embu, Kenya
| |
Collapse
|
14
|
Delabona PDS, Codima CA, Ramoni J, Zubieta MP, de Araújo BM, Farinas CS, Pradella JGDC, Seiboth B. The impact of putative methyltransferase overexpression on the Trichoderma harzianum cellulolytic system for biomass conversion. BIORESOURCE TECHNOLOGY 2020; 313:123616. [PMID: 32563792 DOI: 10.1016/j.biortech.2020.123616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Trichoderma harzianum has attracting attention for its potential alternative use in biofuel production, due to a recognized competence for high diversity glycoside hydrolases (GH) enzyme complex, including higher β-glucosidases and auxiliary proteins, using low-cost carbon sources. This strain constitutively overexpressed the global regulator putative methyltransferase - LAE1, in order to improve the GHs production. The recombinant strain achieved 79-fold increase in lae1 expression and high GHs productivity. The evaluation of the LAE1 impact to induce the GHs used soluble and lignocellulose inexpensive carbon sources in a stirred-tank bioreactor. Using sugarcane bagasse with sucrose, the overexpression of lae1 resulted in significantly increment of gh61b (31x), cel7a (25x), bgl1(20x) and xyn3 (20x) genes expression. Reducing sugar released from pretreated sugarcane bagasse, which hydrolyzed by recombinant crude enzyme cocktail, achieved 41% improvement. Therefore, lae1 overexpression effectively is a promising improving GHs target for biomass degradation by T. harzianum.
Collapse
Affiliation(s)
- Priscila da Silva Delabona
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil; Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria; Federal University of Goiás (UFG), Samambaia Campus, Goiânia, GO, Brazil.
| | - Carla Aloia Codima
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | - Jonas Ramoni
- Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Mariane Paludetti Zubieta
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | | | | | - José Geraldo da Cruz Pradella
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | - Bernhard Seiboth
- Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| |
Collapse
|
15
|
Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse. J Biotechnol 2020; 321:35-47. [PMID: 32622841 DOI: 10.1016/j.jbiotec.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
This work investigated the integration of a two-stage hydrothermal treatment for production of xylooligosaccharides (XOS), a high-value product, into the isolation process of cellulose nanofibrils (CNF) from sugarcane bagasse. Under optimized conditions, the first stage yielded a XOS-rich, high purity hydrolysate and in the second stage only a xylose-rich hydrolysate could be obtained at high purity. The resulting solid cellulosic fraction was delignified and bleached to obtain a cellulose-rich pulp, which was mechanically defibrillated by disc ultra-refining to CNF. Except for the viscosity, the sugarcane CNF showed properties (i.e., thermal stability, crystallinity and diameter size) comparable or superior to the CNF prepared from commercial bleached eucalyptus Kraft pulp. In conclusion, the integration of the two-stage hydrothermal treatment is an efficient and promising strategy to obtain hemicellulose-derived high-value co-products in the process of isolating CNF. In addition, lignin was also recovered as a co-product with yield comparable to other biomass fractionation approaches.
Collapse
|
16
|
Virtanen T, Lahti J, Kalliola A, Tamminen T, Mänttäri M, Kallioinen M. Influence of laccase treatment on fouling layer formation in ultrafiltration of birch hot-water extract. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv 2020; 40:107535. [DOI: 10.1016/j.biotechadv.2020.107535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
|
18
|
Ejaz U, Muhammad S, Ali FI, Hashmi IA, Sohail M. Methyltrioctylammonium chloride mediated removal of lignin from sugarcane bagasse for themostable cellulase production. Int J Biol Macromol 2019; 140:1064-1072. [PMID: 31454643 DOI: 10.1016/j.ijbiomac.2019.08.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Shoaib Muhammad
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Firdous Imran Ali
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Imran Ali Hashmi
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
19
|
Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol Adv 2019; 37:107384. [PMID: 31014935 DOI: 10.1016/j.biotechadv.2019.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe°, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.
Collapse
|
20
|
Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Yuan Z, Li G, Hegg EL. Enhancement of sugar recovery and ethanol production from wheat straw through alkaline pre-extraction followed by steam pretreatment. BIORESOURCE TECHNOLOGY 2018; 266:194-202. [PMID: 29982039 DOI: 10.1016/j.biortech.2018.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
To improve sugar recovery and ethanol production from wheat straw, a sequential two-stage pretreatment process combining alkaline pre-extraction and acid catalyzed steam treatment was investigated. The results showed that alkaline pre-extraction using 8% (w/w) sodium hydroxide at 80 °C for 90 min followed by steam pretreatment with 3% (w/w) sulfur dioxide at 151 °C for 16 min was sufficient to prepare a substrate that could be efficiently hydrolyzed at high solid loadings. Moreover, alkaline pre-extraction reduced the process severity of steam pretreatment and decreased the generation of inhibitory compounds. During enzymatic hydrolysis, increasing solid loading decreased the yield of monomeric sugars. Enzymatic hydrolysis at 25% (w/v) solid loading, the yields of approximately 80% of glucose and 65% of xylose could be reached with an enzyme dosage of 25 mg protein/g glucan. Following fermentation of hydrolysate with sugar concentration of approximately 120 g/L, an ethanol concentration of 54.5 g/L was achieved.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Guodong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
da Cruz Filho IJ, da Silva Barros BR, de Souza Aguiar LM, Navarro CDC, Ruas JS, de Lorena VMB, de Moraes Rocha GJ, Vercesi AE, de Melo CML, Maior AMS. Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int J Biol Macromol 2018; 123:1331-1339. [PMID: 30244129 DOI: 10.1016/j.ijbiomac.2018.09.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
Opuntia fícus-indica and Opuntia cochenillifera are species of Cactaceae, found in the arid regions of the planet. They present water, cellulose, hemicellulose, pectins, extractives, ashes and lignins. Here we aimed to study the immunomodulatory action of lignins from these two species against mice splenocytes, since no study for this purpose has yet been reported. The antioxidant activities of these lignins were evaluated by the DPPH, ABTS, NO assays and total antioxidant activity. Cytotoxicity was evaluated through Annexin V-FITC and propidium iodide-PE probs and cell proliferation was determined by CFSE. Immunomodulation studies with Opuntia lignins obtained were performed through investigation of ROS levels, cytosolic calcium release, changes on mitochondrial membrane potential, cytokine production and NO release. Results showed that Opuntia cochenillifera lignin presented more phenolic amount and antioxidant activities than Opuntia ficius-indica. Both lignins showed high cell viability (>96%) and cell proliferation. Activation signal was observed for both lignins with increase of ROS and cytosolic calcium levels, and changes in mitochondrial membrane potential. In addition, lignins induced high TNF-α, IL-6 and IL-10 production and reduced NO release. Therefore, these lignins present great potential to be used as molecules with a proinflammatory profile, being shown as a promising therapeutic agent.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Lethícia Maria de Souza Aguiar
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Juliana Silveira Ruas
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - George Jackson de Moraes Rocha
- National Laboratory of Bioethanol Science and Technology, National Center for Research in Energy and Materials, São Paulo, Brazil
| | - Aníbal Eugênio Vercesi
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - Ana Maria Souto Maior
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
23
|
Yuan Z, Wen Y, Li G. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. BIORESOURCE TECHNOLOGY 2018; 259:228-236. [PMID: 29567594 DOI: 10.1016/j.biortech.2018.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H2O2)/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guodong Li
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
24
|
Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:127. [PMID: 29755586 PMCID: PMC5934847 DOI: 10.1186/s13068-018-1130-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Collapse
Affiliation(s)
- Thapelo Mokomele
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Department of Engineering Technology, Biotechnology Program, School of Technology, University of Houston, 4800 Calhoun, Road, Houston, TX 77004 USA
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| |
Collapse
|
25
|
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TDH, Squina FM. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:75. [PMID: 29588660 PMCID: PMC5863372 DOI: 10.1186/s13068-018-1073-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/09/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Collapse
Affiliation(s)
- Eduardo C. Moraes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Thabata M. Alvarez
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Brazil
| | - Gabriela F. Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Geizecler Tomazetto
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Livia B. Brenelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Douglas A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Gabriela C. Ematsu
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Juliana A. Aricetti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | | | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| |
Collapse
|
26
|
Carvalho AFA, Marcondes WF, de Oliva Neto P, Pastore GM, Saddler JN, Arantes V. The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2018; 250:221-229. [PMID: 29174899 DOI: 10.1016/j.biortech.2017.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, the potential of the steam explosion (SE) method to produce high levels XOS from sugarcane bagasse, a xylan-rich hemicellulosic feedstock, was assessed. The effect of different operating conditions on XOS production yield and selectivity were investigated using a mini-pilot scale SE unit. The results show that even under a non-optimized condition (190 °C, 5 min and 0.5% H2SO4 as catalyst), SE led to about 40% xylan recovery as XOS, which was comparable to the well-known, multi-step, enzymatic production of XOS from alkaline-extracted xylan, and other commonly employed chemical methods. In addition, the XOS-rich hydrolysate from SE constituted of greater diversity in the degree of polymerization, which has been shown to be desirable for prebiotic application.
Collapse
Affiliation(s)
- Ana Flavia Azevedo Carvalho
- Department of Wood Science, Forest Sciences Centre, University of British Columbia, 2424 Main Mall, V6TIZ4 Vancouver, BC, Canada; Associated Laboratory of Bioenergy Research Institute (IPBEN), Bioprocess Unit, São Paulo State University (UNESP), Av. Dom Antonio, 2100, 19806-380 Assis, SP, Brazil; Department of Food Science, School of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Wilian Fioreli Marcondes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (USP), Lorena, SP, Brazil
| | - Pedro de Oliva Neto
- Associated Laboratory of Bioenergy Research Institute (IPBEN), Bioprocess Unit, São Paulo State University (UNESP), Av. Dom Antonio, 2100, 19806-380 Assis, SP, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Jack N Saddler
- Department of Wood Science, Forest Sciences Centre, University of British Columbia, 2424 Main Mall, V6TIZ4 Vancouver, BC, Canada
| | - Valdeir Arantes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (USP), Lorena, SP, Brazil.
| |
Collapse
|
27
|
Yuan Z, Wen Y, Kapu NS. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2018; 247:242-249. [PMID: 28950132 DOI: 10.1016/j.biortech.2017.09.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 05/15/2023]
Abstract
A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H2O2) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H2O2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nuwan Sella Kapu
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
28
|
Candido R, Godoy G, Gonçalves AR. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr Polym 2017; 167:280-289. [DOI: 10.1016/j.carbpol.2017.03.057] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
|
29
|
Yuan Z, Wen Y. Evaluation of an integrated process to fully utilize bamboo biomass during the production of bioethanol. BIORESOURCE TECHNOLOGY 2017; 236:202-211. [PMID: 28411492 DOI: 10.1016/j.biortech.2017.03.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Aiming for the complete utilization of bamboo biomass, an integrated process which combines ethanol production with the recovery of silica and lignin was proposed. To reduce chemical charge required for the fractionation of silica and lignin from bamboo and improve the digestibility of the obtained substrate, a sequentially two-stage pretreatment process of autohydrolysis and alkaline extraction was carried out. From the view of enhancing enzymatic hydrolysis and recovery of silica and lignin, a two-stage treatment of autohydrolysis at 180°C for 90min followed by alkaline extraction at 100°C with 6% NaOH (based on pretreated chips) for 120min was optimized. About 93.7% of original silica and 75.7% of original lignin could be recovered from bamboo. Enzymatic hydrolysis and fermentation of carbohydrates showed that an overall sugar yield of 88.6% of original sugar content and an ethanol recovery of 0.467g/g sugar were achieved based on the proposed scheme.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
30
|
Wikberg H, Grönqvist S, Niemi P, Mikkelson A, Siika-Aho M, Kanerva H, Käsper A, Tamminen T. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues. BIORESOURCE TECHNOLOGY 2017; 235:70-78. [PMID: 28364635 DOI: 10.1016/j.biortech.2017.03.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow.
Collapse
Affiliation(s)
- Hanne Wikberg
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Stina Grönqvist
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Piritta Niemi
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Atte Mikkelson
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Matti Siika-Aho
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Heimo Kanerva
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Tarja Tamminen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
31
|
da Silva Delabona P, Rodrigues GN, Zubieta MP, Ramoni J, Codima CA, Lima DJ, Farinas CS, da Cruz Pradella JG, Seiboth B. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance. J Biotechnol 2017; 246:24-32. [DOI: 10.1016/j.jbiotec.2017.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/09/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
|
32
|
Yuan Z, Wen Y, Kapu NS, Beatson R, Mark Martinez D. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:38. [PMID: 28203276 PMCID: PMC5303214 DOI: 10.1186/s13068-017-0723-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. RESULTS An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. CONCLUSIONS The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Nuwan Sella Kapu
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Rodger Beatson
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4 Canada
- Chemical and Environmental Technology, British Columbia Institute of Technology, 3700 Willingdon Ave, Burnaby, V5G 3H2 Canada
| | - D. Mark Martinez
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
33
|
Srinivas K, de Carvalho Oliveira F, Teller PJ, Gonҫalves AR, Helms GL, Ahring BK. Oxidative degradation of biorefinery lignin obtained after pretreatment of forest residues of Douglas Fir. BIORESOURCE TECHNOLOGY 2016; 221:394-404. [PMID: 27660990 DOI: 10.1016/j.biortech.2016.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Harvested forest residues are usually considered a fire hazards and used as "hog-fuel" which results in air pollution. In this study, the biorefinery lignin stream obtained after wet explosion pretreatment and enzymatic hydrolysis of forestry residues of Douglas Fir (FS-10) was characterized and further wet oxidized under alkaline conditions. The studies indicated that at 10% solids, 11.7wt% alkali and 15min residence time, maximum yields were obtained for glucose (12.9wt%), vanillin (0.4wt%) at 230°C; formic acid (11.6wt%) at 250°C; acetic acid (10.7wt%), hydroxybenzaldehyde (0.2wt%), syringaldehyde (0.13wt%) at 280°C; and lactic acid (12.4wt%) at 300°C. FTIR analysis of the solid residue after wet oxidation showed that the aromatic skeletal vibrations relating to lignin compounds increased with temperature indicating that higher severity could result in increased lignin oxidation products. The results obtained, as part of the study, is significant for understanding and optimizing processes for producing high-value bioproducts from forestry residues.
Collapse
Affiliation(s)
- Keerthi Srinivas
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States
| | | | - Philip Johan Teller
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States
| | - Adilson Roberto Gonҫalves
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, Lorena SP 12.602-810, Brazil
| | - Gregory L Helms
- Center for NMR Spectroscopy, Washington State University, Pullman, WA 99164, United States
| | - Birgitte Kaer Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States.
| |
Collapse
|
34
|
Candido R, Gonçalves A. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr Polym 2016; 152:679-686. [DOI: 10.1016/j.carbpol.2016.07.071] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
35
|
|
36
|
|
37
|
Clauser NM, Gutiérrez S, Area MC, Felissia FE, Vallejos ME. Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Medina JDC, Woiciechowski A, Filho AZ, Nigam PS, Ramos LP, Soccol CR. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. BIORESOURCE TECHNOLOGY 2016; 199:173-180. [PMID: 26343575 DOI: 10.1016/j.biortech.2015.08.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/15/2023]
Abstract
The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB.
Collapse
Affiliation(s)
- Jesus David Coral Medina
- Federal University of Paraná, Department of Bioprocess and Biotechnology Engineering, CEP. 81531-970 Curitiba, PR, Brazil
| | - Adenise Woiciechowski
- Federal University of Paraná, Department of Bioprocess and Biotechnology Engineering, CEP. 81531-970 Curitiba, PR, Brazil
| | - Arion Zandona Filho
- Federal University of Paraná, Department of Bioprocess and Biotechnology Engineering, CEP. 81531-970 Curitiba, PR, Brazil
| | | | - Luiz Pereira Ramos
- Federal University of Paraná, Department of Chemistry, CEP. 81531-970 Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess and Biotechnology Engineering, CEP. 81531-970 Curitiba, PR, Brazil.
| |
Collapse
|
39
|
Chen HZ, Liu ZH. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 2015; 10:866-85. [DOI: 10.1002/biot.201400705] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
|
40
|
Asada C, Sasaki C, Hirano T, Nakamura Y. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. BIORESOURCE TECHNOLOGY 2015; 182:245-250. [PMID: 25704097 DOI: 10.1016/j.biortech.2015.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the effect of high-temperature saturated steam treatments on the chemical characteristics and enzymatic saccharification of softwood and hardwood. The weight loss and chemical modification of cedar and beech wood pieces treated at 25, 35, and 45 atm for 5 min were determined. Fourier transform infrared and X-ray diffraction analyses indicated that solubilization and removal of hemicellulose and lignin occurred by the steam treatment. The milling treatment of steam-treated wood enhanced its enzymatic saccharification. Maximum enzymatic saccharification (i.e., 94% saccharification rate of cellulose) was obtained using steam-treated beech at 35 atm for 5 min followed by milling treatment for 1 min. However, the necessity of the milling treatment for efficient enzymatic saccharification is dependent on the wood species.
Collapse
Affiliation(s)
- Chikako Asada
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Chizuru Sasaki
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Takeshi Hirano
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Yoshitoshi Nakamura
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| |
Collapse
|
41
|
Ra CH, Kang CH, Jeong GT, Kim SK. Bioethanol production from the waste product of salted Undaria pinnatifida using laboratory and pilot development unit (PDU) scale fermenters. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0179-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Wood IP, Wellner N, Elliston A, Wilson DR, Bancroft I, Waldron KW. Effect of Brassica napus cultivar on cellulosic ethanol yield. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:99. [PMID: 26185525 PMCID: PMC4504093 DOI: 10.1186/s13068-015-0278-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/26/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Intraspecific variations in biomass composition are likely to influence their suitability for biorefining. This may be particularly important in species such as Brassica napus, which contain many different crop types bred for different purposes. Here, straw derived from 17 B. napus cultivars, of varying crop types, were steam exploded, saccharified and fermented to establish differences in biomass composition relevant to cellulosic ethanol production. RESULTS Despite being grown and processed in the same manner, straw from the various cultivars produced different saccharification and fermentation yields after processing. Fermentation inhibitor abundances released by steam explosion also varied between genotypes. Cultivars with glucan-rich straw did not necessarily produce higher saccharification or ethanol yields after processing. Instead, the compositions of non-cellulosic components were more reliable indicators of substrate quality. The abundance of pectins and arabinogalactans had the greatest influence on saccharification efficiency between straw genotypes. CONCLUSIONS In dicotyledonous species, such as B. napus, variations in the abundance of pectins between crop cultivars are likely to influence processing efficiency for bioethanol production. Knowledge of these genotypic variants provides targets for plant breeding and could aid in the development of improved cellulase cocktails.
Collapse
Affiliation(s)
- Ian P. Wood
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA UK
| | - Nikolaus Wellner
- />Analytical Sciences Unit, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA UK
| | - Adam Elliston
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA UK
| | - David R. Wilson
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA UK
| | - Ian Bancroft
- />Department of Biology, University of York, Heslington, York YO10 5DD UK
| | - Keith W. Waldron
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA UK
| |
Collapse
|
43
|
Pirota RDPB, Baleeiro FCF, Farinas CS. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Biotechnol Prog 2013; 29:1430-40. [DOI: 10.1002/btpr.1811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/13/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rosangela D. P. B. Pirota
- Programa de Pós-graduação em Biotecnologia; Universidade Federal de São Carlos; 13565-905 São Carlos SP Brazil
- Embrapa Instrumentação, Rua XV de Novembro 1452; 13560-970 São Carlos SP Brazil
| | - Flávio C. F. Baleeiro
- Departamento de Engenharia Química; Universidade Federal de São Carlos; 13565-905 São Carlos SP Brazil
- Embrapa Instrumentação, Rua XV de Novembro 1452; 13560-970 São Carlos SP Brazil
| | - Cristiane S. Farinas
- Programa de Pós-graduação em Biotecnologia; Universidade Federal de São Carlos; 13565-905 São Carlos SP Brazil
- Embrapa Instrumentação, Rua XV de Novembro 1452; 13560-970 São Carlos SP Brazil
| |
Collapse
|
44
|
The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013; 60:29-45. [PMID: 23892063 DOI: 10.1016/j.fgb.2013.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 12/29/2022]
Abstract
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.
Collapse
|
45
|
Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S. Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. BIORESOURCE TECHNOLOGY 2013; 133:332-9. [PMID: 23434810 DOI: 10.1016/j.biortech.2013.01.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 05/12/2023]
Abstract
Sugarcane bagasse was pretreated with ozone to increase lignocellulosic material digestibility. Bagasse was ozonated in a fixed bed reactor at room temperature, and the effect of the two major parameters, ozone concentration and sample moisture, was studied. Acid insoluble and total lignin decreased whereas acid soluble lignin increased in all experiments. Pretreatment barely attacked carbohydrates, with cellulose and xylan recovery rates being >92%. Ozonolysis increased fermentable carbohydrate release considerably during enzymatic hydrolysis. Glucose and xylose yields increased from 6.64% and 2.05%, for raw bagasse, to 41.79% and 52.44% under the best experimental conditions. Only xylitol, lactic, formic and acetic acid degradation compounds were found, with neither furfural nor HMF (5-hydroxymethylfurfural) being detected. Washing detoxification provided inhibitor removal percentages above 85%, increasing glucose hydrolysis, but decreasing xylose yield by xylan solubilization. SEM analysis showed structural changes after ozonization and washing.
Collapse
Affiliation(s)
- Rodolfo Travaini
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain.
| | | | | | | | | |
Collapse
|
46
|
Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJM. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. BIORESOURCE TECHNOLOGY 2013; 130:168-73. [PMID: 23306125 DOI: 10.1016/j.biortech.2012.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 05/06/2023]
Abstract
Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment.
Collapse
Affiliation(s)
- Fernando M V Oliveira
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, P.O. Box 116, CEP 12602-810 Lorena, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse. Appl Biochem Biotechnol 2013; 169:1696-712. [DOI: 10.1007/s12010-013-0097-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
48
|
Chen WH, Tsai CC, Lin CF, Tsai PY, Hwang WS. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system. BIORESOURCE TECHNOLOGY 2013. [PMID: 23201511 DOI: 10.1016/j.biortech.2012.10.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed.
Collapse
Affiliation(s)
- Wen-Hua Chen
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC.
| | | | | | | | | |
Collapse
|